
(12) United States Patent
Bendicksen et al.

(54) REAL TIME DRC ASSISTANCE FOR
MANUAL LAYOUT EDITING

(75) Inventors: Jon Bendicksen, Gibsonia, PA (US);
Randy Bishop, Pleasanton, CA (US);
Zuo Dai, Ottawa (CA); John Hapli,
Greely (CA); Dick Liu, Saratoga, CA
(US); Ming Su, Nepean (CA)

(73) Assignee: Synopsys, Inc., Mountain View, CA
(US)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.c. 154(b) by 25 days.

(21) Appl. No.: 131219,524

(22) Filed: Aug. 26, 2011

(65)

(63)

(51)

(52)

(58)

(56)

Prior Publication Data

US 2012/0227023 Al Sep. 6,2012

Related U.S. Application Data

Continuation-in-part of application No. 12/960,086,
filed on Dec. 3, 2010, now Pat. No. 8,352,887.

Int. Cl.
G06F 15/04
G06F 17/50
U.S. Cl.

(2006.01)
(2006.01)

USPC .. 716/139
Field of Classification Search
USPC .. 7161139
See application file for complete search history.

References Cited

U.S. PATENT DOCUMENTS

4,599,722 A
4,997,786 A

711986 Mortimer
311991 Kubota et al.

111111 111
US008453103B2

(10) Patent No.: US 8,453,103 B2
May 28, 2013 (45) Date of Patent:

6,285,957 Bl 912001 Tanaka et al.
6,330,704 Bl 12/2001 Ljung et al.
6,353,801 Bl 3/2002 Sercu et al.
6,606,586 Bl 8/2003 Ishikawa
6,826,517 B2 1112004 Okada et al.
6,895,344 B2 5/2005 Ramaswamy
6,895,372 Bl 5/2005 Knebel et aI.
7,124,069 B2 1012006 Meuris et al.
7,149,666 B2 1212006 Tsang et al.
7,197,729 B2 3/2007 Batterywala
7,260,797 B2 8/2007 Batterywala et al.

(Continued)

OTHER PUBLICATIONS

A. Kuehlmann, Basic Geometry Processing and LVS, Slides for
EECS 244, University of California at Berkeley (2005) 31pp.
Silvaco, Application of Scan Line Methodology to Perform Metric
Operations in DRC, The Simulation Standard, vol. 8 No. 12 (1997)
pp.7-9.

(Continued)

Primary Examiner - Suresh Memula
(74) Attorney, Agent, or Firm - Haynes Beffel & Wolfeld
LLP; Warren S. Wolfeld

(57) ABSTRACT

Roughly described, while manually dragging shapes during
IC layout editing, editing operations determine which edges
of which shapes are moving at what speed ratios. Based on the
edge information and the DRC rules, the system calculates
and keeps track of the minimum of the maximum distance the
edges are allowed to move with the cursor without violating
DRC rules, in four linear directions and all corner directions.
Once a next cursor destination point is known, a DRC clean
destination point is calculated based on the linear and corner
bounds. If the next cursor position is beyond a the push­
through distance ahead of the new DRC clean point, the
editing objects are moved to the user's destination point.
Otherwise, the editing objects are moved to the new DRC
clean destination point, thereby stopping movement at that
point.

45 Claims, 29 Drawing Sheets

llSER EXPERIENCE

SYSTEM SHOWS DESIGN RULE VIOLATIONS
ON MONITOR IN REAL TIME, OR DISTANCE

TO NEAREST DESIGN RULE VIOLATIONS

SHAPES REACH DESIGN RULE BOUND AND
STOP MOVING DESPITE CONTINUED

DRAGGING

210

212

214

216

217

US 8,453,103 B2
Page 2

u.s. PATENT DOCUMENTS OTHER PUBLICATIONS

8,091,055 B2 *
8,266,557 Bl *

200210002683 Al
200210040466 Al
200210142149 Al
2004/0153987 Al *
2004/0268287 Al
2005/0120316 Al
2005/0198599 Al
2006/0053394 Al
2006/0277512 Al *

112012 Brelsford et a!. 716/111
912012 Qian 716/54
112002 Benson et aI.
4/2002 Khazei

1012002 Nakashima et a!.
812004 Culler 716/11

1212004 Toh
6/2005 Suaya et a!.
912005 Sercu et a!.
3/2006 Batterywala et a!.

1212006 Kucukcakar et a!. 716/6

Pending U.S. App!. No. 12/609,996, filed Oct. 30, 2009, Method and
Apparatus for Legalizing a Portion of a Circuit Layout, Shabbir H.
Batterywala et a!.
Pending U.S. App!. No. 121960,086, filed Dec. 3, 2010, High Perfor­
mance Design Rule Checking Technique, Zuo Dai et a!.
Pending U.S. App!. No. 13/211,211, filed Aug. 16,2011, High Per­
formance DRC Checking Algorithm for Derived Layer Based Rules,
Zuo Dai et aI.

* cited by examiner

paCkaging) [3!] Product
)} EDA }) FaMcatiDn)) & Chips Idea Software

150 Assembly 170
110 100

160

A
(--~

Logic DeSign)SynthesiS &
and Func. Design for
Verif.114 Test 116

Netlist
Verification

118

FIG.1

Physical
Implement.

122

Physical
Verfication

126

•
Resolution
Enhanc.

128

~
7Jl
•
~
~
~
~ = ~

~
~
~
N
~CIO

N
0
(.H

rFJ

=­('D
('D
o
N
\0

d
rJl
QO

~
tit
W
'"
"""'" = w

= N

u.s. Patent May 28,2013 Sheet 2 of29 US 8,453,103 B2

USER EXPERIENCE

210 v-USER DEVELOPS PRELIMINARY
LAYOUT FROM CIRCUIT DESIGN

! V-
212

USER VIEWS LAYOUT REGION ON
MONITOR

USER SELECTS AND DRAGS GROUP V-
214

OF SHAPES

r
SYSTEM SHOWS DESIGN RULE VIOLATIONS --...J 216 ON MONITOR IN REAL TIME, OR DISTANCE

TO NEAREST DESIGN RULE VIOLATIONS

!
SHAPES REACH DESIGN RULE BOUND AND --...J 217 STOP MOVING DESPITE CONTINUED

DRAGGING

/~ {220

USER STOPS DRAGGING, SHAPES USER DRAGS PAST PUSH-
"-

REMAIN AT DESIGN RULE BOUND THROUGH DISTANCE

2 18~
!

SHAPES SNAP TO NEW POSITION

222~ DESPITE ANY DESIGN RULE
VIOLATIONS

u.s. Patent May 28,2013 Sheet 3 of29

BUILD RELATIONSHIP
MASTER

DISPLAY LAYOUT REGION AND
AWAIT LAYOUT EDITING COMMAND

US 8,453,103 B2

310

312

328

HANDLE OTHER
OTHER

COMMAND

DRAG TO P2 ADJUST DESTINATION POINT
PER DESIGN RULE BOUNDS

330
314

315

316

318

320

COLLECT EDITING SHAPES
FROM LAYOUT COMMAND

POPULATE EDGE SPEED RATIOS
BASED ON EDITING COMMAND

COLLECT SURROUNDING
STATIC SHAPES

BUILD HORIZONTAL AND VERTICAL
SCAN LINE TREES FROM ALL

EDGES OF ALL COLLECTED SHAPES

EXTRACT TOPOGRAPHICAL
RELATIONSHIPS BETWEEN EDITING

SHAPES AND SURROUNDING SHAPES

COMPARE TO DESIGN
RULES

OUTPUT MARKERS FROM
DRC CHECK

SAVE DRC BOUNDS INTO
CACHE 326

u.s. Patent May 28,2013 Sheet 4 of29 US 8,453,103 B2

r 318

BUILD SCAN LINE TREES /

BUILD SWEEP _X (HORIZONTAL V SCAN TREE FOR HORIZONTAL

410

SCANNING)

,

V BUILD SWEEP _ Y (VERTICAL SCAN

412

TREE FOR VERTICAL SCANNING)

" (DONE)

FIG. 4

u.s. Patent May 28,2013 Sheet 5 of29 US 8,453,103 B2

I Sweep_x
510

/ ~ 514

512 J Enter tree I Exit tree

51
~/ ~

6 X_pos Edge_tree

X_pos Edge_tree

X pos Edge tree ~520
X_pos Edge_tree

~/ "" F"---- 522
518 y_pos edge

y pos edge EdgelD

y_pos edge tc- 524 Layer ID

y_pos edge Edge start (x,y)

Edge end (x,y)

528~
Edge against scan line? (YIN)

Quadrant depth vector c,-,-,J
Layer ID Status Vector Neighbor map

Layer ID Status Vector \ Derived Edge status map ? Layer ID Status Vector

~
.....

Layer ID Status Vector '- 526

FIG. 5

0 0

1 0
536

1 0

0
534

532

1 0

0 0
530

Current vertical
scan line

FIG.5A

u.s. Patent May 28,2013 Sheet 6 of29 US 8,453,103 B2

I Sweep y
-610

/ ~ 614

612 J Enter tree I Exit tree

61
~/ ~

6 Y_pos EdgeJree

Y_pos Edge_tree

Y_pos EdgeJree ~620
Y_pos Edge_tree

618~ / '" ~622
x_pos edge

x pos edge EdgelD

x_pos edge tc- 624 Layer ID

x_pos edge Edge start (x,y)

Edge end (x,y)

628~
Edge against scanline? (YIN)

Quadrant depth vector c,-,-,J
Layer ID Status Vector Neighbor map

Layer ID Status Vector '\ Derived Edge status map

~ Layer ID Status Vector

~
.....

Layer ID Status Vector '- 626

u.s. Patent May 28,2013 Sheet 7 of29 US 8,453,103 B2

BU ILD SWEEP X r 410

/ 710

BUILD LIST OF ALL HORIZONTAL EDGES OF V-
ALL SHAPES IN REGION 712

~
SORT LIST BY X_POS OF LH ENDPOINTS

• CREATE ENTER TREE, A MAP OF VERTICAL SCANLINE
MULTIMAPS, AT EACH UNIQUE X-POSITION IN THE LIST:

r+< A TEACH UNIQUE X_POSITION IN THE LIST: ~
~7 16

714
~ 7

~ CREATE A SCAN LINE MULTIMAP FOR A
18

VERTICAL SCAN LINE AT X_POS

+
POPULATE MULTIMAP WITH ALL EDGES

HAVING LH ENDPOINTS AT CURRENT --r----
X_POS -

720

~ 722
SORT LIST BY X_POS OF RH ENDPOINTS

• CREATE EXIT TREE, A MAP OF VERTICAL SCANLINE MULTIMAPS,
AT EACH UNIQUE X-POSITION IN THE LIST: 72

~
6

r+< AT EACH UNIQUE X_POSITION IN THE LIST: >-
72 4~

~ J7
CREATE A SCAN LINE MULTIMAP FOR A

28

VERTICAL SCAN LINE AT X_POS
r--

+ f7 POPULATE MULTIMAP WITH ALL EDGES
30

HAVING RH ENDPOINTS AT CURRENT -
X_POS

+
(DONE)

u.s. Patent May 28,2013 Sheet 8 of29 US 8,453,103 B2

BUILD SWEEP Y r 412

/' 810

V BUILD LIST OF ALL VERTICAL EDGES OF
ALL SHAPES IN REGION 812

~
I SORT LIST BY Y _POS OF LOWER ENDPOINTS

• CREATE ENTER TREE, A MAP OF HORIZONTAL SCANLINE
MULTIMAPS, AT EACH UNIQUE Y-POSITION IN THE LIST:

-+< AT EACH UNIQUE Y _POSITION IN THE LIST: ~
~8 16

814 ~
~ 8

CREATE A SCAN LINE MULTIMAP FOR A
18

HORIZONTAL SCAN LINE AT Y _POS

~
POPULATE MULTIMAP WITH ALL EDGES

HAVING LOWER ENDPOINTS AT r-- t--
CURRENT Y _POS -

820

~ 822
I SORT LIST BY Y _POS OF UPPER ENDPOINTS

~
CREATE EXIT TREE, A MAP OF HORIZONTAL SCANLINE
MULTIMAPS, AT EACH UNIQUE Y-POSITION IN THE LIST:

-+< AT EACH UNIQUE Y _POSITION IN THE LIST: ~
~8 26

824

! 8
~ CREATE A SCAN LINE MULTIMAP FOR A

28

HORIZONTAL SCAN LINE AT Y _POS

~
POPULATE MULTIMAP WITH ALL EDGES

HAVING UPPER ENDPOINTS AT r--r--U-CURRENT Y _POS

830

~
(DONE)

u.s. Patent May 28,2013 Sheet 9 of29

r 320

EXTRACT TOPOGRAPHICAL /
RELATIONSH IPS

SCAN HORIZONTAL SCAN TREE V
910

,

V SCAN VERTICAL SCAN TREE

912

" (DONE)

FIG. 9

US 8,453,103 B2

u.s. Patent May 28,2013 Sheet 10 of 29 US 8,453,103 B2

SCAN HORIZONTAL SCAN TREE

CREATE VERTICAL SCAN LINE MUL TIMAP
1008

current_scanJine

• 1010

SCAN currenUcanJine L TO R THROUGH VERTICAL
SCAN LINE MUL TIMAPS IN BOTH ENTER_TREE AND DONE)

EXIT_TREE. FOR EACH SCAN POSITION:

~
UPDATE current_sean_line BY ADDING ALL HORIZONTAL EDGES HAVING LH

ENDPOINT LOCATED AT THE CURRENT HORIZONTAL SCAN POSITION V- 1O 12

• Lr1 UPDATE DEPTH INFORMATION FOR EACH EDGE IN CURRENT VERTICAL SCAN
LINE MUL TIMAP

014

• UPDATE DERIVED LAYER INFORMATION FOR EACH DERIVED LAYER HAVING AN

V 1 EDGE INTERSECTING CURRENT SCAN LINE 015

!
1/ 101

FOR EACH ENTERING EDGE IN CURRENT VERTICAL SCAN LINE, PROCESS
6

ENTERING EDGE CORNER

• FOR EACH EXITING EDGE IN CURRENT VERTICAL SCAN LINE, PROCESS EXITING
V- 101 EDGE CORNER 8

•
PROCESS DERIVED CORNERS IN CURRENT VERTICAL SCAN LINE V- 101 9

! 102
POPULATE OR UPDATE INFORMATION ABOUT ANY ISLANDS

o

+
COPY DEPTH INFORMATION FROM RH QUADRANTS TO LH QUADRANTS

! 102 2

UPDATE current_sean_line BY REMOVING ALL HORIZONTAL EDGES HAVING RH
~1 ENDPOINT LOCATED AT THE CURRENT HORIZONTAL SCAN POSITION 024

I

FIG. 10

u.s. Patent May 28,2013 Sheet 11 of 29

II

1114~

s_ray_x

s_ray_y

,..........~~tar

1120 I

1118

------~r~~--~~~----~----~--~

1122

II
II
II ori x
II ------i~~~~~--~~
II

tar_y \
..... ----0+

1124

III

IV

FIG.11A

US 8,453,103 B2

1112

1116

u.s. Patent

II

III

May 28,2013 Sheet 12 of 29

1144

V-
1130

I

I

I

I

t!3r_y

I FIG.11B

IV

US 8,453,103 B2

I

1136

u.s. Patent May 28,2013 Sheet 13 of 29

FOR EACH ENTERING EDGE IN CURRENT
VERTICAL SCAN LINE. PROCESS ENTERING EDGE

US 8,453,103 B2

CORNER /1016

FOR EACH ENTERING EDGE IN
CURRENT VERTICAL SCAN LINE:

NO

CREATE A CORNER IN
SYNCHRONIZED_CORNER_MAP IF NOT

ALREADY EXISTING

CHECK EDGE-BASED RULES FOR HORIZONTAL
EDGES ABOVE & BELOW CURRENT HORIZONTAL

EDGE, POPULATING AVAILABLE CORNER
INFORMATION AS LEARNED

CALCULATE VERTICAL 1220
LINEAR DESIGN RULE

BOUNDS, SAVE TO CACHE

FIG. 12

DONE

1210

1216

1218

u.s. Patent May 28,2013 Sheet 14 of 29 US 8,453,103 B2

FOR EACH EXITING EDGE IN CURRENT VERTICAL
SCAN LINE, PROCESS EXITING EDGE CORNER /1018

FOR EACH EXITING EDGE IN
CURRENT VERTICAL SCAN LINE:

1314

NO

CREATE A CORNER IN
SYNCHRONIZED_CORNER_MAP IF NOT

ALREADY EXISTING

CHECK EDGE-BASED RULES FOR HORIZONTAL
EDGES ABOVE & BELOW CURRENT HORIZONTAL

EDGE, POPULATING AVAILABLE CORNER
INFORMATION AS LEARNED

CALCULATE VERTICAL 1320
LINEAR DESIGN RULE

BOUNDS, SAVE TO CACHE

FIG. 13

1310

DONE

1316

1318

u.s. Patent May 28,2013 Sheet 15 of 29 US 8,453,103 B2

SCAN VERTICAL SCAN TREE

/912

CREATE HORIZONTAL SCAN LINE MUL TIMAP
1408

current_scanJine

• 1410
::;CAN currenucan_llne tlU I I UM I U I UI-' I HKUUGH

HORIZONTAL SCAN LINE MUL TIMAPS IN BOTH
DONE)

ENTER_TREE AND EXIT_TREE. FOR EACH SCAN
POSITION:

• UPDATE current_scanJine BY ADDING ALL VERTICAL EDGES HAVING LOWER
ENDPOINT LOCATED AT THE CURRENT VERTICAL SCAN POSITION V- 14 12

• UPDATE DEPTH INFORMATION FOR EACH EDGE IN CURRENT HORIZONTAL SCAN V LINE MUL TIMAP

1414

• UPDATE DERIVED LAYER INFORMATION FOR EACH DERIVED LAYER HAVING AN

V 1 EDGE INTERSECTING CURRENT SCAN LINE 415

• 1,141
FOR EACH ENTERING EDGE IN CURRENT HORIZONTAL SCAN LINE, PROCESS

6

ENTERING EDGE CORNER

• FOR EACH EXITING EDGE IN CURRENT HORIZONTAL SCAN LINE, PROCESS It 141 EXITING EDGE CORNER 8

PROCESS DERIVED CORNERS IN CURRENT HORIZONTAL SCAN LINE It 141 9

~
COPY DEPTH INFORMATION FROM UPPER QUADRANTS TO LOWER QUADRANTS

• 142 2

UPDATE current_scanJine BY REMOVING ALL VERTICAL EDGES HAVING UPPER

V 1 ENDPOINT LOCATED AT THE CURRENT VERTICAL SCAN POSITION 424

I

FIG. 14

u.s. Patent May 28,2013 Sheet 16 of 29

FOR EACH ENTERING EDGE IN CURRENT
HORIZONTAL SCAN LINE. PROCESS ENTERING

US 8,453,103 B2

EDGE CORNER /1416

FOR EACH ENTERING EDGE IN
CURRENT HORIZONTAL SCAN LINE:

NO

CREATE A CORNER IN
SYNCHRONIZED_CORNER_MAP IF NOT

ALREADY EXISTING

CHECK EDGE-BASED RULES FOR VERTICAL
EDGES LEFT & RIGHT OF CURRENT VERTICAL

EDGE, POPULATING AVAILABLE CORNER
INFORMATION AS LEARNED

CALCULATE HORIZONTAL
LINEAR DESIGN RULE

BOUNDS, SAVE TO CACHE

FIG. 15

DONE

1510

1516

1518

1520

u.s. Patent May 28,2013 Sheet 17 of 29

FOR EACH EXITING EDGE IN CURRENT
HORIZONTAL SCAN LINE. PROCESS EXITING EDGE

US 8,453,103 B2

CORNER ",;- 1418

FOR EACH EXITING EDGE IN
CURRENT HORIZONTAL SCAN LINE:

1614

NO

CREATE A CORNER IN
SYNCHRONIZED_CORNER_MAP IF NOT

ALREADY EXISTING

CHECK EDGE-BASED RULES FOR VERTICAL
EDGES LEFT & RIGHT OF CURRENT VERTICAL

EDGE, POPULATING AVAILABLE CORNER
INFORMATION AS LEARNED

CALCULATE HORIZONTAL
LINEAR DESIGN RULE

BOUNDS, SAVE TO CACHE

FIG. 16

1610

DONE

1616

1618

1620

u.s. Patent May 28,2013 Sheet 18 of 29 US 8,453,103 B2

r 322
COMPARE TO DESIGN RULES /

CHECK CORNER-TO- V-- 1710

CORNER RULES

" V--CHECK OTHER
CORNER-BASED

1712

RULES

,
V--CHECK ISLAND-

1714

BASED RULES

" V--CHECK OTHER

1716

RULES

" (DONE)

FIG. 17

u.s. Patent May 28,2013 Sheet 19 of 29 US 8,453,103 B2

r 1710

CHECK CORNER-TO-CORNER RULES /

BUILD RAY MAP OF SPACE_RAYS FROM
CONVEX CORNERS AND DIMENSION_RAYS

FROM CONCAVE CORNERS

SCAN RAY MAP LEFT-TO-RIGHT
FOR INTERSECTING RAYS

1814

1810

1816

YES CHECKCORNE~

NO

CORNER SPACING

1820
1818

YES CHECKCORNE~
CORNER DIMENSION

1824
1822

YES CHECK MINIMUM

FIG. 18

EXTENSION RULES

CALCULATE CORNER
DESIGN RULE

BOUNDS

1826

DONE

u.s. Patent May 28,2013 Sheet 20 of 29 US 8,453,103 B2

1921

1918

FIG.19A

1923

~--------~---l--------- __ ~~:n

FIG.19C

1930\

1
1

1 1924
1
1
1
1

V 1938

1 1932
1
1
1
1
1
1

r 1938

~: 1934
1

i(1
1 1
1 1
1 :

