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l 

UPDATE DERIVED LAYER INFORMATION FOR EACH /1415 
DERIVED LAYER HAVING AN EDGE INTERSECTING 

CURRENT SCAN LINE 

\ LOOP THROUGH X_POSITIONS, L TO R, AT WH ICH ONE OR MORE PHYS ICAL VERTICAL > 
EDGES INTERSECT CURRENT HORIZONTAL SCAN LINE. CALL THE GROUP OF EDGES 

INTERSECTING CURRENT HORIZONTAL SCAN LINE AT CURRENT X_POSITION AN "EDGE 
GROUP" 

2612 • f"' 
COLLECT ALL THE "RELATED" LAYERS RELATED TO ANY OF THE I ( DONE 

PHYSICAL VERTICAL EDGES IN CURRENT EDGE GROUP 2628 J