1 \ 1
1 1
1 1

1
1

1 1
1 1

:FIG.19E :
1 1
1 1
1 1

FIG.19B

1928

~
co
<l

CfJ
"0
"'~ r.. eolWidth

------M M~------

1938\

1 "--.J
1
1 1
1 1
1)"1

I

1
1

~1926

FIG.19D

6

u.s. Patent May 28,2013 Sheet 21 of 29 US 8,453,103 B2

CHECK OTHER CORNER-BASED RULES 1712

2010 /

CONCAVE

CHECK CONCAVE
CORNER EDGE
LENGTH RULE

CHECK NOTCH RULE

CALCULATE
CONDITIONAL
DESIGN RULE

BOUNDS

SCAN SYNCHRONIZED
CORNER MAP

CHECK EDGE
LENGTH RULE FROM
CURRENT CORNER

2016

2018

2026

FIG. 20

DONE

2012

CHECK CONVEX
CORNER EDGE
LENGTH RULE

DONE

CHECK END-OF-LiNE
SPACING RULE

2020

2022

u.s. Patent May 28,2013

2110

2114

FIG.21A

2110

FIG.21C

2122
2110

FIG.21E

2112

2112

2112

Sheet 22 of 29 US 8,453,103 B2

2110

~2116

o 0 0.1 0.2 0 3-------"~----,

2112

FIG. 218

FIG.210

u.s. Patent May 28,2013 Sheet 23 of 29 US 8,453,103 B2

/ 2210

2226 ~ STORAGE SUBSYSTEM COMPUTER SYSTEM

/2224
2228;

MEMORY SUBSYSTEM
2222l

m2 2~
~ RAM

FILE
STORAGE USER INTERFACE

SUBSYSTEM INPUT DEVICES

; ./
2212 ;

~

r r 2214
2216J

~ 2220
PROCESSOR NETWORK USER INTERFACE
SUBSYSTEM INTERFACE OUTPUT DEVICES

,
COMMUNICATION F2218

NETWORK

FIG. 22

u.s. Patent May 28,2013 Sheet 24 of 29 US 8,453,103 B2

r 1020
POPULATE OR UPDATE INFORMATION ABOUT ANY ISLANDS /

~ FOR EACH ISLAND HAVING A
"" CORNER IN CURRENT SCAN LINE

DONE

2310~ r 2314

/ /2316

IS N~W YES INSTANTIATE ---.J I
ISLAND? ISLAND IN I SET AREA=O

2312 ---~ . ISLAND_MAP

NO

/

2318
H = DISTANCE ALONG CURRENT VERTICAL
SCAN LINE FROM BOTTOM EDGE TO TOP

EDGE OF CURRENT ISLAND

~ V 2320
W = xPos OF CURRENT VERTICAL SCAN LINE

- mJasCposition_updated FOR CURRENT
ISLAND

ADD HxW TO ACCUMULATING AREA OF
CURRENT ISLAND

V 2322

I r 2324
COPY xPos OF CURRENT VERTICAL SCAN V

LINE TO mJasCposition_updated FOR
CURRENT ISLAND

FIG. 23

2326 J

2328 J

MERGE
ISLANDS

SPLIT
ISLANDS

(DONE)

u.s. Patent May 28,2013 Sheet 25 of 29 US 8,453,103 B2

2410)

UPDATE DERIVED LAYER INFORMATION FOR EACH /1015
DERIVED LAYER HAVING AN EDGE INTERSECTING

CURRENT SCAN LINE

\ LOOP THROUGH Y POSITIONS, BonOM TO TOP, AT WHICH ONE OR MORE PHYSICAL >
HORIZONTAL EDGES INTERSECT CURRENT VERTICAL SCAN LINE. CALL THE GROUP OF

EDGES INTERSECTING CURRENT VERTICAL SCAN LINE AT CURRENT Y _POSITION AN
"EDGE GROUP"

2412
~ .-

COLLECT ALL THE "RELATED" LAYERS RELATED TO ANY OF THE I (DONE

PHYSICAL HORIZONTAL EDGES IN CURRENT EDGE GROUP 2428 J
2414\

~
AT CURRENT Y _POSITION ON CURRENT VERTICAL SCAN LINE, IN related_edge_status

MAP, SET THE BOOLEAN STATUS FOR EACH SUCH RELATED PHYSICAL LAYER

2416 _______ ~
COLLECT ALL DERIVED LAYERS DERIVED ULTIMATELY FROM THE PHYSICAL LAYERS
CONTAINING ANY OF THE EDGES IN CURRENT EDGE GROUP. SORT MONOTONICALLY

BY DERIVATION RANK

2418 ~
'7 LOOP THROUGH SUCH DERIVED LAYERS

2420~ ~
USE DERIVATION OPERATOR FOR CURRENT DERIVED LAYER TO DERIVE BOOLEAN

STATUS VECTOR AS A FUNCTION OF BOOLEAN STATUS OF PARENT LAYER(S)

2422 _______ ~
INSERT BOOLEAN STATUS VECTOR FOR CURRENT DERIVED LAYER AT CURRENT

Y _POSITION ON CURRENT VERTICAL SCANLlNE, INTO m_derived_edge_status MAP IN
EDGE OBJECT FOR 1ST PHYSICAL EDGE OF CURRENT EDGE GROUP

~
2424 ALSO INSERT INTO related_edge_status MAP FOR CURRENT DERIVED I

LAYER, AT CURRENT Y _POSITION ON CURRENT VERTICAL SCAN LINE

~
LOOP DONE?

242 6

)

u.s. Patent May 28,2013 Sheet 26 of 29 US 8,453,103 B2

2510

NO

PROCESS DERIVED CORNERS IN CURRENT
VERTICAL SCAN LINE

FOR EACH UNIQUE VERTICAL
POSITION IN CURRENT VERTICAL

SCAN LINE

CREATE A DERIVED CORNER IN
SYNCHRONIZED_CORNER_MAP IF NOT

ALREADY EXISTING

;1019

2518

CHECK EDGE-BASED RULES FOR HORIZONTAL EDGES ABOVE & BELOW 2520
CURRENT HORIZONTAL EDGE ON CURRENT DERIVED LAYER,
POPULATING AVAILABLE CORNER INFORMATION AS LEARNED

CALCULATE VERTICAL LINEAR SLACKS,
SAVE TO CACHE 2524

FIG. 25

u.s. Patent May 28,2013 Sheet 27 of 29 US 8,453,103 B2

2610

l

UPDATE DERIVED LAYER INFORMATION FOR EACH /1415
DERIVED LAYER HAVING AN EDGE INTERSECTING

CURRENT SCAN LINE

\ LOOP THROUGH X_POSITIONS, L TO R, AT WH ICH ONE OR MORE PHYS ICAL VERTICAL >
EDGES INTERSECT CURRENT HORIZONTAL SCAN LINE. CALL THE GROUP OF EDGES

INTERSECTING CURRENT HORIZONTAL SCAN LINE AT CURRENT X_POSITION AN "EDGE
GROUP"

2612 • f"'
COLLECT ALL THE "RELATED" LAYERS RELATED TO ANY OF THE I (DONE

PHYSICAL VERTICAL EDGES IN CURRENT EDGE GROUP 2628 J
2614~ • AT CURRENT X_POSITION ON CURRENT HORIZONTAL SCAN LINE, IN related_edge_status

MAP, SET THE BOOLEAN STATUS FOR EACH SUCH RELATED PHYSICAL LAYER

2616~ • COLLECT ALL DERIVED LAYERS DERIVED ULTIMATELY FROM THE PHYSICAL LAYERS
CONTAINING ANY OF THE EDGES IN CURRENT EDGE GROUP. SORT MONOTONICALLY

BY DERIVATION RANK

2618 • ,.,
LOOP THROUGH SUCH DERIVED LAYERS

2620~ • USE DERIVATION OPERATOR FOR CURRENT DERIVED LAYER TO DERIVE BOOLEAN
STATUS VECTOR AS A FUNCTION OF BOOLEAN STATUS OF PARENT LAYER(S)

2622~ ~
INSERT BOOLEAN STATUS VECTOR FOR CURRENT DERIVED LAYER AT CURRENT

X_POSITION ON CURRENT HORIZONTAL SCANLlNE, INTO m_derived_edge_status MAP IN
EDGE OBJECT FOR 1ST PHYSICAL EDGE OF CURRENT EDGE GROUP

~
2624 ALSO INSERT INTO related_edge_status MAP FOR CURRENT DERIVED I

LAYER, AT CURRENT X_POSITION ON CURRENT HORIZONTAL SCAN LINE

~
LOOP DONE?

2626

)

u.s. Patent

NO

May 28,2013 Sheet 28 of 29

PROCESS DERIVED CORNERS IN CURRENT
HORIZONTAL SCAN LINE

NO

FOR EACH UNIQUE HORIZONTAL
POSITION IN CURRENT

HORIZONTAL SCAN LINE

2716

CREATE A DERIVED CORNER IN
SYNCHRONIZED_CORNER_MAP IF NOT

ALREADY EXISTING

US 8,453,103 B2

;1419

2710

2718

CHECK EDGE-BASED RULES FOR VERTICAL EDGES TO L & R OF 2720
CURRENT VERTICAL EDGE ON CURRENT DERIVED LAYER,

POPULATING AVAILABLE CORNER INFORMATION AS LEARNED

CALCULATE HORIZONTAL LINEAR SLACKS,
SAVE TO CACHE 2724

FIG. 27

u.s. Patent

2810

2816
2824

May 28,2013

2820

Sheet 29 of 29 US 8,453,103 B2

2812

FIG.28A

2814 [}-2818 ...
2822

FIG. 288

US 8,453,103 B2
1

REAL TIME DRC ASSISTANCE FOR
MANUAL LAYOUT EDITING

CROSS-REFERENCE TO OTHER
APPLICATIONS

This is a Continuation-in-Part of U.S. application Ser. No.
12/960,086, filed 3 Dec. 2010 now U.S. Pat. No. 8,352,887,

2
Merge all same layer shapes into separate islands;
Shrink all islands by (half the minimum width value+

epsilon)
Eliminate all resulting islands of zero area;
Grow back the resulting islands by (half the minimum

width value+epsilon);
Perform a NOT operation between the original merged

islands and grown back islands; and

entitled High Performance Design Rule Checking Technique.
The parent application is incorporated herein by reference in 10

its entirety.

Draw DRC violation markers based on the shapes resulting
from the NOT operation.

So long as a good geometry engine is available, the con­
ventional DRC techniques are simple to code, at least for
simple rules. They are also flexible and powerful if the geom­
etry engine has a scripting API for relevant geometry opera-

BACKGROUND

The invention relates to electronic design automation, and
more particularly, to methods and apparatuses for rapid
checking of design rules in a circuit layout.

Advancements in process technology have impacted inte­
grated circuit manufacturing in at least two key ways. First,
scaling of device geometry achieved through sub-wavelength
lithography has facilitated packing more devices on a chip.
Second, different process recipes have enabled manufactur­
ing of heterogeneous devices with different threshold and
supply voltages on the same die. A consequence of these
improvements, however, has been an explosion in the number
of design rules that need to be obeyed in the layout. Instead of
simple width and spacing rules, modern fabrication technolo­
gies prescribe complex contextual rules that have to be
obeyed for manufacturability.

The increase in the number of rules has complicated the
task of creating design rule clean layouts, i.e., layouts that do
not have design rule violations. Creating design rule clean
layouts for digital circuit designs can be facilitated by the use
of standard cell layouts as building blocks, and placement and
routing tools that are extended to address the design rules.

Unfortunately, this approach usually does not work for
analog, RF and custom circuit designs. Layouts for such
designs are typically created manually using layout editors,
and because of the number and complexity of the design
rules, checking them was a laborious process.

15 tions, and it is relatively straightforward to massively paral­
lelize the DRC process among numerous CPUs.

On the other hand, it can be seen that checking even simple
design rules like those above is extremely expensive compu­
tationally. Massive parallelization usually is possible only for

20 offline checks, which typically are performed only between
layout iterations. Even then they often can require hours to
complete. The conventional approach also suffers from
roughly linear growth of the total run time with respect to the
number of rules to be checked, with multiple values for a rule

25 counted as separate rules. This makes it very hard to reduce
the total run time without turning off selected rules. The
conventional approach also suffers from linear growth of run
time for individual rule checks, with respect to the length of
the geometry operation sequence, i.e., the complexity of the

30 rule. The conventional approach also involves separate
checks for Euclidean measurements, and also requires exten­
sive education and training in order to optimize the perfor­
mance of the customer scripts.

The conventional approach becomes even more difficult
35 when it is desired to position shapes at their minimum DRC­

clean positions without sacrificing precision, flexibility and
productivity, especially in high altitude editing where thou­
sands of shapes may be visible, and the mouse is super sen­
sitive. The manual layout editing process could be drastically

40 facilitated if it could enable the layout designer to work in a
DRC-clean layout fashion in real time, at very high altitude,
and still without interfering with normal editing processes.

A conventional design rule check (DRC) system requires a
powerful two-dimensional geometry engine which supports
geometric operations such as Boolean operations like AND, 45

OR, NOT, XOR; sizing operations like grow/shrink horizon­
tal/vertical/diagonal; other operations like merge, shift, flip,
cut, smooth; as well as all-angle geometry for true Euclidean
distance calculations. Individual rules are typically checked
individually over an entire layout region. This is also true of 50

individual rule values of same rule (e.g. a check against the
minimum value for a rule, and another check against a pre­
ferred value for the same rule). Each check basically runs an
independent sequence of geometry operations, and numerous
passes through the layout region are required.

SUMMARY

A need therefore exists for a robust solution to the problem
of real time manual layout editing, in a manner that assists the
designer, also in real time, to position shapes at their mini­
mum DRC-clean positions in a layout.

Roughly described, a system is described which enables
interactive manual layout operations to work in a DRC clean
fashion, in real time, and without interfering with normal
manual editing process. The system blocks shape movements
just before a DRC error is created, giving the user a chance to

55 commit the shape at the minimum DRC-clean position. The
user can also move the cursor beyond a so called "push
through value", in which case the blocked shapes will catch
up with the cursor, giving user the freedom to drag objects
anywhere without extra key strokes or mouse button presses.

For example, a conventional series of operations to check a
minimum spacing rule in a Manhattan only layout, might
include steps of

Merge all same layer shapes into separate islands;
Grow all islands by half the minimum spacing value;
Perform an AND (intersection) operation among the

islands; and
Draw DRC violation markers based on the resulting shapes

of the AND operation.

60 The "push through value" can be adjusted manually or auto­
matically anywhere from ° to infinity, enabling very high
altitude layout editing.

As another example, a conventional series of operations to 65

check a minimum width rule in a Manhattan only layout,
might include steps of

In an embodiment, still roughly described, the layout edit­
ing operations determine which edges of which shapes are
moving at what speed ratios. Based on the edge information
and the DRC rules, the system calculates and keeps track of
the minimum of the maximum distance the edges are allowed

US 8,453,103 B2
3

to move with the cursor without violating the specified DRC
rules, in four linear directions (left, right, top, bottom) and all
corner directions. In an embodiment, very little overhead is
required to calculate these bounds. Once a next cursor desti­
nation point is known, a new DRC clean destination point is
calculated based on the combination of linear bounds and
corner bounds. If the next cursor destination point is more
than the push-through distance ahead of the new DRC clean
destination point, the next cursor destination point is fed back
into the layout editing operations, which makes the corre­
sponding geometry updates regardless of any design rule
violations. Otherwise, the new DRC clean destination point is
fed back to the layout editing operations, which makes the
corresponding geometry updates, which are guaranteed DRC
clean.

The above summary of the invention is provided in order to
provide a basic understanding of some aspects of the inven­
tion. This summary is not intended to identifY key or critical
elements of the invention or to delineate the scope of the
invention. Its sole purpose is to present some concepts of the
invention in a simplified form as a prelude to the more
detailed description that is presented later. Particular aspects
of the invention are described in the claims, specification and
drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

The invention will be described with respect to specific
embodiments thereof, and reference will be made to the draw­
ings' in which:

FIG. 1 shows a simplified representation of an illustrative
digital integrated circuit design flow.

FIG. 2 is a flow chart illustrating an example user experi­
ence when using an embodiment of the system as described
herein.

FIG. 3 is a flow chart of the overall system flow for an
embodiment of the invention.

FIGS. 4, 7-10, 12-18, 20 and 23-27 are flow chart details of
the overall system flow in FIG. 3.

FIG. 5 illustrates part of a sweep_x data structure referred
to in FIG. 4.

FIG. SA illustrates a simple portion of a layout.
FIG. 6 illustrates part of a sweep_y data structure referred

to in FIG. 4.
FIGS. 11A and 11B illustrate simple portions of a layout,

highlighting convex and concave corners of a layout shape,
respectively.

FIGS. 19A, 19B and 19C illustrate certain corner relation­
ships between layout shapes.

FIG. 19D illustrates two layout shapes for the purpose of a
particular design rule check.

FIG. 19E illustrates three layout shapes together forming
an island.

FIGS. 21A-21E illustrate example visual indications of
design rule violations and near-violations.

FIG. 22 is a simplified block diagram of a computer system
that can be used to implement software incorporating aspects
of the present invention.

FIGS. 28A and 28B illustrate examples of editing edges
determined from a selection command.

DETAILED DESCRIPTION

The following description is presented to enable any per­
son skilled in the art to make and use the invention, and is
provided in the context of a particular application and its
requirements. Various modifications to the disclosed embodi-

4
ments will be readily apparent to those skilled in the art, and
the general principles defined herein may be applied to other
embodiments and applications without departing from the
spirit and scope of the present invention. Thus, the present
invention is not intended to be limited to the embodiments
shown, but is to be accorded the widest scope consistent with
the principles and features disclosed herein.
Overall Design Process Flow

FIG. 1 shows a simplified representation of an illustrative
10 digital integrated circuit design flow. At a high level, the

process starts with the product idea (step 100) and is realized
in an EDA (Electronic Design Automation) software design
process (step 110). When the design is finalized, it can be
taped-out (step 127). At some point after tape out, the fabri-

15 cation process (step 150) and packaging and assembly pro­
cesses (step 160) occur resulting, ultimately, in finished inte­
grated circuit chips (result 170).

The EDA software design process (step 110) is itself com­
posed of a number of steps 112-130, shown in linear fashion

20 for simplicity. In an actual integrated circuit design process,
the particular design might have to go back through steps until
certain tests are passed. Similarly, in any actual design pro­
cess, these steps may occur in different orders and combina­
tions. This description is therefore provided by way of context

25 and general explanation rather than as a specific, or recom­
mended, design flow for a particular integrated circuit.

A brief description of the component steps of the EDA
software design process (step 110) will now be provided.

System design (step 112): The designers describe the func-
30 tionality that they want to implement, they can perform what­

if plauning to refine functionality, check costs, etc. Hardware­
software architecture partitioning can occur at this stage.
Example EDA software products from Synopsys, Inc. that
can be used at this step include Model Architect, Saber, Sys-

35 tem Studio, and DesignWare® products.
Logic design and functional verification (step 114): At this

stage, the VHDL or Verilog code for modules in the system is
written and the design is checked for functional accuracy.
More specifically, the design is checked to ensure that it

40 produces correct outputs in response to particular input
stimuli. Example EDA software products from Synopsys,
Inc. that can be used at this step include VCS, VERA, Design­
Ware®, Magellan, Formality, ESP and LEDA products.

Synthesis and design for test (step 116): Here, the VHDLI
45 Verilog is translated to a netlist. The netlist can be optimized

for the target technology. Additionally, the design and imple­
mentation of tests to permit checking of the finished chip
occurs. Example EDA software products from Synopsys, Inc.
that can be used at this step include Design Compiler®,

50 Physical Compiler, DFT Compiler, Power Compiler, FPGA
Compiler, TetraMAX, and Design Ware® products.

Netlist verification (step 118): At this step, the netlist is
checked for compliance with timing constraints and for cor­
respondence with the VHDLNerilog source code. Example

55 EDA software products from Synopsys, Inc. that can be used
at this step include Formality, Prime Time, and VCS products.

Design planning (step 120): Here, an overall floor plan for
the chip is constructed and analyzed for timing and top-level
routing. Example EDA software products from Synopsys,

60 Inc. that can be used at this step include Astro and Custom
Designer products.

Physical implementation (step 122): The placement (posi­
tioning of circuit elements) and routing (connection of the
same) occurs at this step. Example EDA software products

65 from Synopsys, Inc. that can be used at this step include the
Astro, IC Compiler, and Custom Designer products. Aspects
of the invention can be performed during this step 122.

US 8,453,103 B2
5

Analysis and extraction (step 124): At this step, the circuit
function is verified at a transistor level, this in turn permits
what-if refinement. Example EDA software products from
Synopsys, Inc. that can be used at this step includeAstroRail,
PrimeRail, PrimeTime, and Star-RCXT products.

6

Physical verification (step 126): At this step various check­
ing functions are performed to ensure correctness for: manu­
facturing, electrical issues, lithographic issues, and circuitry.
Example EDA software products from Synopsys, Inc. that
can be used at this step include the Hercules product. Aspects 10

of the invention can be performed during this step 126 as well.

can be said to "describe" the derived shapes, only infonnation
at these physical comers need be calculated, since most of the
derived layer rules are defined on comers of virtual shapes,
and these comers all derive from at least one comer position
of an ancestor (parent, grandparent, etc.) physical layer. The
X,Y position of a derived comer might not coincide with a
single physical comer, but if not, then the X position derives
from one physical comer and the Y position derives from
another physical comer.

Again, this can occur as part of the scan of the layout region
in each particular direction. There need be no limitation on the
depth or width of the derived layer graph. Tape-out (step 127): This step provides the "tape-out" data

to be used (after lithographic enhancements are applied if
appropriate) for production of masks for lithographic use to
produce finished chips. Example EDA software products
from Synopsys, Inc. that can be used at this step include the IC
Compiler and Custom Designer families of products.

Resolution enhancement (step 128): This step involves
geometric manipulations of the layout to improve manufac­
turability of the design. Example EDA software products
from Synopsys, Inc. that can be used at this step include
Proteus, ProteusAF, and PSMGen products.

Other data structures are also populated during a scan, such
as infonnation about an island (such as its area), and infor-

15 mation about vias.
Once all the data is collected into a layout topology data­

base, design rule checking is accomplished merely by com­
paring the numeric values in the layout topology database
with the constraint values in the design rule data set. Unlike

20 geometry engine approaches, the approach described herein
can be perfonned extremely quickly, often within millisec­
onds, allowing for design rule checking in real time, imme­
diately as the layout designer makes each alteration in the Mask data preparation (step 130): This step provides mask­

making-ready "tape-out" data for production of masks for
lithographic use to produce finished chips. Example EDA 25

software products from Synopsys, Inc. that can be used at this
step include the CATS(R) family of products.

layout.
Moreover, since most if not all of the design rules can be

framed in terms of topological relationships among edges and
comers, including design rules defined on derived layers, it
can be seen that the same basic information, collected during
the scan, can be used in checking most if not all of the design

Overview of the Technique
While DRC layout rules are becoming more and more

complex at smaller and smaller technology nodes, most if not
all of them still can be decomposed into a combination of the
relationships among the edges, the comers, and the contours
of shapes in the layout. Relationships "among" shapes as used
herein includes relationships about a single shape as well. In
embodiments herein, multiple perpendicular scan lines are
used to collect all the required data in one pass, so that the
combinatorial checking on the data is virtually free. The pass
speed is improved even further by stopping the scan lines only

30 rules, including design rules defined on derived layers. In
most embodiments, there is no need to re-scan the layout
region in order to check different design rules; one scan is
sufficient for collecting all the needed data. Still further, since
the number of topological relationships that can be involved

35 in checking design rules is itself limited, there is little if any
additional data collection needed during the scan in order to
check new and ever more complex rules. The time required to
perfonn DRC increases less than linearly with increasing

at comer positions. Note that scans in multiple directions can
also be combined an a particular embodiment, so that the 40

algorithm effectively jumps from comer to comer, consider­
ing each comer only once.

numbers of rules, and tapers off to nearly zero.
F or example, if minSpacing is supported already, then min-

SameNetSpacing andminNotchSpacing can be supported for
free (no runtime overhead). If minArea is supported already,
then minRectArea can be supported for free (no runtime
overhead). If ID spacing is supported already, then ID exten-

45 sion can be supported easily regardless of whether they share
the same "width". It can be seen that the more rules that are to
be checked, the greater the likelihood that the next "new rule"
can be supported for free or with a little extra overhead.

In a Manhattan layout, all edges of all shapes are oriented
either horizontally or vertically. In this case two scan lines
would be used, one vertical (scanning horizontally) and one
horizontal (scanning vertically). In each case the scan line
stops only at endpoints that it encounters of the edges that are
oriented perpendicularly to the scan line. The vertical scan
line, for example, stops only at endpoints of horizontally
oriented edges, and the horizontal scan line stops only at 50

endpoints of vertically oriented edges. In 45 degree layouts,
edges can also be oriented at a 45 degree angle or a 135 degree
angle. In this case four scan lines can be used, each scanning

Example Implementation
FIG. 2 illustrates an example user experience when using

an embodiment of the system as described herein. The flow
chart of FIG. 2 occurs within step 122 (FIG. 1).

In step 210, the user develops a preliminary layout from a
circuit design. As used herein, the term "circuit design" refers in a direction perpendicular to a respective one of the orien­

tations in which edges are included in the layout. While
scanning the layout region in each particular direction, "cor­
ner" data structures are populated for each comer, with what­
ever information is easily obtainable from the edge endpoints
at the comer, and from other edges that intersect the same
scan line. The combined information collected from all the
scan lines as they encounter the comer, is sufficient to fully
populate the comer data structure.

For most of the design rules defined on derived layers, the
shapes in the derived layers never need to be explicitly
derived in embodiments herein. Instead, infonnation about
their shape edges is inserted into the comer data structures for
physical comers that they intersect. While such infonnation

55 to the gate or transistor level design, before layout. The circuit
design is often represented internally to the system in a netlist
file. The layout is represented internally to the system in a
geometry file which defines, among other things, all the
shapes to be fonned on each mask that will be used to expose

60 the wafer during fabrication. The geometry file can have any
of several standard formats, such as GDSII, OASIS, CREF,
and so on, or it can have a non-standard fonnat. The file
describes the layout of the circuit design in the form of a mask
definition for each of the masks to be generated. Each mask

65 definition defines a plurality of polygons. At the time if FIG.
2, no resolution enhancement (RET) has yet been perfonned.
Thus the layout geometries with which the user is working in

US 8,453,103 B2
7

FIG. 2 are in a sense idealized, since they do not yet take into
account the imperfections oflithographic printing using opti­
cal wavelengths comparable or larger in size than the size of
the geometries in the layout. For example, rectangles are
rectangular, and are not yet pre-corrected for diffractive
effects.

In step 212, the user views the layout on a computer moni­
tor. The user typically selects a region of the layout for mag­
nified viewing, so that only that region is visible on the moni­
tor.

In step 214, the user, using a mouse or other pointing
device, selects a group of one or more shapes from the visible
layout region and drags them to a different location. In step
216, as the user drags the shapes, the system shows on the
monitor any design rule violations in real time. In step 218,
the user continues to drag the selected shapes until a position
is found at which all design rule violations disappear. The user
then performs the next desired editing step, which could be
another drag-and-drop as in steps 214-218.

8
the comers of the wire. These parameters are referred to as
parWithin and parSpace. The constraint applies when no par­
allel edges occur within the region defined by the minimum
spacing, or one parallel edge occurs within the region defined
by the minimum spacing, or two parallel edges. This rule has
the spacing parameter itself, eolSpacing, as well as the fol­
lowing parameters: eolWidth, eolWithin, parWithin and
parSpace.

Design rules can also specifY constraints on edges in dif-
10 ferent layers. The MinDualExtension layer pair constraint,

for example, specifies the minimum distance a shape on one
layer must extend past a shape on a second layer. The first or
second layer or both or neither can be derived layers. This rule
has one parameter for extensions in the horizontal direction

15 and another parameter for extensions in the vertical direc­
tions. This rule can also specifY additional pairs of param­
eters, keyed by wire width. Other more complex parameters
are also available for this rule, including optional parameters
to qualify when the rule applies.

It can be seen how useful real time immediate design rule 20

checking, enabled by the system herein, can be in manual
layout or layout modification efforts.

Design rule sets also often include area rules, such as the
minimum area of an island or a hole in a layer. They can also
include via rules, which specifY constraints on geometric
dimensions in the "cut" layer (also sometimes called the via
layer), the island in the "cover" layer above the via, and the

Relationship Master
Before discussing the methods used by an implementation

of the system, it will be useful to discuss design rules in
general, and how they can be represented within the system.
Design rules are a set of rules that are provided by a semicon­
ductor manufacturer, which specifY minimum or maximum
geometric relationships among the features of a layout. A
semiconductor manufacturing process always has some vari­
ability, and the purpose of design rules is to ensure that
sufficient margin is included in the layout geometries to mini­
mize the likelihood that the variability will result in loss of
yield. A set of design rules is specific to a particular semicon­
ductor manufacturing process, so new rules are provided to
designers or EDA vendors for each new process or significant
process change. Despite their specificity to a particular pro­
cess, there are many design rules which are similar, except for
one or more numeric values, across many processes.

Design rules range from very simple to very complex.
Most, however, can be framed as a set of one or more con­
straint parameters, and a set of one or more constraint values
for the constraint parameters. (As used herein, a "parameter"

25 island in the "cover" layer below the via. These rules, too, can
be defined on derived layers.

Derived layers are defined in the design rule sets. A derived
layer can be defined by specifYing a name for the derived
layer, a layer number, the parent layers for the particular

30 derived layer, and an operator for calculating the derived layer
as a function of the parent layers. In one embodiment, only
one or two parent layers can be specified, meaning a derived
layer must have no more than two parent layers. In another
embodiment, more than two parent layers can be specified.

35 The derived layer operator can in one embodiment be a
simple Boolean logic function (And, Or, XOR, or NOT). In
another embodiment, the derived layer operator can be a more
complex Boolean logic expression such as 'Layer! AND
(Layer2 OR Layer3)'. Also, the parent(s) of a derived layer

40 need not be physical (layout) layers; one or more of them can
be other derived layers, thereby allowing a nesting of derived
layers. As used herein, a "parent" layer refers to an immediate
parent layer. Grandparents and other ancestors (including
parents) are referred to herein as "ancestor" layers.

Ultimately, each derived layer has one or more ultimate
ancestor which is a physical layer, though the number of
derived layers in between the particular layer and the ancestor
physical layer on one side of the family tree may be different
from the number on another side of the family tree. For

is merely a slot or container for one or more values. It is not
itself a value.) For example, a simple design rule is minimum 45

edge-to-edge spacing (sometimes called minSpacing). This
rule has one parameter (edge-to-edge spacing), and one value
which is the minimum spacing allowed by the rule between
edges in a single layer (physical or derived) of the layout.
Many design rules specify more than one value for a particu­ 50 example, a first derived layer Dl may be dependent upon

physical layers PI and P2, and a second derived layer D2 may
be dependent upon Dl and physical layer P3. Then one ances­
tor physical layer P3 of derived layer D2 has zero derived
layers in between, whereas ancestor physical layers PI and P2

lar parameter, such as an "absolute minimum" value and a
"preferred minimum" value. As used herein, a "physical"
layer is one for which geometries are specified in the geom­
etry file.

More complex rules can have multiple parameters. An
End-of-line spacing rule, for example, specifies the minimum
spacing between the end of a line and its neighboring geom­
etry. Again, this rule can be defined on any layer, including a
derived layer. The constraint applies only if the width of the
wire is less than a specified value, eolWidth. The constraint
applies when any geometry occurs within a region defined by
the minimum spacing, where the region includes the distance
from each side of the wire. This distance is referred to as a
lateral verification distance eolWithin. The constraint applies
only if one parallel edge is within a specified rectangular
region from the comers of the wire, or it applies only if two
parallel edges are within a specified rectangular region from

55 each have one derived layer in between the layer D2 and the
respective physical layer PI or P2. As used herein, the "rank"
of a particular derived layer is equal to the maximum of the
number of derived layers to and including the particular
derived layer from each of its ancestor physical layers. The

60 rank of a physical layer is considered to be zero, and the rank
of a particular derived layer can be calculated as one plus the
maximum rank of all its parent layers.

The design rules that reference derived layers are of many
of the same kinds as those that reference only physical layers,

65 and are expressed in the design rule set in the same way. For
example, they can be framed as a set of one or more constraint
parameters and one or more constraint values for the con-

US 8,453,103 B2
9

straint parameters. They can include rules that apply to shapes
on the particular derived layer (such as minimum edge-to­
edge spacing and end-of-line spacing), as well as rules that
specifY constraints among different layers (such as MinDu­
alExtension). Rules that reference more than one layer are not
restricted to referencing only physical layers or only derived
layers; then can also reference layers of both kinds, such as
the minimum extension of a shape in a derived layer relative
to a shape in a physical layer.

As a simplified example, a design rule set may include a 10

rule that sets a minimum longitudinal spacing between tran­
sistor gate conductors. In many fabrication processes, a tran­
sistor gate conductor can be identified as the geometric inter­
section where a polysilicon line crosses a diffusion region. In
order to establish this design rule, the design rule set may 15

specifY a derived layer G defined as Ll AND L2, where Ll is
layer defining the polysilicon lines, and L2 is the layer defin­
ing the diffusion implants. In this case the derivation operator
for derived layer G is "Ll AND L2". The design rule set then
specifies a design rule that references layer G, recites a 20

parameter for specifYing the minimum spacing between
shapes on layer G, and recites a value for that parameter.

As used herein, a design rule "references" a particular
derived layer typically by identifying the derived layer. For
example, a minimum extension rule, which specifies the 25

minimum distance by which a shape in a derived layer must
extend beyond the edge of a shape in a physical layer, or
vice-versa, references both layers that the rule constrains
(including the derived layer) by explicitly identifYing both
layers (including the derived layer). Also as used herein, a 30

derivation operator "references" a particular layer by identi­
fying it as one of its parent layers. In the simplified example
above, the derivation operator for layer G "references" both
layers Ll and L2.

In an embodiment of the invention, all of the values speci- 35

fied by the design rules are provided to the system in the form

};

10
-continued

II the worst case value for neighbor_spacing relationship on
II tbe same layer, 0 if not applicable
II (also called parallel spacing)
int ffi_neighboy_spacing;
/ / the worst case value for neighboy_ within relationship on
II tbe same layer, 0 if not applicable
int ffi_neighboy_ within;
II the worst case value for neighbor_dimension relationship on
II tbe same layer
int ffi_neighboy_ width;
int ill_area; / / minimum island area
int hole_area;
int m_common_run_length;
std: :map<layer_number, int>
m_common_run_clearance_ vector_map;
/ / extensions from this layer to other layers
std::map<layer_number, int> m_cover_layers;
/ / extensions from other layers to this layer
std::map<layer_number, int> m_cut_Iayers;
/ / worst case different layer clearance, from this layer to other layers
std: :map<layer_number, int> m_clearance_Iayers;
I I for via rules
std: :set<layer_nwnber> m_overlap _layers;
std::set<layer_nwnber> m_dual_cover_layers;

Design Rule Checking Flow with DRC Assist
FIG. 3 is a flow chart of the overall system flow for real time

visual layout design rule checking. The reader will recognize
that the flow can be easily modified for use as a batch job
instead. As with all flowcharts herein, it will be appreciated
that many of the steps in FIG. 3 can be combined, performed
in parallel or performed in a different sequence without
affecting the functions achieved. In some cases a re-arrange­
ment of steps will achieve the same results only if certain
other changes are made as well, and in other cases a re-
arrangement of steps will achieve the same results only if
certain conditions are satisfied. However, as described in
detail hereinafter, there are certain steps which are performed
prior to other steps, in order to obtain benefits of the invention.

In step 310, the relationship master data set is built from a
set of design rules for the target fabrication process. This can
be done manually, or in some embodiments it can be auto­
mated. It is provided to the DRC system either electronically
or via a computer readable medium, and it is stored accessibly
to the system on a computer readable medium. As used

of a design rule data set. As used herein, the term "data set"
does not imply any particular organization. For example, it
includes maps, multimaps, trees, as well as ordinary tables,
and other data organizations as well. The term also does not 40

necessarily imply any unity or regularity of structure. For
example, two or more separate data sets, when considered
together, still constitute a "data set" as that term is used
herein. The terms "database" and "data structure" are also
intended to have the same meaning as "data set".

In the present embodiment, the design rule data set is
sometimes referred to herein as the relationship master. A
class definition for an example relationship master, in pseudo­
C++, is as follows. In order to simplify the discussion, only
some of the parameters are shown. A relationship_master 50

object exists for each layer on which design rules are defined,
including derived layers.

45 herein, a computer readable medium is one on which infor­
mation can be stored and read by a computer system.
Examples include a floppy disk, a hard disk drive, a RAM, a
CD, a DVD, flash memory, a USB drive, and so on. The

class relationship_master
{

layer_nwnber ill_layer; / / layer number for this instantiation
std::set<layer_nurnber> m_Iayers_above; II identification oflayers

above current layer
std::set<layer_nurnber> m_Iayers_below; II identification oflayers

below current layer
/ / the worst case value for spacing relationship on the
I I same layer, 0 if tbere is no design rule asking for
I I min_spacing relationship
int ill_spacing;
II the worst case value for dimension relationship on the
II same layer, 0 if not applicable (minimum line widtb)
int ill_dimension;

computer readable medium may store information in coded
formats that are decoded for actual use in a particular data
processing system. A single computer readable medium, as
the term is used herein, may also include more than one
physical item, such as a plurality of CD ROMs or a plurality
of segments of RAM, or a combination of several different

55 kinds of media.
In step 312, the system displays on a monitor the layout or

layout region selected by the user. As used herein, the term
"region" refers to a portion as viewed from above, including
whatever layers are pertinent. As a degenerate case, the entire

60 layout is also a "region". The user can manipulate (edit)
objects in the layout using familiar editing commands, such
as keyboard- or mouse-based behaviors recognized by the
system. For example, the user can select a group of objects by
clicking and dragging the mouse pointer to form a rectangle

65 around them. Only objects on physical layers can be selected;
derived layers are created only to facilitate the specification of
certain error checking rules and are not visible to the user

US 8,453,103 B2
11

editing a layout. The user can then move the 0 bj ects as a group
by clicking within the rectangle and dragging it. Editing
commands are recognized by the operating system and deliv­
ered to the application program by way of events in a well
known manner. For example, user dragging of a group of
objects might cause a series of events to be delivered to the
application program, one after each movement by some num­
ber of pixels, or some number of milliseconds. The applica­
tion program receives these events and determines for itself
what the event represents. Step 312 can include a conven- 10

tional event loop, whereby the application program repeat­
edly checks for new events. When it receives an event, step
312 determines that it represents a layout editing command
such as user dragging of a group of shapes across the layout.

In step 313, the system determines the type of the editing 15

command. Typically for a drag operation, the dragging
behavior is preceded by one or more predecessor behaviors
which indicate a predecessor command which indicates what
to do in response to the dragging behavior. One predecessor
command, for example, can involve selection of a group of 20

one or more editing shapes to be moved to a different position
in response to dragging behavior. Another command can
involve selection of an edge or a corner, so that shape(s) will

12
speed ratio for edge 2822, too, is 1. Edges 2824 and 2826 will
not move during the drag, so their speed ratio is O. Other
command are more complicated, but can still be modeled
with edge speed ratios. For example, for a 3x4 array copy of
a source shape, all the edges of three copies of the shape will
remain stationary during the drag and therefore have speed
ratio O.All the edges of the next three copies of the shape have
a speed ratio of 1. All the edges of the next three copies have
a speed ratio of 2, and all the edges of the final three copies
have a speed ratio of3. It is noteworthy that all the speed ratios
are determinable from the command itself. The direction and
extent of all the movements, which will not be known until the
drag behavior commences, are not necessary to determine the
speed ratios.

For a derived edge, its speed ratio is determined from its
ancestor physical edge(s). If all the physical ancestor edges
having the same speed ratio A, then the derived edge will have
the same speed ratio A. If some of the physical ancestor edges
having different speed ratios, that implies that the derived
geometries are about to experience a sudden change. In this
case the system forces the speed ratio to zero for the derived
edge. In practice, most derived edges have only a single
ancestor physical edge, so these kinds of sudden derived
geometry changes are infrequent. In addition, derived layers
are mostly defined on lower physical layers, practically all
encapsulated inside a P-CELL, so they tend to move together.
That is, all the ancestor physical edges tend to have the same
speed ratios. This further decreases the likelihood of sudden
derived geometry changes. The ancestor physical edges are

be stretched or contracted in response to dragging behavior.
Yet another command, known sometimes as an array copy, 25

can involve selection of one or more shapes to be copied, with
ever increasing spacing among the copies, in response to
dragging behavior. At a minimum, all of the predecessor
commands relevant to the embodiment of FIG. 3 include an
aspect of object selection, where the object(s) can include
shapes, edges or corners or other geometries in the layout.

30 obtained from the 'current edge group' as described in con­
junction with steps 2422 of FIGS. 24 and 2622 of FIG. 26. In
addition to the Boolean status vector of derived edges, the
system also caches the derived speed ratio (a single float

Initially in step 313, if the current editing command
includes neither object selection nor dragging, then it is
handled in a step 330. The operation of step 330 is not impor­
tant for an understanding of the invention.

If the current editing command includes an object selec­
tion, then the system takes advantage of such a selection event

35

in order to pre-calculate design rule bounds, which indicate
the distance that the shapes can move before a design rule is
violated. Flowpasses to step 314, in which the system collects 40

all the editing shapes, which are the ones that are being edited

value) for this purpose.
In a later step, the system will use the edge speed ratios to

pre-calculate values indicating bounds imposed by the design
rules on the distance in various directions that the selected
objects can be moved. In one embodiment these design rule
bounds are indicated by left, right, upward, downward and
radial distances that the selected objects can be moved before
one of the design rules will be violated. In another embodi-
ment they are represented by a distance in each direction that
the cursor can be moved before one of the design rules will be
violated during a drag of the selected objects. This latter

by the user. For a click-and-drag behavior, the editing shapes
are the ones that are being moved to a different position in the
layout. For a shape re-sizing command, the editing shapes are
the ones being resized. 45 representation is sometimes referred to herein as a 'slack'

distance, and is the one used in the embodiment described
herein. In yet another embodiment the bounds are represented
by the final bounding position in the layout to which the

In step 315, the system populates edge speed ratios for each
edge of each selected shape based on the editing command.
The edge speed ratio is the ratio of edge movement distance
per unit of cursor movement distance, as appropriate for the
current selection command. Typically this ratio is 0 or 1, but 50

could be anything from negative infinity to positive infinity,
and need not necessarily be integral in all embodiments.
Speed ratios can be better understood by reference to the
illustrations in FIGS. 28A and 28B (collectively FIG. 28).
FIG. 28A illustrates two shapes 2810 and 2812. Shape 2812 55

has been selected for a simple drag operation. For a simple
drag, all edges of the shape move in the layout by the same
distance that the cursor moves during the drag. Thus the speed
ratio for all edges on shape 2812 is 1. In FIG. 28B, corner
2814 of shape 2816 has been selected. The subsequent drag 60

operation will either stretch or contract shape 2816. Edge
2820, a horizontal edge, will move vertically in the layout by
the same distance that the cursor moves vertically during the
drag (upward or downward), so the speed ratio for edge 2820
is 1. Similarly, edge 2822, a vertical edge, will move horizon- 65

tally in the layout by the same distance that the cursor moves
horizontally during the drag (leftward or rightward), so the

selected objects can be moved before one of the design rules
will be violated. Other ways of indicating these bounds will
be apparent. Also, in an embodiment, the set of design rules
enabled to impose bounds in DRC assist mode need not
include all the design rules. Fewer than all can be included in
such a set in a particular embodiment.

Three types of bounds are calculated in the present
embodiment: linear bounds (in the four linear directions),
corner bounds and conditional bounds. Roughly described,
the linear design rule bounds are calculated in the present
embodiment by calculating them for each edge and succes­
sively and retaining only the most restrictive bound in each
direction at each iteration. The corner and conditional bounds
are applied later to further restrict the overall bounds to avoid
violating any of the enabled design rules by any of the objects
in the selection. Linear bounds and corner bounds need not be
calculated immediately sequentially, and in present embodi­
ment they are not. Rather, each type of bound is calculated
where most cost-effective to calculate it. In fact, the calcula-

US 8,453,103 B2
13

tion of vertical linear bounds is spread out during the hori­
zontal scan to populate the comer data structures, and the
calculation of horizontal linear bounds is spread out during
the vertical scan to populate the comer data structures. Simi­
larly, calculation of comer bounds is performed during the
scan of comers to check comer-to-comer design rules, and
the calculation for conditional bounds is performed during
the check of other comer-based design rules such as the
end-of-line spacing rule.

In step 316, the system collects all the surrounding shapes, 10

which in a click-and-drag command, are the shapes near the
new position of the editing shapes. Again, only real shapes,
not those on derived layers, are included. A selection algo­
rithm is used here which errs on the side of collecting more 15

shapes than necessary, since while inclusion of additional
shapes could impact performance, the exclusion of relevant
shapes will impact accuracy. One efficient way to collect
appropriate shapes is to create a bounding box around the
editing shapes in their new position, then extend the box in all 20

four directions by 1.5 times the worst case minimum spacing
or the worst case minimum inter-layer clearance, whichever
is larger. All shapes at least partially overlapping with the
expanded bounding box, in any layer, are then included in the
result. A conventional range search engine can be used for this 25

step. Geometry processing is not needed.
In step 318, horizontal and vertical scan line trees sweep_x

and sweep_yare built from all of the collected shapes, includ­
ing both the editing shapes and the static shapes. The hori­
zontal scan line tree sweep_x is a map of particular vertical 30

scan lines, and will be sCamled horizontally across the
selected layout region, from left to right. The vertical scan line
tree sweep-y is a map of particular horizontal scan lines, and
will be scanned vertically across the selected layout region, 35

from bottom to top.
FIG. 4 is a flow chart of step 318, and as can be seen, it

includes a step 410 of building sweep_x and another step 412
of building sweep-y.

FIG. 5 illustrates pertinent parts of the sweep_x data struc- 40

ture 510. It contains two tree data structures, called entectree
512 and exit_tree 514. Enter-tree is a map of the vertical scan
lines, and the vertical position on such scan lines, of the
left-hand endpoints of the horizontal edges. ExiCtree is a map
of the vertical scan lines, and the vertical position on such 45

scan lines, of the right-hand endpoints of the horizontal
edges. No additional entries are provided in the map to
account for endpoints of edges on derived layers, because the
great majority of the derived layer rules operate on comers of
shapes on the derived layers whose xly positions coincide 50

with at least one comer position of ancestor physical layers,
and information regarding the derived edges can be stored in
conjunction with the coincident comer position(s) on the
ancestor physical layers. Any rules that require additional
information are handled separately. (As used herein, the "cor- 55

ner position", or the "location" of a comer, refers to the (x,y)
location of the comer and is not specific to layer number or
depth within the ultimate integrated circuit chip.)

Map 516 is an expansion of exiCtree 514; entectree 512
has the same structure and is therefore not shown in FIG. 5. It 60

14
vertical scan lines, the horizontal sCamling algorithm will be
able to jump over all horizontal positions that do not contain
any corners.

Multimap 518 is an expansion of one of the edge_tree
structures 520. The other edge_trees have the same structure
and therefore are not shown in FIG. 5. Edge_tree 520 also
comprises key-value pairs, except that as a "multimap", mul­
tiple entries are allowed having the same key. In edge_tree
520 the keys indicate vertical positions, and all the values are
structures of class 'edge', representing an edge having an
endpoint on the current vertical scan line. Since this is part of
the exiCtree 514, only those horizontal edges having right­
hand endpoints at this horizontal position are included in
edge_tree 520. (In the entectree 512, only edges having
left-hand endpoints at a given horizontal position are included
in the edge_tree for the vertical scan line at the given hori-
zontal position.) A multimap is used here rather than a map, in
order to accommodate multiple edges having a right-hand
endpoint at the same x and y position in the layout region.
Multiple edges are possible because some could be on differ­
ent layers in the layout, or some could even be superimposed
on each other in a single layer. Again, these are physical edges
only; edges located in derived layers do not have their own
entries. In another embodiment, however, derived layer edges
can be given their own edge entries in multimap 518.

Block 522 is an expansion of one of the edge structures
524. The other edges have the same structure and therefore
are not shown in FIG. 5. Edge 524 contains information about
a particular horizontal edge of one of the shapes in the layout
region, and also acts as a holding area for certain information
developed during the scan as described hereinafter. At least
the following information is included:

edge ID: an identifYing value for the edge;
layer ID: an indication of the layer number on which the

edge lies;
edge start (x,y): the x and y coordinates of the left-hand

endpoint of the edge;
edge end (x,y): the x and y coordinates of the right-hand

endpoint of the edge;
edge against scan line? (T/F): a Boolean indicating

whether the edge is the bottom edge of a shape (True if
it is a bottom edge, False otherwise);

quadrant depth vector: four slots indicating how many
shapes overlap each other in the current layer at the
right-hand endpoint of the edge (for exiting edges) or the
left-hand endpoint (for entering edges) or the intersec-
tion point of the edge and the vertical scan line (for all
other edges in the current scan line), in each of the four
quadrants centered at that point (for an embodiment that
supports 45 degree geometries, this is an octant depth
vector containing eight slots);

neighbor map: a map of neighboring edges;
derived edge status map 526: a map of edge status at the

current X_pos, y _pos for various derived layers.
Block 528 is an expansion of derived edge status map 526.

It contains information about horizontal edges in some of the
derived layers, which edges terminate at or pass through the
current vertical scan line at the current vertical position on
that scan line. Each entry contains the derived layer ID, in
association with a status vector for the edge. The status vector
for a derived edge is similar to a quadrant depth vector (dis-
cussed later), in that it contains four values indicating status in
the four respective quadrants centered at the current x- and
y-position. It differs from a quadrant depth vector in that each

comprises key-value pairs, in which all the keys indicate
horizontal positions and all the values are structures of class
'edge-tree', and represent vertical scan lines. A "map" is a
standard structure which allows only one entry for each
unique key. Thus exit_tree organizes all the vertical scan
lines, and there is one vertical scan line for each horizontal
position included. Note that by representing only specific

65 entry of the vector can contain only a lora 0: a 1 indicates that
the current derived layer does have an island in that quadrant,
and a 0 indicates that it does not (or vice-versa). There is no

US 8,453,103 B2
15

need to indicate the number of superimposed shapes in the
quadrant within a derived layer, because the shapes are
defined in a Boolean operation: in a given location a shape is
either present or absent.

16
vertical positions and all the values are structures of class
'edge-tree', and represent horizontal scan lines. Thus exiC
tree organizes all the vertical scan lines, and since exiCtree is
a map, there is only one horizontal scan line for each vertical
position included. Note that by representing only specific
horizontal scan lines, the vertical scauning algorithm, like the
horizontal scanning algorithm, will be able to jump over all
vertical positions that do not contain any comers.

Multimap 618 is an expansion of one of the edge_tree

FIG. SA illustrates the functioning of a derived layer status
vector. The figure illustrates a vertical scan line 530 and three
vertical positions numbered, from bottom to top, 532, 534 and
536. A derived shape 538 has its right-hand edge aligned with
vertical scan line 530, and its bottom and top edges located at
vertical positions 532 and 536, respectively. As with quadrant
depth vectors, the quadrants in a derived layer status vector
are numbered counter-clockwise beginning in the top-right
quadrant. The status vector at vertical position 532 is (0,1,0,
0), indicating that the y-position 532 on the vertical scan line
530 is the lower-right comer of a shape. Similarly, the status
vector at vertical position 536 is (0,0,1,0), indicating that the
y-position 536 on the vertical scan line 530 is the upper-right
comer of a shape. The status vector at vertical position 534 is
(0,1,1,0), indicating that the shape extends to the left and
above and below the y-position 532 on the vertical scan line
530.

10 structures 620. The other edge_trees have the same structure
and therefore are not shown in FIG. 6. Edge_tree 620 also
comprises key-value pairs, except that as a "multimap", mul­
tiple entries are allowed having the same key. In edge_tree
620 the keys indicate horizontal positions, and all the values

15 are structures of class 'edge', representing an edge having an
endpoint on the current horizontal scan line. Since this is part
of the exiCtree 614, only those vertical edges having upper
endpoints at this vertical position are included in edge_tree
620. (In the entectree 612, only edges having lower end-

It can be seen that a status vector having one '1 ' and three
'O's indicates a convex comer of the derived shape, whereas a
status vector having one '0' and three' 1 's indicates a concave
comer of a derived shape. A status vector of (0,0,1,1), (0,1,1,

20 points at a given vertical position are included in the edge_
tree for the horizontal scan line at the given vertical position.)
Again, these are physical edges only; edges located in derived
layers do not have their own entries. In another embodiment,
however, derived layer edges can be given their own edge

25 entries in multimap 618.
Block 622 is an expansion of one of the edge structures

624. The other edges have the same structure and therefore
are not shown in FIG. 6. Edge 624 contains information about
a particular vertical edge of one of the shapes in the layout

0), (1,1,0,0) or (1,0,0,1) indicates a non-comer edge of a
derived shape. A status vector of (0,1,0,1) or (1,0,1,0) indi­
cates two derived shapes meeting at a common comer; a
situation that will usually violate design rules. Note that only
edges and comers of a derived shape appear in derived edge
status maps. If the status vector at a particular x/y position for

30 region, and also acts as a holding area for certain information
developed during the scan as described hereinafter. At least
the following information is included: a derived layer is (0,0,0,0), then this derived layer has no

shape at that position. If it is (1,1,1,1), then the current x/y
position is inside a derived shape. In either case, no entry is
made for the current derived layer in the derived edge status 35

map 526.
It will be appreciated that each x/y position of comers on

physical layers may be represented numerous times in the
Sweep_x data structure. It may be represented in both Entec
tree 512 and ExiCtree 514. It might also be represented at 40

multiple physical layers (multiple entries in block 518 all
having a common y_pos key). Because many of the derived
edges at a particular x/y position can be stored in a single map
526, there may be multiple edge data structures 522 which
would serve as an appropriate place to store each derived edge 45

status map 526. Different embodiments can implement dif­
ferent conventions on this point. In one embodiment, the
status vectors for all the derived edges on a particular derived
layer are inserted into an edge data structure for the "first"
physical layer that is one of its physical ancestors. Preferably 50

the "first" physical layer is defined as whichever layer is used
to break a tie when vertical positions of edges are the same in
the current vertical scan line. In the embodiment of FIG. 5, it
is the physical layer with the smallest layer number.

edge ID: an identifYing value for the edge;
layer ID: an indication of the layer number on which the

edge lies;
edge start (x,y): the x and y coordinates of the lower end­

point of the edge;
edge end (x,y): the x and y coordinates of the upper end­

point of the edge;
edge against scan line? (T/F): a Boolean indicating

whether the edge is the left edge of a shape (it will be
True if it is a left edge, False otherwise);

quadrant depth vector: four slots indicating how many
shapes overlap each other in the current layer at the
lower endpoint of the edge (for exiting edges) or the
upper endpoint (for entering edges) or the intersection
point of the edge and the horizontal scan line (for all
other edges in the current scan line), in each of the four
quadrants centered at that point (for an embodiment that
supports 45 degree geometries, this is an octant depth
vector containing eight slots);

neighbor map: a map of neighboring edges;
derived edge status map 626: a map of edge status at the

current X_pos, y _pos for various derived layers.
Block 628 is an expansion of derived edge status map 626.

It contains information about vertical edges in some of the
derived layers, which edges terminate at or pass through the
current horizontal scan line at the current horizontal position
on that scan line. Each entry contains the derived layer ID, in

FIG. 6 illustrates pertinent parts of the sweep-y data struc- 55

ture 610. Like sweep_x, sweep_y contains two tree data struc­
tures, called entectree 612 and exit_tree 614. In sweep_y,
enter-tree is a map of the horizontal scan lines, and the hori­
zontal position on such scan lines, of the lower endpoints of
the vertical edges. Exit_tree is a map of the horizontal scan
lines, and the horizontal position on such scan lines, of the
upper endpoints of the vertical edges. Like sweep_x, no addi­
tional entries are provided in the map to account for endpoints

60 association with a status vector for the edge. Like for derived
edge information stored in the Sweep_x data structure, the
status vectors for all the vertical derived edges on a particular
derived layer are inserted into an edge data structure 624 for
the smallest numbered physical layer that is one of the ances-of edges on derived layers.

Map 616 is an expansion of exiCtree 614; entectree 612
has the same structure and is therefore not shown in FIG. 6. It
comprises key-value pairs, in which all the keys indicate

65 tors of the particular derived layer.
As can be seen, sweep_x contains only horizontal edges

(physical and derived) and sweep-y contains only vertical

US 8,453,103 B2
17

edges (physical and derived). Thus the scan lines in each data
structure are perpendicular to the edges that will be encoun­
tered during a traversal of the structure. In an embodiment
supporting diagonal edges as well, two more sweep data
structures are present as well: one containing scan lines ori­
ented parallel to one diagonal and the other containing scan
lines oriented parallel to the other diagonal. Each data struc­
ture includes only edges oriented perpendicularly to its scan
lines, so again, a scan line sweep of the scan lines in each
structure will encounter only those edges oriented perpen- 10

dicularly to the scan line.
FIG. 7 is a flow chart detail of a method 410 for building the

horizontal scan line tree sweep_x. In step 710, a list is formed
of all the horizontal edges of all shapes in the selected region,
including editing shapes. Only shapes on physical layers are 15

considered in FIG. 7; derived layer information is not yet
inserted. In step 712, the list is sorted by the horizontal posi­
tion of all the left-hand endpoints of the edges. There may be
multiple edges whose left-hand endpoints have the same hori­
zontal position, and these would be grouped together in the 20

sort.
In step 714, entectree is created for sweep_x. This is

accomplished by, at each unique horizontal position repre­
sented in the sorted list (step 716), creating a scan line mul­
timap (of class 'edge_tree') for a vertical scan line at that 25

horizontal position (step 718). In step 720, the scan line
multimap at that horizontal position is populated with all the
edges (structures of class 'edge') in the list having left-hand
endpoints at the current horizontal position.

After entectree has been created and populated for 30

sweep_x, the list from step 710 is re-sorted by horizontal
position of all the right-hand endpoints of the edges. Again,
there may be multiple edges whose right-hand endpoints have
the same horizontal position. In step 724, exiCtree is created
for sweep_x. Similarly to the creation of entectree, this is 35

accomplished by, at each unique horizontal position repre­
sented in the sorted list (step 726), creating a scan line mul­
timap (of class 'edge_tree') for a vertical scan line at that
horizontal position (step 718). In step 720, the scan line
multimap at that horizontal position is populated with all the 40

edges (structures of class' edge') in the list having right-hand
endpoints at the current horizontal position.

FIG. 8 is a flow chart detail of a method 412 for building the
horizontal scan line tree sweep_yo In step 810, a list is formed

18
line multimap at that vertical position is populated with all the
edges (structures of class 'edge') in the list having upper
endpoints at the current vertical position.

Returning now to FIG. 3, after the horizontal and vertical
scan line trees have been built (step 318), all of the required
topographical relationships among the shapes in the layout
region are now extracted (step 320). The linear design rule
bounds are calculated during this step as well.

FIG. 9 is a flow chart of step 320, and as can be seen, it
includes a step 910 of scarming the horizontal scan tree
sweep_x and another step 912 of scanning the vertical scan
tree sweep-y. Vertical linear design rule bounds for DRC
assist are calculated during step 910, and horizontal linear
design rule bounds are calculated during step 912. Note that
in another embodiment the vertical scan can be performed
first and the horizontal scan thereafter. In yet another embodi-
ment' the two scans can be performed in an alternating man­
ner. In a particularly advantageous embodiment, since the two
scans are independent of each other, and discover different
items of information for populating the comer data structures,
the two scans are performed simultaneously on two different
processor cores. In yet another embodiment, the two scans are
coordinated with each other so that they proceed from comer
to comer, with all data for a given comer populated before
jumping to the next comer. As used herein, the two scans are
said to be performed "concurrently" with each other if they
overlap in time in such a way that comer data is extracted
from at least one endpoint of at least one horizontal edge
before comer data is extracted from at least one endpoint of at
least one vertical edge, and comer data is extracted from at
least one endpoint of at least one vertical edge before comer
data is extracted from at least one endpoint of at least one
horizontal edge.

FIG. 10 is a flow chart of step 910, for scarming the hori­
zontal scan tree sweep_x. In step 1008, the vertical scan line
edge-tree multimap object currenCscan_line is created. In
step 1010, current_scan_line traverses both entectree and the
exit_tree together so that the vertical scan lines from both
trees are considered in monotonically varying sequence, left
to right. Since these two trees contain only those vertical scan
lines on which an endpoint of a horizontal physical edge lies,
intervening vertical scan lines are skipped during this scan.
The existence of derived edges does not alter this plan since it
is assumed for this part of the algorithm that all derived edge
endpoints are co-located with (coincident with) at least one
physical edge endpoint. The current vertical scan line is main-
tained in a multimap object of class edge_tree, having the
structure of edge_tree 520 (FIG. 5). It has a current horizontal
scauning position, and stores the information shown in block

of all the vertical edges of all shapes in the selected region, 45

including editing shapes. In step 812, the list is sorted by the
vertical position of all the lower endpoints of the edges.
Again, there may be multiple edges whose lower endpoints
have the same vertical position, and these would be grouped
together in the sort. 50 522 for each horizontal edge that intersects a vertical line at

the current horizontal scarming position. In step 814, entectree is created for sweep_yo This is
accomplished by, at each unique vertical position represented
in the sorted list (step 812), creating a scan line multimap (of
class 'edge_tree') for a horizontal scan line at that vertical
position (step 818). In step 820, the scan line multimap at that 55

vertical position is populated with all the edges (structures of
class 'edge') in the list having lower endpoints at the current
vertical position.

After entectree has been created and populated for
sweep-y, the list from step 810 is re-sorted by horizontal 60

position of all the upper endpoints of the edges. Again, there
may be multiple edges whose upper endpoints have the same
vertical position. In step 824, exit_tree is created for sweep_yo
As before, this is accomplished by, at each unique vertical
position represented in the sorted list (step 822), creating a 65

scan line multimap (of class 'edge_tree') for a horizontal scan
line at that vertical position (step 818). In step 820, the scan

In step 1012, currenCscan_line is updated by adding all
horizontal edges having a left-hand endpoint located at the
current horizontal scan position. In step 1014, the quadrant
depth vector (FIG. 5) for each edge in the current vertical scan
line multimap is updated. In order to illustrate this step, ref-
erence is made to FIGS.11A and 11B, which illustrate simple
portions of a layout. FIG. 11A highlights a convex comer
1114, whereas FIG.11B highlights a concave comer 1134. In
FIG. 11A, 1110 is the current vertical scan line and 1112 is a
particular edge being considered. Edge 1112 is represented in
the entectree and in current_scan_line, and has a left-hand
endpoint 1114 located on vertical scan line 1110. Edge 1112
also forms the upper edge of a rectangle 1116. Four other
rectangles are also shown in the figure, 1118, 1120, 1122 and
1124. Four quadrants, centered at endpoint 1114 and num-
bered I, II, III and IV for purposes of the present discussion,

US 8,453,103 B2
19

are also shown in FIG. 11A. Similarly, in FIG. 11B, 1130 is
the current vertical scan line and 1132 is a particular edge
being considered. Edge 1132 is represented in the entectree,
and has a left-hand endpoint 1134 located on vertical scan line
1110. Edge 1132 also forms the upper edge of a rectangle
1136. Four other rectangles are also shown in the figure, 1138,
1140, 1142 and 1144. The four quadrants I, II, III and 1\1,
centered at endpoint 1134, are also shown in FIG. 11B.

The quadrant depth vector indicates the number of shapes
in a particular layer that border a particular edge endpoint in
each of the four quadrants centered at that endpoint. In FIG.
11A, quadrants I, II and III contain no shapes that border
endpoint 1114, and quadrant IV contains one such shape
1116. Thus the quadrant depth vector at endpoint 1114 is
(0,0,0,1). On the other hand, inFIG.11B, quadrant II contains
no shapes that border endpoint 1134, whereas quadrants I, III
and IV each contain one such shape. Thus the quadrant depth
vector at endpoint 1134 is (1,0,1,1). It can be seen that if
exactly one quadrant depth is zero, then the point represents a
concave corner of an island, as in FIG. 11B. If exactly two
values are zero, and they are in adjacent quadrants, then the
endpoint is not on a corner of an island. If the two zeros are in
diagonally opposite quadrants, then the endpoint is a corner
of two diagonally adjacent islands, sharing the one corner. If
exactly three values are zero, as in FIG. 11A, then the end­
point represents a convex corner of an island, island 1116 in
FIG. 11A. Ifnone of the values are zero, then the endpoint is
inside an island and does not represent a corner of an island.
The quadrant depth vector is used in later steps, as described
hereinafter.

In step 1014, the updating of the quadrant depth vector for
an edge in the entectree (i.e. an edge whose left-hand end­
point lies on the current vertical scan line), involves incre­
menting the value for either quadrant I or quadrant IV by one.
The value for quadrant I is incremented if the "edge against
scan line?" Boolean for the edge 1112 indicates True (i.e. the
edge is the bottom edge of a shape), or the value for quadrant
IV is incremented if the "edge against scan line?" Boolean for
the edge 1112 indicates False (i.e. the edge is the top edge of
a shape). Similarly, the updating of the quadrant depth vector
for an edge in the exiCtree (i.e. an edge whose right-hand
endpoint lies on the current vertical scan line), involves dec­
rementing the value for either quadrant I or quadrant IV by
one. The value for quadrant I is decremented if the "edge
against scan line?" Boolean for the exiting edge indicates
True (i.e. the edge is the bottom edge of a shape), or the value
for quadrant IV is decremented if the "edge against scan
line?" Boolean for the exiting edge indicates False (i.e. the
edge is the top edge of a shape). It can be seen that the
quadrant depth vector increments quantities as the vertical
scan line encounters shapes while moving left-to-right across
the region. It decrements quantities as the scan line moves
past shapes.

In step 1015, the derived layer information is populated for
each derived layer having an edge intersecting the current
scan line. FIG. 24 is a flow chart detail of step 1015. Referring
to FIG. 24, in step 2410, a loop is begun to traverse through all
the y _positions, bottom to top, at which one or more physical
horizontal edges intersect the current vertical scan line. These
edges are collinear with each other, in plan view. Some may
be on different layers, and some may occupy the same layer
and be superimposed on each other. This group of collinear
edges intersecting the current vertical scan line at current
y _position is sometimes referred to herein as an "edge
group".

In step 2412, the system collects all the "related" physical
layers related to any of the physical horizontal edges in cur-

20
rent edge group. As used in FIG. 24, two physical layers are
considered "related" if they are both ancestors of a common
derived layer. Preferably, the collections of "related" layers
have been precompiled and cached for easy retrieval in this
step 2412.

In step 2414, at the current y_position on current vertical
scan line, the Boolean status vector for each related physical
layer is determined and written into a map object referred to
herein as a related_edge_status map. At this step, the related_

10 edge_status map is populated only for physical layers.
In step 2416, all the derived layers derived ultimately from

physical layers containing any of the edges in current edge
group are collected. The system sorts these monotonically
according to their rank. Thus derived layers that involve fewer

15 derivation steps appear earlier in this collection than those
that involve more derivation steps. This arrangement ensures
that during a traversal of the collection in sorted order to
calculate derived layer information, those derived layers
which are ancestors of a child derived layer will already have

20 been calculated by the time the child derived layer is reached.
In step 2418, a loop is begun through the derived layers in

the collection, in sorted order. In step 2420, the derivation
operator for the current derived layer is used to derive the
Boolean status vector for the derived edge on the current

25 derived layer at the current x/y position. The four elements of
the Boolean status vector are calculated simply by applying
the derivation operator for the current derived layer separately
to each of the four elements of the Boolean status of the parent
layer(s) referred to by the derivation operator for the current

30 derived layer. For example, if the derivation operator for
derived layer D1 is "PI AND P2", where PI and P2 are
physical layers, and the Boolean status vectors for PI and P2
at the current x/y position are (a,b,c,d) and (e,f,g,h), respec­
tively, then the Boolean status vector for the derived edge on

35 the current derived layer at the current x/y position is calcu­
lated as (a'e, b·f, C'g, d·h).

In step 2422, the Boolean status vector just calculated for
current derived layer at current y _position on current vertical
scan line is inserted into the m_derived_edge status map in

40 the edge object 524 for the first physical edge of current edge
group. In step 2424, the Boolean status vector just calculated
is also inserted into the related_edge_status map for the cur­
rent derived layer, at the current y _position on the current
vertical scan line. This prepares the related_edge_status map

45 in case a subsequent derived layer of higher rank refers to the
current derived layer in its derivation operator.

In step 2426, it is determined whether there are any more
derived layers in the collection prepared in step 2416. If so,
then the system returns to step 2418 to derive the Boolean

50 status vector for the next such derived layer. If not, then the
system returns to step 2410 to address the edge group inter­
secting the current vertical scan line at the next y-position. If
there are no more such y-positions, then step 1015 for popu­
lating the derived layer information for derived layers having

55 an edge intersecting the current vertical scan line is complete
(step 2428). It can be seen that in the embodiment of FIG. 24,
no shapes are actually calculated for the derived layers. Only
certain information about the derived edges are calculated
and stored at positions where they intersect the specific ver-

60 tical scan lines that correspond to endpoints of horizontal
physical edges in the layout. As used herein, any information
about the location or shape of derived shapes is considered to
constitute "shape information". In addition, it will be seen
that the shape information that the system derives in step 1015

65 about derived shapes includes, among other things, sufficient
information to indicate the locations of the corners of the
derived shape.

US 8,453,103 B2
21

Returning to FIG. 10, in step 1016, each of the edges whose
left-hand endpoint lies on the current scan line are processed.
These are the edges represented in entectree. As they are
processed, a "corner" data structure for the endpoint is popu­
lated. The vertical linear design rule bounds imposed by these
particular edges are calculated here as well. The corner data
structure, which is used for both physical and derived corners,
stores the information illustrated in FIGS. 11A and 11B. It

22
-continued

II the second point is the y position of the m_dimension_ray_y, i.e., the
head 0 f the arrow

};
};

p_ray->m_p2.x = m_origin_x->m_pointl.x;
p_ray->m_p2.y = m_space_dimension_y->m_pointl.y;
return p_ray;

can be described in a c++ like pseudocode class definition as
follows: 10

Note that for derived corners, the edge* objects in the
above class all represent physical edges. Only the position of
the edge* are useful (borrowed) for derived edges.

class corner

edge*

edge*

II ori_x vertical edge meeting at the
comer. Of the edge endpoints, only the x­
coordinates are populated.
II ori_y horizontal edge meeting at the
comer. Of the edge endpoints, only the y­
coordinates are populated.
II tar_x nearest vertical edge, walking
horizontally along shape contour from corner
II tar_y nearest horizontal edge, walking
vertically along shape contour from corner
/ / s_ray _x nearest vertical facing edge,
walking horizontally from corner, away from
shape
lis_ray _y nearest horizontal facing edge,
walking vertically from corner, away from
shape

edge* lid_ray _x last vertical edge walking
ffi_dimensioll_ray _x; horizontally into shape, before exiting

shape
edge* lid_ray y last horizontal edge walking
ffi_dimensioll_ray_y; vertically into shape, before exiting shape
std::list<comer*> m_neighbor_list; II list of nearest neighbor

corners
bool ffi_is_convex; II whether the corner is convex or concave
ray* create_space_ray _xC) {

ray* p_ray ~ new ray(this);
II the first point is the corner position, i.e., the tail of the arrow

p_ray->m_pl.x = ffi_origin_x->ffi_pointl.x;
p_ray->m_p1.y ~ m_origin_y->m_point1.y;

II the second point is the x position of the m_space_ray_x, i.e., the head
of the arrow

};

p_ray->m_p2.x = m_space_ray _x->m_pointl.x;
p_ray->m_p2.y ~ m_origin_y->m_point1.y;
return p_ray;

ray* create_space_ray_y() {
ray* p_ray ~ new ray(this);

II the first point is the corner position, i.e., the tail of the arrow
p_ray->m_pl.x = m_origin_x->m_pointl.x
p_ray->m_p1.y ~ m_origin_y->m_point1.y;

II the second point is the y position of the m_space_ray_y, i.e., the head
of the arrow

};

p_ray->m_p2.x = m_origin_x->m_pointl.x;
p_ray->m_p2.y ~ m_space_ray _y->m_pointl.y;
return p_ray;

ray* create_dim ens ion_ray _xC) {
ray* p_ray ~ new ray(this);

II the first point is the corner position, i.e., the tail of the arrow
p_ray->m_pl.x = m_origin_x->m_pointl.x;
p_ray->m_p1.y ~ m_origin_y->m_point1.y;

II the second point is the x position of the m_dimension_ray_x, i.e., the
head of the arrow

};

p_ray->m_p2.x = m_space_dimension_x->m_pointl.x;
p_ray->m_p2.y ~ m_origin_y->m_point1.y;
return p_ray;

ray* create_dim ens ion_ray _y() {
ray* p_ray ~ new ray(this);

II the first point is the corner position, i.e., the tail of the arrow
p_ray->m_pl.x = m_origin_x->m_pointl.x;
p_ray->m_p1.y ~ m_origin_y->m_point1.y;

A ray object represents essentially an arrow with a head
point and tail point. All the tail points coincide with the

15 current comer. For Manhattan layouts the rays are either
horizontal or vertical, though in 45 degree layouts it can also
have either of the two diagonal orientations. The 'ray' class is
described in a c++ like pseudocode class definition as fol­
lows:

20

25

class ray
{

corner* m_parent_corner;
bool is_s_ray;
pointm_pl;
pointm_p2;

The corner data structures developed during the scan are
30 maintained as entries in a synchronized_cornecmap struc­

ture. This structure is a map, in which the keys identifY a
physical or derived layer number and an x and y position on
that layer, and the values are objects of class 'comer'. Only
edges on physical layers are handled in this step 1016; derived

35 layer edges are processed in step 1019.
FIG. 12 is a flow chart detail of step 1016, for processing

the entering edges. In step 1210, each of the physical entering
edges represented in the current vertical scan line are consid­
ered. In FIG. 11A, this will be only edge 1112. In FIG. 11B,

40 this will be edge 1132, as well as the top and bottom edges of
rectangle 1138. In step 1214, it is determined whether the
left-hand endpoint of the current edge is a comer of an island.
This is determined by reference to the current quadrant vec­
tor, as described previously. If it is not a corner of an island,

45 then the edge is skipped.
In step 1216, a corner data structure for the left-hand end­

point of the current edge is instantiated in synchronized_cor­
necmap if it does not already exist. The corner data structure
might already exist in synchronized_comecmap if, for

50 example, the corner had already been encountered because of
a different horizontal edge on the same layer that starts at the
same point (such as the bottom edge of rectangle 1138 in FI G.
11B), or as part of the vertical scan in an embodiment in
which the vertical scan precedes or operates concurrently

55 with the horizontal scan. In step 1218, the system walks
upward and downward along the current vertical scan line
from the current horizontal edge, populating the available
corner information as it is learned. In particular, referring to
the comer data structure definition above and the illustrations

60 in FIGS. 11A and 11B, the edges Sjay y, tary and djay y,
as well as any others required by the design rules, are popu­
lated. Note that these values identifY the shape edges at the
head of the respective ray. The ray itself is identified sepa-

65

rately in the corner data structure, as previously mentioned.
In one embodiment, all design rule checks are performed

only after all scans are complete. However, the present
embodiment incorporates a feature in which the system per-

US 8,453,103 B2
23

forms certain simple edge-based rule checks as part of step
1218. For example, if the current edge is a top edge and the
walk upwards along the current vertical scan line meets the
bottom edge of a shape in the same layer, then Sjay y is
populated in the comer data structure and the minimum spac­
ing rule is checked as well. This check involves comparing the
length of Sjay_y with the minimum spacing value in the
relationship_master. If the current edge is a top edge and the
walk upwards along the current vertical scan line meets the
top edge of a shape in a different layer, then the minimum 10

extension rule is checked by comparing the distance walked
to the minimum extension value for the appropriate layer pair
in the relationship_master. If the current edge is a bottom
edge and the walk upwards along the current vertical scan line
meets the top edge of a shape in the same layer, then djay _y 15

is populated, and also the minimum dimension rule is
checked. This check involves comparing the value of djay_y
with the minimum dimension value in the relationship_mas­
ter. If the current edge is a bottom edge and the walk upwards
along the current vertical scan line meets the top edge of a 20

shape in a different layer, then the minimum overlap rule is
checked. Similar checks are performed during the walk
downward from the current edge. If during the walks up and
down the current vertical scan line, the distance walked
exceeds the worst case limit from the relationship master, 25

there is no design rule violation encountered and it is not
necessary to populate further items in the comer data struc­
ture that would be encountered in the current walking direc-
tion.

After the available comer structure information items have 30

24
zontal edges intersecting the current vertical scan line or any
other vertical scan line in the vertical scan line multimap can
still further restrict the distance that the cursor should be
allowed to move vertically upward or downward during the
drag. Since only the one most restrictive slack distance need
be stored for the upward direction and one for the downward
direction, each new calculation of a slack distance overwrites
the previous slack distance if the new slack distance is more
restrictive (smaller). This procedure also occurs for each
design rule in the set of design rules enabled for DRC assist,
including design rules setting a maximum rule value r rather
than a minimum rule value, with always the most restrictive
slack distance overwriting a less restrictive slack distance in
the same direction.

After the available comer structure information items have
been populated, then the system returns to step 1210 to con­
sider the next entering edge in the current vertical scan line.

FIG. 13 is a flow chart detail of step 1018 for processing
exiting edge comers. Again, only physical edges are
addressed in step 1018. In step 1310, each of the exiting
physical edges represented in the current vertical scan line are
considered. In step 1314, it is determined whether the right­
hand endpoint of the current edge is a comer of an island. This
is determined by reference to the current quadrant vector, as
described previously. If it is not a comer of an island, then the
edge is skipped.

In step 1316, a comer data structure for the right-hand
endpoint of the current edge is instantiated in synchronized_
cornecmap if it does not already exist. Again, the comer data
structure might already exist in synchronized_cornecmap if,
for example, the comer had already been encountered
because of a different horizontal edge on the same layer that
ends at the same point, or as part of the vertical scan in an
embodiment in which the vertical scan precedes or operates

been populated, the system then calculates the vertical linear
design rule bounds for the current entering edge in the current
vertical scan line (step 1220). In order to best understand this
calculation, call the current horizontal edge e1 and call the
next lower horizontal entering edge in the current vertical
scan line e2. Assume the current distance between them is d,
and the minimum rule value is r. Depending on the particular
design rule being evaluated, r could be a minimum spacing
value, minimum width, minimum extension, minimum over­
lap, and so on. Further assume that e1 has a speed ratio
(determined in step 315) of sl and e2 has a speed ratio of s2.
According to the calculation, if sl =s2, then the two edges will
remain the same distance from each other vertically during
the drag operation. Thus no vertical linear design rule bound

35 concurrently with the horizontal scan. In step 1318, the sys­
tem walks upward and downward along the current vertical
scan line from the current horizontal edge, populating the
available comer information as it is learned. In particular,
referring to the comer data structure definition above and the

40 illustration in FIGS. 11A and 11B, the edges Sjay-y, tary
and djay _y, as well as any others required by the design
rules, are populated.

is created. If sl <s2, that means e1 will move more slowly than

In addition, preferably but not essentially, the system also
in step 1318 performs the same edge-based rule checks for the

45 exiting edges as performed and described above with respect
to step 1218 for entering edges. s2 during the drag operation. If the drag has a vertically

downward vector component, then the spacing between the
two edges will increase during the drag and no minimum
distance rule will be violated. Again, therefore, no vertical
linear design rule bound is created for downward linear move- 50

ment. But if the drag has a vertically upward vector compo­
nent, then the spacing between the two edges will decrease
during the drag and eventually violate the design rule. The
maximum distance that edge e1 can be allowed to move
upward is then given by (d-r), which corresponds to a maxi- 55

mum allowable upward cursor movement (i.e. the linear
upward slack distance) of d/ls2-s11-r. Thus a linear upward
slack distance is cached for the current horizontal edge el.

Note that vertical movement of e1 relative to the next

After the available comer structure information items have
been populated, the system then calculates additional vertical
linear design rule bounds for the current exiting edge in the
current vertical scan line (step 1320). These bounds are cal­
culated similarly as set forth above with respect to step 1220,
and again, only the most restrictive upward and downward
vertical slack distances are retained.

After the available comer structure information items have
been populated, then the system returns to step 1310 to con­
sider the next exiting edge in the current vertical scan line.

Returning to FIG. 10, after both the entering and exiting
physical edges having an endpoint on the current vertical scan
line are processed, the system processes all the derived cor­
ners in the current vertical scan line (step 1019). FIG. 25 is a
flow chart detail of step 1019. Because derived edge status
vectors are by convention kept on the first physical edge of
each unique position in the current scan line in the present
embodiment, it is not useful to loop separately through edges

higher horizontal entering edge in the current vertical scan 60

line must be considered as well, and that might result in a
linear downward slack distance and/or a further restriction on
the linear upward slack distance. Subsequent calculations (in
step 1018 for example, for exiting edges) might further
restrict the distance that edge e1 can move upward or down­
ward, thereby further restricting the linear upward or down­
ward slack. Furthermore, slack calculations for other hori-

65 in Entectree separately from edges in ExiCtree. Instead, one
loop is performed vertically along the current vertical scan
line, from bottom to top, stopping at each unique vertical

US 8,453,103 B2
25

position at which there is an edge object. Thus referring to
FIG. 25, in step 2510, the current vertical scan line is walked
from bottom to top, stopping at each unique vertical position
at which an edge object exists. In step 2512, it is determined
whether the first physical edge object at the current vertical
position contains any derived edge status vectors. Only the
first physical edge object need be checked at each vertical
position, because by convention in the present embodiment,
that is where the derived edge status map for all horizontal
derived edges at the current x/y position are kept. If it is 10

determined that there are no derived edges in the first physical
edge object at the current vertical position, then the system
returns to step 2510 to consider the next unique vertical
position in the current vertical scan line.

If there are derived edges, then in step 2514 the system 15

begins another loop through all the derived edges in the
derived edge status map in the first physical edge object at the
current vertical position. In step 2516, it is determined
whether the Boolean status of the current derived edge indi­
cates a valid corner. As previously explained, so long as the 20

Boolean status is neither all zeros nor all ones, the corner is
valid. If the current derived edge is not a corner, then the edge
is skipped.

If the current derived edge is a valid corner, then in step
2518, a corner data structure for the current derived edge is 25

instantiated in synchronized_cornecmap if it does not
already exist. In step 2520, the system walks upward and
downward along the current vertical scan line from the cur­
rent derived edge, populating the available derived corner
information as it is learned. In particular, as for physical layer 30

edges, Sjay _y, taCY and djay _y, as well as any others
required by the design rules, are populated. Also in step 2520,
like in step 1218 for physical layer edges, the system per­
forms certain simple edge-based rule checks such as mini­
mum spacing and minimum dimension on the current derived 35

layer, and minimum extension and minimum overlap relative
to other layers (physical or derived). All the same design rule
checks are performed on the derived layers as set forth above
with respect to step 1218. Additionally, like in step 1218, if
during the walks up and down the current vertical scan line on 40

the current derived layer, the distance walked exceeds the
worst case limit from the relationship master, there is no
design rule violation encountered and it is not necessary to
populate further items in the corner data structure that would

26
horizontally, and are updated as the vertical scan line moves
across them horizontally, corner to corner. Islands are deter­
mined and checked on both physical layers and derived lay­
ers. Pertinent parts of the 'island' data structure are described
in a c++ like pseudocode class definition as follows:

class island

};

/ / For horizontal scan, this is the iterator in
II current_scan_line of the bottom_most_edge of the island
edge_tree: :iterator ill_start_iterator;
/ / For horizontal scan, this is the iterator in
II current_scan_line of the top_most_edge of the island
edge_tree::iterator ill_end_iterator;
I I the unique id of the island.
II Islands are split or merged during the horizontal scan.
II When an island is split, the island id is not split
II (i.e., multiple islands will share same id), so we know
II these islands are actually sub-islands of a larger island;
II When multiple islands merge together, the smallest island
II id is used as the shared id for all the islands merged together.
int ffi_island_id;
/ / accumulating the common run length against the same layer.
/ / For efficiency, 2D spacing rules are checked during scan,
II not after. In another embodiment they could be checked afterwards.
int ffi_last_ valid_common_nlil_position;
I I accumulating the common run length against different layers
std: :map<layer_llumber, int> ffi_last_ valid_top_position_ vector;
std: :map<layer_llumber, int>
ffi_last_ valid_bottom_position_ vector;
II accumulating the area of this island so far
intm_area;
II accumulating the area of the potential hole right above this island.
int ill_hole_area;
/ / Horizontal position that current_sean_line stopped last time
int m_Iast_position_updated;

Among other things, the island data structure accumulates
the following information about a particular island during the
process of the horizontal scan: area of the island, area of a hole
just above the island, common run lengths against other
islands in the same layer and islands in other layers. For
clarity of illustration, the present description will concentrate
primarily on the island area as an example of island-based
rule checking. Reference will be made to FIG. 19E, which
illustrates a sample layout region having three overlapping
rectangles 1932, 1934 and 1936, all on a single physical layer.

be encountered in the current walking direction.
In step 2524, the system then calculates additional vertical

linear design rule bounds for the current derived edge. These
bounds are calculated similarly as set forth above with respect

45 Because they overlap on a single layer, they form a single
island 1930.

to step 1220, and again, only the most restrictive upward and
downward vertical slack distances are retained.

After the available derived corner structure information
items have been populated, and the vertical design rule
bounds imposed by the current derived edge have been taken
into account, then the system returns to step 2514 to consider
the next derived edge in the current physical edge object. If
there are no more derived edges in the current physical edge
object, then the system returns to step 2510 to move to the
next unique vertical position in the current vertical scan line.
If there are no more vertical positions represented in the
current vertical scan line, then step 1019 concludes (step
2522).

Roughly described, island area is accumulated during the
horizontal scan by using the shape corners to divide the island
into non-overlapping "island rectangles", the area of which

50 are easily determined from the horizontal edges represented
in the current vertical scan line. In the example of FIG. 19E,
the method divides the island 1930 into five island rectangles
bounded horizontally by the broken vertical lines 1938. Like
for the extraction of corner data, the updating of island data

55 takes place only at those vertical scan lines containing a
corner of the island. Horizontal scauning does not stop any­
where between corners. A rectangle (not shown) disposed
entirely within rectangle 1932, for example, will not bear on
any island design rule and does not become a stopping place

60 during the scan. A high level description of the process is
illustrated in the flow chart of FIG. 23.

Returning to FIG. 10, after both the physical and derived
layer edges at the current vertical scan line are processed, the
system populates or updates information about islands (step
1020). Islands are represented in objects of class 'island', and 65

maintained in a map of class 'island_map'. They are instan­
tiated as the vertical scan line encounters them as it scans

Referring to FI G. 23, as mentioned, the islands are stored in
a map called island_map. The keys of island_map identify the
lower left corner of a respective island. In step 2310, each
island having a corner lying on the current vertical scan line is
considered. In step 2312, if the corner represents an island
being encountered for the first time during the scan, a new

US 8,453,103 B2
27

island data structure is instantiated in island_map (step 2314).
The area is set to zero (step 2316), and in step 2324, the value
of m_IasCposition updated for the new island is set equal to
the x-position of the current vertical scan line.

If the current island is already represented in island_map,
then effectively a vertical slice is made through the current
island at the current vertical scan line; and the area of the
left-adjacent rectangle is added to the area being accumu­
lated. Accordingly, in step 2318, the height H of the left­
adjacent rectangle is calculated as the distance along the
current vertical scan line from the bottom edge of the current
island to the top edge of the current island. This information
is available in current_sean_line, because at least one of the
top and bottom edges is a comer, and the y-position of the
comer is available as the left- or right-hand endpoint of a
horizontal edge in the current vertical scan line. The other of
the top and bottom edges may also be a comer, or may be an
edge that merely intersects the current vertical scan line. In
either case its y-position is available as well in currenCscan_
line. In step 2320, the width W of the left-adjacent rectangle
is calculated as the horizontal position of the current scan line
minus the last scan line position at which island information
was updated, which is the value in m_Iast_position updated.
In step 2322 the product ofH and W is added to the area value
for the current island.

In step 2324, as mentioned above, the value of m_Iast_po­
sition updated for the new island is set equal to the x-position
of the current vertical scan line. The method then returns to
step 2310 for consideration of the next island having a comer
on the current vertical scan line.

Once all islands having a comer on the current vertical scan
line have been considered, then any two or more of such
islands that are now vertically-adjacent are merged into a
single island in step 2326 and their area values summed. In
step 2328, any island that is now split into two, perhaps
separated vertically by a newly encountered hole or notch, are
split. The details of the merging and splitting operations are
not important for an understanding of the invention. Note that
whereas island area information is captured during the hori­
zontal scan, it is not compared to the design rule values in the
present embodiment until later. Note also that whereas FIG.
19E and the flow chart of FIG. 23 have been described with
respect to an island on a physical layer, the process is the same
for islands on a derived layer.

Returning to FI G. 10, after the island data has been updated
based on the current scan line, in step 1022, as a time saving
technique, the quadrant depth vectors for each of the entering
horizontal edges in the current vertical scan line are copied
from the right-hand quadrants to the corresponding left-hand
quadrants. In this manner the left-hand quadrant depth values
can be incremented or decremented as the vertical scan line
moves rightward, and will contain accurate values when the
scan line reaches the right hand endpoint of the edge. No such
updating is required for the status vectors for edges on derived
layers. In step 1024, all the exiting edges are removed from
the current vertical scan line. The routine then returns to step
1010 for the next horizontal scan position.

Returning to FIG. 9, after the horizontal scan tree has been
scanned, the vertical scan tree is scanned (step 912). FIG. 14
is a flow chart of step 912, for scanning the vertical scan tree
sweep-y.

FIG. 14 is a flow chart of step 912, for scanning the vertical
scan tree sweep-y. In step 1408, the horizontal scan line
edge-tree multimap object current_sean_line is created. In
step 1410, currenCscan_Iine traverses bothentectree and the
exit_tree together so that the horizontal scan lines from both
trees are considered in monotonically varying sequence, bot-

28
tom to top. Since these two trees contain only those horizontal
scan lines on which an endpoint of a vertical edge lies, inter­
vening horizontal scan lines are skipped during this scan.
Again, the existence of derived edges does not alter this plan
since it is assumed for this part of the algorithm that all
derived edge endpoints are co-located with at least one physi­
cal edge endpoint. The current horizontal scan line is main­
tained in a multimap object of class edge_tree, having the
structure of edge_tree 620 (FIG. 6). It has a current horizontal

10 scanning position, and stores the information shown in block
622 for each vertical edge that intersects a horizontal line at
the current vertical scanning position.

In step 1412, currenCscan_Iine is updated by adding all
vertical edges having a lower endpoint located at the current

15 horizontal scan position. In step 1414, the quadrant depth
vector (FIG. 6) for each edge in the current horizontal scan
line multimap is updated. This step involves, for an edge in the
entectree (i.e. a vertical edge whose lower endpoint lies on
the current horizontal scan line), incrementing the value for

20 either quadrant I or quadrant II by one. The value for quadrant
I is incremented if the "edge against scan line?" Boolean for
the edge 1112 indicates True (i.e. the edge is the left-hand
edge of a shape), or the value for quadrant II is incremented if
the "edge against scan line?" Boolean for the edge 1112

25 indicates False (i.e. the edge is the right-hand edge of a
shape). Similarly, the updating of the quadrant depth vector
for an edge in the exit_tree (i.e. an edge whose upper endpoint
lies on the current horizontal scan line), involves decrement­
ing the value for either quadrant I or quadrant II by one. The

30 value for quadrant I is decremented if the "edge against scan
line?" Boolean for the exiting edge indicates True (i.e. the
edge is the left-hand edge of a shape), or the value for quad­
rant II is decremented if the "edge against scan line?" Boolean
for the exiting edge indicates False (i.e. the edge is the right-

35 hand edge of a shape). It can be seen that the quadrant depth
vector increments quantities as the horizontal scan line
encounters shapes while moving upward across the region. It
decrements quantities as the scan line moves past shapes.

In step 1415, the derived layer information is populated for
40 each derived layer having an edge intersecting the current

scan line. FIG. 26 is a flow chart detail of step 1415. Referring
to FIG. 26, in step 2610, a loop is begun to traverse through all
the x_positions, left-to-right, at which one or more physical
vertical edges intersect the current horizontal scan line. These

45 edges are collinear with each other, in plan view. Some may
be on different layers, and some may occupy the same layer
and be superimposed on each other. Like in FIG. 24, this
group of collinear edges intersecting the current horizontal
scan line at current x_position is sometimes referred to herein

50 as an "edge group".
In step 2612, the system collects all the "related" physical

layers related to any of the physical vertical edges in current
edge group. Again, as used in FIG. 26, two physical layers are
considered "related" if they are both ancestors of a common

55 derived layer. Preferably, the collections of "related" layers
have been precompiled and cached for easy retrieval in this
step 2612.

In step 2614, at the current x_position on current horizontal
scan line, the Boolean status vector for each related physical

60 layer is determined and written into a related_edge_status
map. At this step, the related_edge_status map is populated
only for physical layers.

In step 2616, all the derived layers derived ultimately from
physical layers containing any of the edges in current edge

65 group are collected. The system sort these monotonically
according to their rank, for the same reason as set forth above
with respect to step 2416.

US 8,453,103 B2
29

In step 2618, a loop is begun through the derived layers in
the collection, in sorted order. In step 2620, the derivation
operator for the current derived layer is used to derive the
Boolean status vector for the derived edge on the current
derived layer at the current x/y position. The four elements of
the Boolean status vector are calculated by applying the deri­
vation operator for the current derived layer separately to each
of the four elements of the Boolean status of the parent
layer(s) referred to by the derivation operator for the current
derived layer. 10

In step 2622, the Boolean status vector just calculated for
current derived layer at current x_position on current hori­
zontal scan line is inserted into the m_derived_edge status
map in the edge object 524 for the first physical edge of 15

current edge group. In step 2624, the Boolean status vector
just calculated is also inserted into the related_edge_status
map for the current derived layer, at the current x_position on
the current horizontal scan line. This prepares the related_
edge_status map in case a subsequent derived layer of higher 20

rank refers to the current derived layer in its derivation opera-
tor.

30
In an embodiment, certain edge-based rule checks are also

performed as part of step 1518, similar to those performed in
step 1218. For example, if the current edge is a right-hand
edge and the walk rightward along the current horizontal scan
line meets the left-hand edge of a shape in the same layer, then
Sjay_x is populated in the comer data structure and the
minimum spacing rule is checked as well. This check involves
comparing the length of Sjay _x with the minimum spacing
value in the relationship_master. If the current edge is a right­
hand edge and the walk rightwards along the current horizon­
tal scan line meets the right-hand edge of a shape in a different
layer, then the minimum extension rule is checked by com­
paring the distance walked to the minimum extension value
for the appropriate layer pair in the relationship _master. If the
current edge is a left-hand edge and thewalkrightwards along
the current horizontal scan line meets the right-hand edge of
a shape in the same layer, then djay _x is populated, and also
the minimum dimension rule is checked. This check involves
comparing the value of djay_x with the minimum dimen­
sion value in the relationship_master. If the current edge is a
left-hand edge and the walk rightwards along the current
horizontal scan line meets the right-hand edge of a shape in a
different layer, then the minimum overlap rule is checked.
Similar checks are performed during the walk leftward from

In step 2626, it is determined whether there are any more
derived layers in the collection prepared in step 2616. If so,
then the system returns to step 2618 to derive the Boolean
status vector for the next such derived layer. If not, then the
system returns to step 2610 to address the edge group inter­
secting the current horizontal scan line at the next x-position.

25 the current edge. If during the walks leftward and rightward
along the current horizontal scan line, the distance walked
exceeds the worst case limit from the relationship master,
there is no design rule violation encountered and it is not
necessary to populate further items in the comer data struc-If there are no more such x-positions, then step 1415 for

populating the derived layer information for derived layers
having an edge intersecting the current horizontal scan line is
complete (step 2628). It can be seen again that in the embodi­
ment of FIG. 26, no shapes are actually calculated for the
derived layers. Only certain information about the derived
edges are calculated and stored at positions where they inter- 35

sect the specific horizontal scan lines that correspond to end­
points of vertical physical edges in the layout.

30 ture that would be encountered in the current walking direc-
tion.

After the available comer structure information items have
been populated, the system then calculates the horizontal
linear design rule bounds for the current entering edge in the
current horizontal scan line (step 1520). This calculation is
similar to that set forth above with respect to step 1220, but

Returning to FIG. 14, in step 1416, each of the physical
edges whose lower endpoint lies on the current scan line are
processed. These are the edges represented in entectree. As 40

they are processed, the "comer" data structure for the end­
point is populated in synchronized_comecmap. As men­
tioned, the relevant comer data structure may already exist
from a previously encountered different vertical edge on the
same layer that starts at the same point, or as part of the 45

horizontal scan in an embodiment in which the horizontal

will be adapted here for clarity. Call the current vertical edge
e1 and call the next lower vertical entering edge in the current
horizontal scan line e2. Assume the current distance between
them is d, and the minimum rule value is r. Further assume
that e1 has a speed ratio (determined in step 315) of sl and e2
has a speed ratio of s2. If sl =s2, then the two edges will
remain the same distance from each other horizontally during
the drag operation and no horizontal linear design rule bound
is created. If sl <s2, that means e1 will move more slowly than
s2 during the drag operation. If the drag has a horizontally

vertical scan precedes or operates concurrently with the ver­
tical scan. The horizontal linear design rule bounds imposed
by these particular edges are calculated here as well.

FIG. 15 is a flow chart detail of step 1416, for processing
the entering edges. In step 1510, each of the entering physical
edges represented in the current horizontal scan line are con­
sidered. In step 1514, it is determined whether the lower
endpoint of the current edge is a comer of an island. This is
determined by reference to the current quadrant vector, as
described previously. If it is not a comer of an island, then the
edge is skipped.

In step 1516, a comer data structure for the left-hand end­
point of the current edge is instantiated in synchronized_cor­
necmap if it does not already exist. In step 1518, the system
walks leftward and rightward along the current horizontal
scan line from the current vertical edge, populating the avail­
able comer information as it is learned. In particular, referring
to the comer data structure definition above and the illustra­
tions in FIGS. 11A and 11B, the edges Sjay-x, tacx and
djay _x, as well as any others required by the design rules,
are populated.

leftward vector component, then the spacing between the two
edges will increase during the drag and no minimum distance
rule will be violated. Again, therefore, no horizontal linear

50 design rule bound is created for leftward linear movement.
But if the drag has a horizontally rightward vector compo­
nent, then the spacing between the two edges will decrease
during the drag and eventually violate the design rule. The
maximum distance that edge e1 can be allowed to move

55 rightward is then given by (d-r), which corresponds to a
maximum allowable rightward cursor movement (i.e. the
right linear slack distance) of dlls2-s11-r. Thus a right linear
slack distance is cached for the current vertical edge el.

Again, horizontal movement will also be restricted by left
60 and right linear slacks calculated for the same and other edges

of the selected objects, as well as for satisfaction of other
design rules. Since only the one most restrictive linear slack
distances need be stored for drag vector components in each
of the leftward and rightward directions, each new calculation

65 of a slack distance overwrites the previous slack distance if
the new slack distance is more restrictive (smaller). Only one
linear slack distance in each direction remains.

US 8,453,103 B2
31

After the available comer structure information items have
been populated, then the system returns to step 1510 to con­
sider the next entering edge in the current horizontal scan line.

FIG. 16 is a flow chart detail of step 1418 for processing
exiting edge comers. Again, only physical edges are
addressed in step 1418. In step 1610, each of the exiting edges
represented in the current horizontal scan line are considered.
In step 1614, it is determined whether the upper endpoint of
the current edge is a comer of an island. This is determined by
reference to the current quadrant vector, as described previ­
ously. If it is not a comer of an island, then the edge is skipped.

In step 1616, a comer data structure for the upper endpoint
of the current edge is instantiated in synchronized_comec
map if it does not already exist. Again, the comer data struc­
ture might already exist in synchronized_comecmap. In step
1618, the system walks leftward and rightward along the
current horizontal scan line from the current vertical edge,
populating the available comer information as it is learned. In
particular, referring to the comer data structure definition
above and the illustration in FIGS. 11A and 11B, the edges
Sjay _x, tar_x and djay _x, as well as any others required by
the design rules, are populated.

In addition, preferably but not essentially, the system also

32
Boolean status is neither all zeros nor all ones, the comer is
valid. If the current derived edge is not a comer, then the edge
is skipped.

If the current derived edge is a valid comer, then in step
2718, a comer data structure for the current derived edge is
instantiated in synchronized_comecmap if it does not
already exist. In step 2720, the system walks left and right
along the current horizontal scan line from the current derived
edge, populating the available derived comer information as

10 it is learned. Also in step 2720, like in step 1218 for physical
layer edges, the system performs certain simple edge-based
rule checks such as minimum spacing and minimum dimen­
sion on the current derived layer, and minimum extension and
minimum overlap relative to other layers (physical or

15 derived). All the same design rule checks are perfonned on
the derived layers as set forth above with respect to step 1218.
Additionally, like in step 1218, if during the walks to the left
and right along the current horizontal scan line on the current
derived layer, the distance walked exceeds the worst case

20 limit from the relationship master, there is no design rule
violation encountered and it is not necessary to populate
further items in the comer data structure that would be
encountered in the current walking direction.

in step 1618 performs similar edge-based rule checks for the
exiting edges as perfonned and described above with respect 25

to step 1318.

In step 2724, the system then calculates additional hori­
zontallinear design rule bounds for the current derived edge
in the current horizontal scan line. These bounds are calcu­
lated similarly as set forth above with respect to step 1520,
and again, only the most restrictive left and right linear slacks
are retained.

After the available comer structure information items have
been populated, the system then calculates additional hori­
zontallinear design rule bounds for the current exiting edge in
the current horizontal scan line (step 1620). These bounds are 30

calculated similarly as set forth above with respect to step
1520, and again, only the most restrictive left and right linear
slacks are retained.

After the available derived comer structure infonnation
items have been populated and horizontal linear slacks have
been updated, then the system returns to step 2714 to consider
the next derived edge in the current physical edge object. If
there are no more derived edges in the current physical edge After the available comer structure information items have

been populated, then the system returns to step 1610 to con­
sider the next exiting edge in the current horizontal scan line.

35 object, then the system returns to step 2710 to move to the
next unique horizontal position in the current horizontal scan
line. If there are no more horizontal positions represented in
the current horizontal scan line, then step 1419 concludes

Returning to FIG. 14, after both the entering and exiting
physical edges having an endpoint on the current horizontal
scan line are processed, the system processes all the derived
comers in the current horizontal scan line (step 1419). FIG. 27 40

is a flow chart detail of step 1419. Because derived edge status
vectors are by convention kept on the first physical edge of
each unique position in the current scan line in the present
embodiment, it is not useful to loop separately through edges

(step 2722).
Returning to FIG. 14, after both the physical and derived

layer edges at the current horizontal scan line are processed,
it is not necessary to populate or update information about
islands. This was done during the horizontal scan (step 1020
in FIG. 10), and no additional infonnation will be determined

45 during the vertical scan. For example, the area of an island,
determined as a vertical scan line scans across the island
horizontally, will not be any different than the area deter­
mined as a horizontal scan line scans across the island verti-

in Entectree separately from edges in Exit_tree. Instead, one
loop is performed horizontally along the current horizontal
scan line, from left to right, stopping at each unique horizontal
position at which there is an edge object. Thus referring to
FIG. 27, in step 2710, the current horizontal scan line is
walked from left to right, stopping at each unique horizontal 50

position at which an edge object exists. In step 2712, it is
determined whether the first physical edge object at the cur­
rent horizontal position contains any derived edge status vec­
tors. Only the first physical edge object need be checked at
each horizontal position, because by convention in the present
embodiment, that is where the derived edge status map for all
vertical derived edges at the current x/y position are kept. If it

cally.
In step 1422, as a time saving technique, the quadrant depth

vectors for each of the entering vertical edges in the current
horizontal scan line are copied from the upper quadrants to
the corresponding lower quadrants. In this mauner the lower
quadrant depth values can be incremented or decremented as

55 the horizontal scan line moves upward, and will contain accu­
rate values when the scan line reaches the upper endpoint of
the edge. It is not necessary to update status vectors for
derived edges in the same mauner. In step 1424, all the exiting
edges are removed from the current horizontal scan line. The

is detennined that there are no derived edges in the first
physical edge object at the current horizontal position, then
the system returns to step 2710 to consider the next unique
horizontal position in the current horizontal scan line.

If there are derived edges, then in step 2714 the system
begins another loop through all the derived edges in the
derived edge status map in the first physical edge object at the
current horizontal position. In step 2716, it is determined
whether the Boolean status of the current derived edge indi­
cates a valid comer. As previously explained, so long as the

60 routine then returns to step 1410 for the next vertical scan
position.

Returning to FIG. 3, after step 320, all the topographical
relationships needed to perfonn the checks in the design rule
set have been collected into a layout topology database. This

65 includes all the needed relationships on both physical and
derived layers. As mentioned, the tenn 'database' as used
herein does not imply any unity or regularity of structure, and

US 8,453,103 B2
33

in the present embodiment the layout topology database
includes synchronized_cornecmap, island_map and
via_map, and other collections of data as well. In step 322, the
values in the layout topology database are compared to those
in the relationship master, in order to check all the design
rules. In one embodiment, all design rule violations are
reported, whereas in another embodiment, only those viola­
tions involving editing shapes are reported. The corner and
conditional design rule bounds are calculated during this step
as well. 10

34
1920 is again calculated and compared to the mlmmum
dimension rule value in relationship_master (step 1820).

If the intersecting rays are not both dimensionjays, then in
step 1822 it is detennined whether one is a spacejay on one
layer, and the other is a dimensionjay on a different layer.
Since the corner from which the spacejay extends is convex,
and the corner from which the dimensionjay extends in
concave, the situation is as illustrated in FIG. 19C. In this
figure, sjay 1922 from a corner of shape 1921 intersects
djay 1924 from a corner of shape 1923, and the two shapes
are on different layers. In this case the distance that the shape
on one layer extends past the edge of the shape the other layer
is calculated in both dimensions, and compared to the min­
Extension or minDualExtension value in relationship_master

15 (step 1824).

FIG. 17 is a flow chart detail of step 322. These are illus­
trative examples of design rules that are checked in the
present embodiment only after the scans across the layout
region have been completed. The grouping of these checks as
shown in FIG. 17 is only for convenience of the present
description; it mayor may not correspond to any grouping in
any particular embodiment. For purposes of the present
description, the design rules that are checked in FIG. 17 are
grouped as follows. Corner-to-corner rules are checked in 20

step 1710, and other corner-based rules are checked in step
1712. Island-based rules are checked in step 1714, and other
rules (such as via-based rules) are checked in step 1716.
Details are provided herein regarding some of the corner-to­
corner rules, some other corner-based rules, and some island- 25

based rules. All of the design rule checks described below
with respect to steps 171 0-1716 are checked for both physical
and derived layer features if they are identified in the design
rule set. Design rules that reference derived layers are
checked in the steps of FIG. 17, as well as those that reference 30

only physical layers.

Various other corner-based design rule checks can be per­
formed within this loop as well, not shown in FIG. 18. Corner
slacks are then calculated in step 1826, and the routine then
loops back to step 1812 to continue scanning for more inter­
secting rays.

A corner slack is the slack between two corners, i.e. one
pair of horizontal and one pair of vertical edges. A corner
slack has two linear slack values, one horizontal (either left or
right) and one vertical (either up or down). These horizontal
and vertical linear slack components of the corner slack are
calculated in the same way that the horizontal and vertical
linear slack values are calculated within step 320. However,
the values calculated for corner slacks are cached separately
and not merged with those calculated for the linear slacks.

FIG. 20 is a flow chart detail of step 1712, for checking
certain other corner-based rules. These rules are checked
inside a loop 2010 which traverses the synchronized_cornec
map. In step 2012, the edge length rule is checked from the
current corner. For the horizontal edge meeting at this corner,

Corner design rule bounds are calculated as part of the
check of corner-to-corner rules in step 1710. Conditional
design rule bounds are calculated as part of the check of other
corner-based rules in step 1712.

FIG. 18 is a flow chart detail of step 1710, for checking the
corner-to-corner rules. In step 1810, the system builds a map
of space and dimension rays from the ray infonnation previ­
ously populated into the synchronized corner map. Rays from

35 this involves subtracting the x-position of the corner (ori_x)
from the x-position of the nearest vertical edge, walking
horizontally along the shape contour (tacx) and comparing
the absolute value of the difference to the minimum edge

all layers are included, from both physical and derived layers, 40

but only those spacejays that extend from convex corners,
and only those dimensionjays that extend from concave
corners, are included in this ray map. In addition, instead of
the rays representing the shape edges encountered when
walking away from the corner, the rays in the ray map formed 45

in step 1810 represent true rays from the cornerto the encoun­
tered edge.

length value in the relationship_master. For the vertical edge
meeting at this corner, this involves subtracting the y-position
of the corner (ori_y) from the y-position of the nearest hori-
zontal edge, walking vertically along the shape contour
(tar_y) and comparing the absolute value of the difference to
the minimum edge length value in the relationship_master.

In step 2014, it is determined whether the current corner is
concave or convex. If it is concave, then in step 2016 the
concave corner edge length rule is checked. This rule requires
that at least one of the two adjacent edges forming a concave
corner have at least a minimum length. This test can be

In step 1812, the ray map is scanned left-to-right to identify
intersections of the rays. A conventional scan line algorithm
can be used for this purpose. 50 perfonned using the same values from the corner data struc­

ture as used in step 2012 (ori_x, tar_x, ori-y and taCY). The
lengths determined for the two edges are compared to the
minimum concave corner edge length value in the relation-

In step 1814, it is determined whether the current ray
intersection is an intersection of two spacejays. The two
corners from which these spacejays extend both have to be
convex, so the situation is as illustrated in FIG. 19A, where
Sjays 1910 and 1912 intersect. In this case the corner-to- 55

corner Euclidean spacing 1914 is calculated. If the two shapes
are located on the same layer, the spacing 1914 is compared to
the minimum corner-to-corner spacing value in relationship_
master. If they are on different layers, it is compared to the
minimum corner-to-corner clearance in relationship_master 60

(step 1816).
If the intersecting rays are not both space jays, then in step

1818 it is determined whether they are both dimensionjays
in the same layer. The two corners from which these dimen­
sionjays extend both have to be concave, so the situation is 65

as illustrated in FIG. 19B, where djays 1916 and 1918 inter­
sect. In this case the corner-to-corner Euclidean dimension

ship_master.
In step 2018, the notch rule is checked. This rule requires

that a 'notch' in an island have at least a specified minimum
width. Framed in tenns of corners, the rule requires that two
adj acent concave corners be at least a specified distance apart.
This rule need be checked for a horizontally-adjacent corner
only of the horizontally-adjacent corner is concave, and need
be checked for a vertically-adjacent corner only of the verti-
cally-adjacent corner is concave. For example, in the illustra­
tion of FIG. 11B, only the horizontally-adjacent corner need
be checked for violation of the notch rule. The notch rule can
be tested by subtracting the x-position of the current corner
(ori_x) from the x-position of the nearest vertical facing edge,
walking horizontally from corner, away from the shape,

US 8,453,103 B2
35

which is already available in the current comer data structure
as spacejay_x. The absolute value of the difference is then
compared to the minimum notch width value in the relation­
ship_master. For a notch formed with a vertically-adjacent
concave comer, the y-position of the current comer (ori_y) is
subtracted from the y-positionofthe nearest horizontal facing
edge, walking vertically from the current comer, away from
the shape, which is already available in the current comer data
structure as spacejay _yo The absolute value of the difference
is then compared to the minimum notch width value in the 10

relationship_master.
If in step 2014, it is determined that the current comer is

convex, then in step 2020 the convex comer edge length rule

36
that can be checked here include the minimum island area
rule, the minimum hole area rule, minimum common run
dependent separation against other islands in the same layer,
and minimum common run dependent separation against
islands in other layers. In an embodiment, these are all
checked within a single traversal of island_map, where the
values for all required topological relationships in the layout
region have already been populated. For example, the area of
each island in island_map has already been populated during
the horizontal scan. The step of checking the minimum island
area rule, therefore, is accomplished simply by comparing the
stored island area for the current island with the minimum
area value in the relationship master. Note that in an embodi­
ment, during the horizontal scan, accumulation of island area is checked. This rule requires that at least one of the two

adjacent edges forming a convex comer have at least a mini­
mum length. This test can be performed using the same values
from the comer data structure as used in step 2012 (ori_x,
tacx, ori-y and tar-y). The lengths determined for the two
edges are compared to the minimum convex comer edge
length value in the relationship_master.

15 is aborted once the accumulated area exceeds the worst case
minimum required in the relationship master. The stored area
values will still be determined in this step 1714 to satisfY the
minimum island area rule.

Other rules, such as via-based rules, are checked in step
20 1716.

Returning to FIG. 3, after step 322, in step 326, the system
saves the design rule bounds calculated in steps 320 and 322
to a cache.

Also after step 322, in step 324 the system reports any
design rule violations to the user or to another entity. In one
embodiment, if the current editing command did not involve
any movement of shapes, then nothing is output in this step. It
will be seen however that another iteration through steps
314-322 occurs when the user begins dragging behavior, in
which case any design rule violations can be reported. If
reported to the user, the report can take place promptly (e.g.
for real time feedback) or later (e.g. if performed as a batch
job). Where the violations are reported to the user promptly,
this enables the user to modify the layout to correct for the
design rule violations. Whereas any form of reporting can be
used, preferably the design rule violations are reported by
way of visual indications on the user's monitor, as markers on
the layout region itself. In an embodiment, near violations are
also indicated. Marker information can be anything that can
be used to render a visual indicator of the violation, but
preferably it identifies a rectangle for designating the location
of the violation within the layout region. In an embodiment,
the rectangle is shown in a size which indicates the magnitude
of the primary value of the rule being violated. This informa­
tion can be very useful as it indicates graphically how much is
needed to correct the violation. For near-violations, it can be
a ruler indicating the current spacing. For example, if the
violation is a minimum spacing violation, a rectangle might
encompass the (too-small) spacing area, or a ruler disposed

In step 2022, an end-of-line spacing rule is checked. In its
simplest form, this rule requires that at the end of a line, a
specified minimum spacing is required to the neighboring
geometry. Referring to FIG. 19D, where the line in question is
line 1926, the rule requires that for an end-of-line width 25

eolWidth less than one specified value, the end-of-line spac­
ing eolSpace must be at least another specified value. If the
current comer is convex comer 1828, then the width of the
line 1926 in the horizontal dimension is easily determined by
subtracting the x-position of the current comer (ori_x) from 30

the x-position of the last vertical edge walking horizontally
into shape, before exiting shape, which is already available in
the current comer data structure as djay _x. The spacing to
the next neighboring geometry is available in the current
comer data structure as Sjay_y. Thus the absolute value of 35

the subtraction is compared to the value for eolWidth in the
relationship_master, and if small enough to invoke the rule,
Sjay_y is then compared to the value for eolSpace in the
relationship_master. For a horizontally-oriented line, the
width of the line in the vertical dimension is determined by 40

subtracting the y-position of the current comer (ori_y) from
the y-position of the last horizontal edge walking vertically
into shape, before exiting shape, which is already available in
the current comer data structure as djay _yo The spacing to
the next neighboring geometry is available in the current 45

comer data structure as Sjay_x. Thus the absolute value of
the subtraction is compared to the value for eolWidth in the
relationship_master, and if small enough to invoke the rule,
Sjay_x is then compared to the value for eolSpace in the
relationship_master. 50 across the space might indicate actual spacing if it is larger

than the minimum. After all the desired rules are checked for the current cor­
ner, conditional design rule bounds are calculated in step
2026. The routine then returns to step 2010 to consider the
next comer in synchronized_comecmap.

A conditional slack is the slack for a general conditional
rule context. Complex design rules with multiple sub-rules,
such as for example some of the design rules checked in FIG.
20, can be handled with such a slack. Multiple groups of pairs
of edges are considered, with a conjunctive relationship of
conditions inside each group and a disjunctive relationship
among groups. A conditional slack has multiple groups of
horizontal and linear slack values, each of which is calculated
in the same way that the horizontal and vertical linear slack
values are calculated within step 320.

Returning to FIG. 17, after the comer-based rules have
been checked in steps 1710 and 1712, island-based rules are
then checked in step 1714. Example island-based design rules

All of the design rule checks output marker information for
any violation. The marker information is collected in a map
structure. In step 324, the marker information is converted to

55 visible form on the user's monitor or provided to another
entity.

As shown in FIG. 3, once design rule bounds have been
saved to cache and any markers have been output, the system
returns to step 312 to await the next editing command. Sig-

60 nificantly, since design rule bounds calculated in steps 314-
322 do not depend on the knowing the direction or distance of
the subsequent drag operation, they are performed prior to
receipt by the system of the next user command. There is no
need to await the next drag operation before performing these

65 calculations. Since knowing the design rule bounds greatly
simplifies the determination of whether the drag violates a
design rule, or what is the best DRC-clean position if it does,

US 8,453,103 B2
37

the pre-calculation of such bounds before receipt of such next
user command can enable immediate user feedback and true
real-time rapid manual editing of the layout with optimum
DRC-clean placement of geometries.

38
of those. This latter process involves adjusting the destination
point in two separate monotonic sequences. The first
sequence is X_first, and the second sequence is Y _first. Each
sequence is monotonic in the sense that no step in the
sequence backtracks either horizontally or vertically. For
example, for an adjustment toward the upper right, the X_first
sequence is to the right, then upward, then to the right, and so
on until either the destination point is reached, or both the
right and upward directions are blocked. The corresponding

10 Y _first sequence is the same, except that it begins with an
adjustment upward. At each step inside the sequence, the
destination point is adjusted by a small amount, and the four
linear slacks (Ls, Rs, Bs, Ts) are recalculated based on

Returning to step 313, if the current editing command
involves dragging selected objects, then the design rule
bounds that were pre-calculated during a previous traversal
through steps 314-322 are used to assist the placement of the
objects at the design rule boundary nearest the user's desired
destination point. Note that the current drag operation may be
just the next increment of a longer drag, in which case the
most recent traversal through steps 314-322 (and therefore
the most recent pre-calculation of design rule bounds) will
have been in response to a previous drag command rather than
the selection command just described. Either way, in step 328 15

the system determines whether the destination position of the
drag event exceeds the pre-calculated design rule bounds. If
not, then the system merely moves the editing objects to the
target position. If so, then the system adjusts the target posi­
tion to the position nearest the user's target position, but
which does not violate any of the design rules in the set of
design rules enabled for DRC-assist. Push-through is also
performed here.

Note further that the present embodiment is intended to
assist in continuous geometry changes associated with mouse
drag. In the case of sudden geometry changes associated with
the drag, which is possible for some of the user commands,
step 328 will not do anything to block them. The operation is
treated the same as push-through.

The following pseudocode describes the pertinent aspects
of step 328. The starting position of the objects selected for
editing is p1(x,y), and the user's destination or target position
is p2(x,y):

Let the pre-calculated left, right, up and down linear slacks be called Ls,
Rs, Us and Ds, respectively.
If any ofLs, Rs, Us and Ds is negative, this means there is already DRC
violation. Continue to step 314 without adjusting p2.
If p2(x) > pI (x), that means the mouse movement has a rightward vector
component. Set horizontal slack Hs~Rs. Otherwise, if p2(x) < pI (x), that
means the mouse movement has a leftward vector component. Set horizontal
slack Hs~Ls.
If p2(y) > pI (y), that means the mouse movement has an upward vector
component. Set vertical slack Vs~Us. Otherwise, if p2(y) < pI (y), that means

adjusted positions and all the corner and conditional slacks.
Whether or not step 328 results in any adjustment of the

destination position p2 as signaled by the user's drag com­
mand, the system next traverses steps 314-326 again to check
the new position against the design rules and output markers
if appropriate, and to pre-calculate, in advance of the next

20 editing command, a new set of design rule bounds based on
the new position p2 of the selected objects. The system then
returns to step 312 to await the next editing command. This
may be as simple as another slight movement of the current
editing shapes being dragged across the layout region, which

25 would result in another traversal through steps 314-326 of
FIG. 3, thus causing a change in the visual indicator as seen by
the user and yet another pre-calculation of design rule bounds
in preparation for yet another editing command. Because of
the efficiency of the design rule checking techniques and the

30 DRC assistance techniques described herein, in the embodi­
ment herein the new markings will appear nearly immediately
with each drag of the editing shapes and a movement which
exceeds a design rule bound will be immediately stopped.

the mouse movement has a downward vector component. Set vertical slack Vs=Ds.
Set L\.x ~ Ip2(x) - pl(x)1
Set L\.y ~ Ip2(y) - pl(y)1
If(L\.x - Hs >~ a push_through_threshold OR L\.y - Vs >~
push_through_threshold), this means the user has pushed through. Continue to
step 314 without adjusting p2. Objects will appear to jump to destination
position if they had been stopped and a DRC-clean position earlier in the
drag behavior. Note that push-through can be disabled by setting the
push_through_threshold to infinity.
If (L\.x <~ Hs), then no horizontal DRC bound has been reached. Do not adjust
p2(x)
Else if L\.x > Hs, then the horizontal slack distance has been exceeded.

If p2 is moving to the right, adjust p2(x) ~ p2(x) - (L\.x - Hs).
Ifp2 is moving to the left, adjust p2(x) ~ p2(x) + (L\.x - Hs).

If (L\.y <~ Vs), then no horizontal DRC bound has been reached. Do not adjust
p2(y)
Else if L\.y > Vs, then the vertical slack distance has been exceeded.

Ifp2 is moving upward, adjust p2(y) ~ p2(y) - (L\.y - Vs).
Ifp2 is moving downward, adjust p2(y) ~ p2(y) + (L\.y - Vs).

The above pseudocode blocks the user's drag operation
from exceeding any of the linear slacks, and operates by
adjusting the destination position p2 to the nearest position
that prevents any such violation. Next, the system checks the
corner and conditional slacks, based on the adjusted destina­
tion position p2, and further adjusts p2 to avoid violating any

FIG. 21A is an example visual indication of a violation of
a minimum spacing rule. In this drawing, editing rectangle
2112 has been moved too close to static rectangle 2110, and a

65 box 2114 appears indicating how much end-of-line spacing is
required by the rule. If the minimum spacing value that is
being violated is an absolute value, then the box 2114 might

US 8,453,103 B2
39

appear in one color, whereas if it is a preferred value that is
being violated, then the box 2114 might appear in another
color. A third color can be used to indicate a most preferred
value, and so on. As the user pulls the editing shape 2112 apart
from static shape 2110, the box 2114 disappears and a ruler
appears, such as ruler 2116 in FIG. 21B. Ruler 2116 indicates
the actual distance between the end of editing shape 2112 and
the nearest edge of static shape 2110, and thereby indicates
how much closer shape 2112 can be brought to shape 2110
before the minimum spacing rule will be violated.

FIG. 21C is an example visual indication of a violation of
a corner-to-corner spacing rule. In this drawing, editing rect­
angle 2112 has been moved too close to a corner of static
rectangle 2110, and a box 2118 appears indicating the viola­
tion. Again, the box 2118 can appear in either of two colors to
indicate violation of an absolute or preferred value for this
design rule. As the user pulls the editing shape 2112 apart
from static shape 2110, the box 2114 disappears and a ruler
appears, such as corner-to-corner ruler 2120 in FIG. 21D.
Ruler 2120 indicates the actual corner-to-corner distance
between the end of editing shape 2112 and the nearest edge of
static shape 2110.

FIG. 21E is an example visual indication of a violation of
a corner-to-corner minimum dimension rule. In this drawing,
a corner of editing rectangle 2112 overlaps a corner of a same
layer static rectangle 2110, but the overlap is too small to
satisfY the minimum dimension rule. A box 2122 appears
indicating the violation.

Similar visual indicators to indicate violations of other
design rules will be apparent to the reader. In addition, note
that all of the design rule checks indicated in FIGS. 21A-21E
can reference derived layers or physical layers or both. It can
be seen that the markings provide nearly immediate feedback

40
computer systems and communication links. These commu­
nication links may be wireline links, optical links, wireless
links, or any other mechanisms for communication of infor­
mation. While in one embodiment, communication network
2218 is the Internet, in other embodiments, communication
network 2218 may be any suitable computer network.

The physical hardware component of network interfaces
are sometimes referred to as network interface cards (NICs),
although they need not be in the form of cards: for instance

10 they could be in the form of integrated circuits (ICs) and
connectors fitted directly onto a motherboard, or in the form
of macrocells fabricated on a single integrated circuit chip
with other components of the computer system.

User interface input devices 2222 may include a keyboard,
15 pointing devices such as a mouse, trackball, touchpad, or

graphics tablet, a scanner, a touch screen incorporated into the
display, audio input devices such as voice recognition sys­
tems, microphones, and other types of input devices. In gen­
eral, use of the term "input device" is intended to include all

20 possible types of devices and ways to input information into
computer system 2210 or onto computer network 2218.

User interface output devices 2220 may include a display
subsystem, a printer, a fax machine, or non-visual displays
such as audio output devices. The display subsystem may

25 include a cathode ray tube (CRT), a flat-panel device such as
a liquid crystal display (LCD), a projection device, or some
other mechanism for creating a visible image. The display
subsystem produces the images illustrated in FIGS. 21A-21E,
for example. The display subsystem may also provide non-

30 visual display such as via audio output devices. In general,
use of the term "output device" is intended to include all
possible types of devices and ways to output information
from computer system 2210 to the user or to another machine

to the user as the layout is edited, thereby greatly facilitating
the manual layout effort. It should be noted that the absence of 35

any visual indication to the user also constitutes a notification

or computer system.
Storage subsystem 2224 stores the basic progranm1ing and

data constructs that provide the functionality of certain
embodiments of the present invention. For example, the vari­
ous modules implementing the functionality of certain
embodiments of the invention may be stored in storage sub­
system 2224. These software modules are generally executed
by processor subsystem 2214.

to the user that no design rule violation has been detected.
In the embodiments described herein, all the corner data

structures are completely populated before the corner-based
rules are checked. This is the most advantageous arrange- 40

ment, but some benefits of the invention can be obtained even
Memory subsystem 2226 typically includes a number of

memories including a main random access memory (RAM)
2230 for storage of instructions and data during program
execution and a read only memory (ROM) 2232 in which
fixed instructions are stored. File storage subsystem 2228
provides persistent storage for program and data files, and
may include a hard disk drive, a floppy disk drive along with
associated removable media, a CD-ROM drive, an optical

if only some (i.e. more than one; preferably more than two) of
the corner data structures are completely populated before the
corner-based rules are checked. Similarly, all island data
structures are completely populated before the island-based 45

rules are checked. Again, while this is the most advantageous
arrangement, some benefits of the invention can be obtained
even if only some (i.e. more than one; preferably more than
two) of the island data structures are completely populated
before the island-based rules are checked. 50 drive, or removable media cartridges. The databases and

modules implementing the functionality of certain embodi­
ments of the invention may be stored by file storage sub­
system 2228. The host memory 2226 contains, among other
things, computer instructions which, when executed by the

Hardware
FIG. 22 is a simplified block diagram of a computer system

2210 that can be used to implement software incorporating
aspects of the present invention. Computer system 2210
includes a processor subsystem 2214 which communicates
with a number of peripheral devices via bus subsystem 2212.
These peripheral devices may include a storage subsystem
2224, comprising a memory subsystem 2226 and a file stor­
age subsystem 2228, user interface input devices 2222, user
interface output devices 2220, and a network interface sub­
system 2216. The input and output devices allow user inter­
action with computer system 2210. Network interface sub­
system 2216 provides an interface to outside networks,
including an interface to communication network 2218, and
is coupled via communication network 2218 to correspond­
ing interface devices in other computer systems. Communi­
cation network 2218 may comprise many interconnected

55 processor subsystem 2214, cause the computer system to
operate or perform functions as described herein. As used
herein, processes and software that are said to run in or on "the
host" or "the computer system", execute on the processor
subsystem 2214 in response to computer instructions and data

60 in the host memory subsystem 2226 including any other local
or remote storage for such instructions and data.

Bus subsystem 2212 provides a mechanism for letting the
various components and subsystems of computer system
2210 communicate with each other as intended. Although bus

65 subsystem 2212 is shown schematically as a single bus, alter­
native embodiments of the bus subsystem may use multiple
busses.

US 8,453,103 B2
41

Computer system 2210 itself can be of varying types
including a personal computer, a portable computer, a work­
station, a computer terminal, a network computer, a televi­
sion, a mainframe, or any other data processing system or user
device. Due to the ever-changing nature of computers and
networks, the description of computer system 2210 depicted
in FIG. 22 is intended only as a specific example for purposes
of illustrating certain embodiments of the present invention.
In another embodiment, the invention can be implemented
using multiple computer systems, such as in a server farm. 10

Many other configurations of computer system 2210 are pos­
sible having more or less components than the computer
system depicted in FIG. 22.

42
signal, event or value inputs. If the given signal, event or value
is the same as the predecessor signal, event or value, this is
merely a degenerate case in which the given signal, event or
value is still considered to be "responsive" to the predecessor
signal, event or value. "Dependency" of a given signal, event
or value upon another signal, event or value is defined simi­
larly.

The foregoing description of preferred embodiments of the
present invention has been provided for the purposes of illus­
tration and description. It is not intended to be exhaustive or
to limit the invention to the precise forms disclosed. Obvi­
ously, many modifications and variations will be apparent to
practitioners skilled in this art. In particular, and without
limitation, any and all variations described, suggested or
incorporated by reference in the Background section of this
patent application are specifically incorporated by reference
into the description herein of embodiments of the invention.
The embodiments described herein were chosen and
described in order to best explain the principles of the inven-

20 tion and its practical application, thereby enabling others
skilled in the art to understand the invention for various

In an embodiment, the steps set forth in the flow charts and
descriptions herein are performed by a computer system hav- 15

ing a processor such as processor subsystem 2214 and a
memory such as storage subsystem 2224, under the control of
software which includes instructions which are executable by
the processor subsystem 2214 to perform the steps shown.
The software also includes data on which the processor oper­
ates. The software is stored on a computer readable medium,
which as mentioned above and as used herein, is one on which
information can be stored and read by a computer system.
Examples include a floppy disk, a hard disk drive, a RAM, a
CD, a DVD, flash memory, a USB drive, and so on. The 25

computer readable medium may store information in coded
formats that are decoded for actual use in a particular data
processing system. A single computer readable medium, as
the term is used herein, may also include more than one
physical item, such as a plurality of CD-ROMs or a plurality 30

of segments of RAM, or a combination of several different
kinds of media. When the computer readable medium storing
the software is combined with the computer system of FIG.
22, the combination is a machine which performs the steps set
forth herein. Means for performing each step consists of the 35

computer system (or only those parts of it that are needed for
the step) in combination with software modules for perform­
ing the step. The computer readable medium storing the soft­
ware is also capable of being distributed separately from the
computer system, and forms its own article of manufacture. 40

Additionally, the geometry file or files storing the layout,
the relationship master dataset, and the layout topology data­
base are themselves stored on computer readable media. Such
media can be distributable separately from the computer sys­
tem, and form their own respective articles of manufacture. 45

When combined with a computer system programmed with
software for reading, revising, and writing the geometry files,
and for design rule checking, they form yet another machine
which performs the steps set forth herein.

As used herein, the "identification" of an item of informa- 50

tion does not necessarily require the direct specification of
that item of information. Information can be "identified" in a
field by simply referring to the actual information through
one or more layers of indirection, or by identifYing one or
more items of different information which are together suffi- 55

cient to determine the actual item of information. In addition,
the term "indicate" is used herein to mean the same as "iden­
tifY".

As used herein, a given signal, event or value is "respon­
sive" to a predecessor signal, event or value if the predecessor 60

signal, event or value influenced the given signal, event or
value. If there is an intervening processing element, step or
time period, the given signal, event or value can still be
"responsive" to the predecessor signal, event or value. If the
intervening processing element or step combines more than 65

one signal, event or value, the signal output of the processing
element or step is considered "responsive" to each of the

embodiments and with various modifications as are suited to
the particular use contemplated. It is intended that the scope
of the invention be defined by the following claims and their
equivalents.

The invention claimed is:
1. A method for assisting a user editing a region of an

integrated circuit layout, the layout including a plurality of
objects,

for use by a computer system having access to a design rule
data set indicating constraint values of design rules in the
data set, the method comprising the steps of:

in response to a first user command indicating movement
of a selected set of editing objects to a destination posi­
tion in the layout, the computer system moving the edit­
ing objects to a first updated starting position in the
layout;

the computer system, in conjunction with the moving step
and prior to receipt by the computer system of any sub­
sequent user command indicating further movement of
the editing objects, pre-calculating a first bound indicat­
ing a maximum distance by which the editing objects
can be moved from the first updated starting position in
a first direction in the layout before violating any of the
design rules in the data set; and

the computer system storing the first bound and displaying
the editing objects perceptibly to the user in the first
updated starting position in the layout.

2. A method according to claim 1, further comprising the
steps of:

prior to receipt by the computer system of the first user
command, the computer system pre-calculating a prior
bound indicating a maximum distance by which the
editing objects can be moved from a prior starting posi­
tion in a second direction in the layout before any of the
design rules in the data set; and

the computer system storing the prior bound.
3. A method according to claim 2, wherein the computer

system performs the step of pre-calculating a prior bound in
response to a user command selecting the set of editing
objects from the plurality of objects.

4. A method according to claim 2, wherein the second
direction is the same as the first direction.

5. A method according to claim 1, further comprising the
steps of:

in response to a second user command indicating further
movement of the selected set of editing objects to a

US 8,453,103 B2
43

second destination position in the layout, where the sec­
ond destination position is beyond the first bound in the
first direction, the computer system moving the editing
o bj ects to a second updated starting position at which the
position of the editing objects in the first direction is no
farther in the first direction from the first updated starting
position than is indicated by the first bound; and

the computer system displaying the editing objects, per­
ceptibly to the user, in the second updated starting posi­
tion in the layout, the second updated starting position 10

differing from the second destination position indicated
by the second user command.

6. A method according to claim 5, further comprising the
steps of:

44
the third destination position in a second direction in the
layout before violating any of the design rules in the data
set; and

the computer system storing the third bound.
10. A method according to claim 1, wherein the editing

objects collectively comprise at least one editing edge, and
wherein step of the computer system pre-calculating a first
bound comprises the steps of:

the computer system iteratively considering the editing
edges oriented in a second dimension different from the
first dimension, and for each given one of the editing
edges being considered, determining a maximum dis­
tance by which the given editing edge can be moved in
the first dimension before violating any of the design
rules in the data set; and

the computer system determining the first bound in depen­
dence upon a minimum of all such maximum distances.

11. A method according to claim 10, wherein the step of the
computer system iteratively considering the editing edges
oriented in a second dimension comprises the steps of:

the computer system scanning the layout region monotoni­
cally in the second dimension so as to encounter end­
points of the editing edges to be considered.

the computer system, in conjunction with the step of the 15

computer system moving the editing objects to a second
updated starting position and prior to receipt by the
computer system of any user command, after the second
user command, which indicates further movement of the
editing objects, calculating a second bound indicating a 20

maximum distance by which the editing objects can be
moved from the second updated starting position in a
second direction in the layout before violating any of the
design rules in the data set, the second direction being
different than the first direction; and

12. A method according to claim 10 wherein the step of the
25 computer system iteratively considering the editing edges

oriented in a second dimension comprises the steps of: the computer system storing the second bound.
7. A method according to claim 5, further comprising the

steps of:
the computer system, in conjunction with the step of mov­

ing the editing objects to a first updated starting position 30

and prior to receipt by the computer system of the second
user command, pre-calculating an additional first bound
indicating a maximum distance by which the editing
objects can be moved from the first updated starting
position in the second direction in the layout before 35

violating any of the design rules in the data set; and
the computer system, in conjunction with the step of mov­

ing the editing objects to a second updated starting posi­
tion and prior to receipt by the computer system of any
user command, after the second user command, which 40

indicates further movement of the editing objects, cal­
culating an additional second bound indicating a maxi­
mum distance by which the editing objects can be moved
from the second updated starting position in the first
direction in the layout before violating any of the design 45

rules in the data set.
8. A method according to claim 5, further comprising the

steps of:

the computer system scanning the layout region monotoni-
cally in the second dimension and for each particular
position in the second dimension at which an endpoint of
an editing edge oriented in the second dimension is
encountered, the computer system considering as one of
the given edges each editing edge oriented in the second
dimension and having an endpoint at the particular posi­
tion in the second dimension.

13. A method according to claim 10 wherein the computer
system determines the minimum of all such maximum dis­
tances by, as each given maximum distance is determined in
the step of the computer system iteratively considering,
updating a single variable for the first direction with the
minimum of (a) the given maximum distance and (b) any
prior value of the single variable for the first direction.

14. A method according to claim 10, wherein the computer
system, in conjunction with the step of the computer system
moving the editing objects to a second updated starting posi­
tion and prior to receipt by the computer system of any user
command after the second user command which indicates
further movement of the editing objects, pre-calculating and
storing a second bound indicating a maximum distance by
which the editing objects can be moved from the second in response to a third user command indicating still further

movement of the selected set of editing objects to a third
destination position in the layout, where the third desti­
nation position is beyond the first bound in the first
direction and is also beyond a push-through position in
the first direction, the computer system moving the edit­
ing objects to the third destination position; and

50 updated starting position in the second direction in the layout
before violating any of the design rules in the data set, the
second direction being different than the first direction,

wherein the step of the computer system pre-calculating a
second bound comprises the steps of:

the computer system displaying the editing objects, per­
ceptibly to the user, in the third destination position in
the layout.

9. A method according to claim 8, further comprising the
steps of:

55

60

the computer system, in conjunction with the step of the
computer system moving the editing objects to the third
destination position and prior to receipt by the computer
system of any user command after the third user com­
mand which indicates further movement of the editing 65

objects, calculating a third bound indicating a maximum
distance by which the editing objects can be moved from

the computer system iteratively considering the editing
edges oriented in the first dimension, and for each par­
ticular one of the editing edges oriented in the first
dimension and being considered, determining a maxi­
mum distance by which the particular editing edge can
be moved in the second dimension before violating any
of the design rules in the data set; and

the computer system determining the second bound in
dependence upon a minimum of the maximum distances
determined for the editing edges oriented in the first
dimension.

15. A method according to claim 14, wherein the computer
system determines the minimum of the maximum distances

US 8,453,103 B2
45

determined for the editing edges oriented in the first dimen­
sion by, as each particular maximum distance is determined in
the step of the computer system iteratively considering the
editing edges oriented in the first dimension, updating a single
variable for the second direction with the minimum of (a) the
particular maximum distance and (b) any prior value of the
single variable for the second direction.

16. A system for assisting a user editing a region of an
integrated circuit layout, the layout including a plurality of
objects, comprising:

a computer system having access to a design rule data set
indicating constraint values of design rules in the data
set, the computer system further having access to com­
puter instructions and data which, when applied to the
computer system, perform the steps of:

in response to a first user command indicating movement
of a selected set of editing objects to a destination posi­
tion in the layout, moving the editing objects to a first
updated starting position in the layout;

10

15

in conjunction with the moving step and prior to receipt by 20

the computer system of any subsequent user command
indicating further movement of the editing objects, pre­
calculating a first bound indicating a maximum distance
by which the editing objects can be moved from the first
updated starting position in a first direction in the layout 25

before violating any of the design rules in the data set;
and

storing the first bound for subsequent use.
17. A system according to claim 16, wherein the computer

instructions and data, when applied to the computer system, 30

further perform the steps of:
prior to receipt by the computer system of the first user

command, pre-calculating a prior bound indicating a
maximum distance by which the editing objects can be
moved from a prior starting position in a second direc- 35

tion in the layout before any of the design rules in the
data set; and

the storing the prior bound.
18. A system according to claim 17, wherein the computer

instructions and data are such that the computer system per- 40

forms the step of pre-calculating a prior bound in response to

46
by the computer system of any user command, after the
second user command, which indicates further move­
ment of the editing objects, calculating a second bound
indicating a maximum distance by which the editing
objects can be moved from the second updated starting
position in a second direction in the layout before vio­
lating any of the design rules in the data set, the second
direction being different than the first direction; and

storing the second bound.
22. A system according to claim 20, wherein the computer

instructions and data, when applied to the computer system,
further perform the steps of:

in conjunction with the step of moving the editing objects
to a first updated starting position and prior to receipt by
the computer system of the second user command, pre­
calculating an additional first bound indicating a maxi-
mum distance by which the editing 0 bj ects can be moved
from the first updated starting position in the second
direction in the layout before violating any of the design
rules in the data set; and

in conjunction with the step of moving the editing objects
to a second updated starting position and prior to receipt
by the computer system of any user command, after the
second user command, which indicates further move­
ment of the editing objects, calculating an additional
second bound indicating a maximum distance by which
the editing objects can be moved from the second
updated starting position in the first direction in the
layout before violating any of the design rules in the data
set.

23. A system according to claim 20, wherein the computer
instructions and data, when applied to the computer system,
further perform the steps of:

in response to a third user command indicating still further
movement of the selected set of editing objects to a third
destination position in the layout, where the third desti­
nation position is beyond the first bound in the first
direction and is also beyond a push-through position in
the first direction, moving the editing objects to the third
destination position; and

displaying the editing objects, perceptibly to the user, in the
third destination position in the layout. a user command selecting the set of editing objects from the

plurality of objects.
19. A system according to claim 17, wherein the second

direction is the same as the first direction.

24. A system according to claim 20, wherein the computer
instructions and data, when applied to the computer system,

45 further perform the steps of:
20. A system according to claim 16, wherein the computer

instructions and data, when applied to the computer system,
further perform the steps of:

in response to a second user command indicating further
movement of the selected set of editing objects to a 50

second destination position in the layout, where the sec­
ond destination position is beyond the first bound in the
first direction, moving the editing objects to a second
updated starting position at which the position of the
editing objects in the first direction is no farther in the 55

first direction from the first updated starting position
than is indicated by the first bound; and

displaying the editing objects, perceptibly to the user, in the
second updated starting position in the layout, the sec­
ond updated starting position differing from the second 60

destination position indicated by the second user com­
mand.

21. A system according to claim 20, wherein the computer
instructions and data, when applied to the computer system,
further perform the steps of:

in conjunction with the step of moving the editing objects
to a second updated starting position and prior to receipt

65

in conjunction with the step of moving the editing objects
to the third destination position and prior to receipt by
the computer system of any user command after the third
user command which indicates further movement of the
editing objects, calculating a third bound indicating a
maximum distance by which the editing objects can be
moved from the third destination position in a second
direction in the layout before violating any of the design
rules in the data set; and

storing the third bound.
25. A system according to claim 16, wherein the editing

objects collectively comprise at least one editing edge, and
wherein the computer instructions and data are such that the
step of pre-calculating a first bound comprises the steps of:

iteratively considering the editing edges oriented in a sec­
ond dimension different from the first dimension, and
for each given one of the editing edges being considered,
determining a maximum distance by which the given
editing edge can be moved in the first dimension before
violating any of the design rules in the data set; and

determining the first bound in dependence upon a mini-
mum of all such maximum distances.

US 8,453,103 B2
47

26. A system according to claim 25, wherein the computer
instructions and data are such that the step of iteratively
considering the editing edges oriented in a second dimension
comprises the steps of:

scanning the layout region monotonically in the second
dimension so as to encounter endpoints of the editing
edges to be considered.

27. A system according to claim 25 wherein the computer
instructions and data are such that the step of iteratively
considering the editing edges oriented in a second dimension 10

comprises the steps of:
scanning the layout region monotonically in the second

dimension and for each particular position in the second
dimension at which an endpoint of an editing edge ori­
ented in the second dimension is encountered, consider- 15

ing as one of the given edges each editing edge oriented
in the second dimension and having an endpoint at the
particular position in the second dimension.

28. A system according to claim 25 wherein the computer
instructions and data are such that the computer system deter- 20

mines the minimum of all such maximum distances by, as
each given maximum distance is determined in the step of
iteratively considering, updating a single variable for the first
direction with the minimum of (a) the given maximum dis­
tance and (b) any prior value of the single variable for the first 25

direction.
29. A system according to claim 25, wherein the computer

instructions and data are such that in conjunction with the step
of moving the editing objects to a second updated starting
position and prior to receipt by the computer system of any 30

user command after the second user command which indi­
cates further movement of the editing objects, the computer
system pre-calculates and stores a second bound indicating a
maximum distance by which the editing objects can be moved
from the second updated starting position in the second direc- 35

tion in the layout before violating any of the design rules in the
data set, the second direction being different than the first
direction,

wherein the pre-calculation of a second bound comprises
the steps of:

iteratively considering the editing edges oriented in the first 40

dimension, and for each particular one of the editing
edges oriented in the first dimension and being consid­
ered, determining a maximum distance by which the
particular editing edge can be moved in the second
dimension before violating any of the design rules in the 45

data set; and
determining the second bound in dependence upon a mini­

mum of the maximum distances determined for the edit­
ing edges oriented in the first dimension.

30. A system according to claim 29, wherein the computer 50

instructions and data are such that the computer system deter­
mines the minimum of the maximum distances determined
for the editing edges oriented in the first dimension by, as each
particular maximum distance is determined in the step of the
computer system iteratively considering the editing edges 55

oriented in the first dimension, updating a single variable for
the second direction with the minimum of (a) the particular
maximum distance and (b) any prior value of the single vari­
able for the second direction.

31. A computer program product for assisting a user editing
a region of an integrated circuit layout, the layout including a 60

plurality of objects,
for use by a computer system having access to a design rule

data set indicating constraint values of design rules in the
data set, the computer program product comprising

a computer readable medium having stored thereon a plu- 65

rality of software code portions and data which when
executed by the computer system perform the steps of:

48
in response to a first user command indicating movement

of a selected set of editing objects to a destination posi­
tion in the layout, the computer system moving the edit­
ing objects to a first updated starting position in the
layout;

the computer system, in conjunction with the moving step
and prior to receipt by the computer system of any sub­
sequent user command indicating further movement of
the editing objects, pre-calculating a first bound indicat­
ing a maximum distance by which the editing objects
can be moved from the first updated starting position in
a first direction in the layout before violating any of the
design rules in the data set; and

the computer system storing the first bound and displaying
the editing objects perceptibly to the user in the first
updated starting position in the layout.

32. A computer program product according to claim 31,
wherein the software code portions and data when executed
by the computer system further perform the steps of:

prior to receipt by the computer system of the first user
command, the computer system pre-calculating a prior
bound indicating a maximum distance by which the
editing objects can be moved from a prior starting posi­
tion in a second direction in the layout before any of the
design rules in the data set; and

the computer system storing the prior bound.
33. A computer program product according to claim 32,

wherein the software code portions and data are such that
when executed by the computer system the computer system
performs the step of pre-calculating a prior bound in response
to a user command selecting the set of editing objects from the
plurality of objects.

34. A computer program product according to claim 32,
wherein the second direction is the same as the first direction.

35. A computer program product according to claim 31,
wherein the software code portions and data when executed
by the computer system further perform the steps of:

in response to a second user command indicating further
movement of the selected set of editing objects to a
second destination position in the layout, where the sec­
ond destination position is beyond the first bound in the
first direction, the computer system moving the editing
objects to a second updated starting position at which the
position of the editing objects in the first direction is no
farther in the first direction from the first updated starting
position than is indicated by the first bound; and

the computer system displaying the editing objects, per­
ceptibly to the user, in the second updated starting posi­
tion in the layout, the second updated starting position
differing from the second destination position indicated
by the second user command.

36. A computer program product according to claim 35,
wherein the software code portions and data when executed
by the computer system further perform the steps of:

the computer system, in conjunction with the step of the
computer system moving the editing objects to a second
updated starting position and prior to receipt by the
computer system of any user command, after the second
user command, which indicates further movement of the
editing objects, calculating a second bound indicating a
maximum distance by which the editing objects can be
moved from the second updated starting position in a
second direction in the layout before violating any of the
design rules in the data set, the second direction being
different than the first direction; and

the computer system storing the second bound.
37. A computer program product according to claim 35,

wherein the software code portions and data when executed
by the computer system further perform the steps of:

US 8,453,103 B2
49

the computer system, in conjunction with the step of mov­
ing the editing objects to a first updated starting position
and prior to receipt by the computer system of the second
user command, pre-calculating an additional first bound
in~icating a maximum distance by which the editing
obJ~~ts c~ be moved from the first updated starting
posItion m the second direction in the layout before
violating any of the design rules in the data set; and

the computer system, in conjunction with the step of mov­
ing the editing objects to a second updated starting posi- 10

tion and prior to receipt by the computer system of any
user command, after the second user command which
indicates further movement of the editing obje~ts, cal­
culatin~ an additional second bound indicating a maxi­
mum dIstance by which the editing objects can be moved
from the second updated starting position in the first 15

direction in the layout before violating any of the design
rules in the data set.

50
the computer system scanning the layout region monotoni­

cally in the second dimension so as to encounter end­
points of the editing edges to be considered.

42 . . A computer program product according to claim 40
wherem the software code portions and data are such that the
~tep of the c.omputer system iteratively considering the edit­
mg edges onented in a second dimension comprises the steps
of:

the computer system scanning the layout region monotoni­
cally in the second dimension and for each particular
position in the second dimension at which an endpoint of
an editing edge oriented in the second dimension is
encountered, the computer system considering as one of
the given edges each editing edge oriented in the second
dimension and having an endpoint at the particular posi­
tion in the second dimension.

43. A computer program product according to claim 40
wherein the software code portions and data are such that the
computer system detennines the minimum of all such maxi­
mum distances by, as each given maximum distance is deter-

38. !'c computer program product according to claim 35,
wherem the software code portions and data when executed
by the computer system further perform the steps of: 20 m!ned in th~ step ?fthe computer system iteratively consid­

enng, updatmg a smgle variable for the first direction with the
m!nimum of (a) the given maximum distance and (b) any
pnor value of the single variable for the first direction.

in response to a third user command indicating still further
movement of the selected set of editing objects to a third
destination position in the layout, where the third desti­
nation position is beyond the first bound in the first
direction and is also beyond a push-through position in 25

the first direction, the computer system moving the edit­
ing objects to the third destination position; and

the cOJ:?puter system displaying the editing objects, per­
ceptibly to the user, in the third destination position in
the layout.

39. !'c computer program product according to claim 38,
wherem the software code portions and data when executed
by the computer system further perform the steps of:

30

the computer system, in conjunction with the step of the
computer system moving the editing objects to the third
destination position and prior to receipt by the computer 35

system of any user command after the third user com­
m~nd which in~icates further movement of the editing
objects, calculatmg a third bound indicating a maximum
distance by which the editing objects can be moved from
the third destination position in a second direction in the 40

layout before violating any of the design rules in the data
set; and

the computer system storing the third bound.
40. !'c comp~~er program product according to claim 31,

w~~rem the edltmg objects collectively comprise at least one 45

edltmg edge, and wherein the software code portions and data
are such that the step of the computer system pre-calculating
a first bound comprises the steps of:

the compu!er sys.tem iteratively considering the editing
edges onented m a second dimension different from the
first dimension, and for each given one of the editing 50

edges being considered, determining a maximum dis­
tance by which the given editing edge can be moved in
the first dimension before violating any of the design
rules in the data set; and

the computer system detennining the first bound in depen- 55

dence upon a minimum of all such maximum distances.
41. !'c computer program product according to claim 40,

wherem the software code portions and data are such that the
~tep of the computer system iteratively considering the edit­
mg edges oriented in a second dimension comprises the steps 60

of:

44. !'c computer program product according to claim 40,
wherem the software code portions and data are such that
~hen ~xec~ted b~ the computer system the computer system,
m con~~nctlO~ wIth the step of the computer system moving
the edltmg objects to a second updated starting position and
prior to receipt by the computer system of any user command
after the second user command which indicates further move­
ment of the editing objects, pre-calculating and storing a
second bound indicating a maximum distance by which the
~diting .o!,jec.ts can be moved from the second updated start­
m~ posItIOn m the second direction in the layout before vio-
latmg any of the design rules in the data set, the second
direction being different than the first direction

wherein the software code portions and data 'are such that
when executed by the computer system the step of the
computer system pre-calculating a second bound com­
prises the steps of:

the computer system iteratively considering the editing
~dges oriented in the first dimension, and for each par­
ticular one of the editing edges oriented in the first
dimension and being considered, detennining a maxi­
mum dist<l?ce by which the particular editing edge can
be moved m the second dimension before violating any
of the design rules in the data set; and

the computer system detennining the second bound in
dependence upon a minimum of the maximum distances
determined for the editing edges oriented in the first
dimension.

45. !'c computer program product according to claim 44,
wherem the software code portions and data are such that
when e:cecuted by.t~e computer system the computer system
determmes the mlmmum of the maximum distances deter­
mined for the editing edges oriented in the first dimension by,
as each particular maximum distance is detennined in the step
of the computer system iteratively considering the editing
edges oriented in the first dimension, updating a single vari­
able. for the se.cond di~ection with the minimum of (a) the
p.artlcular .maxlmum dIstance and (b) any prior value of the
smgle vanable for the second direction.

* * * * *

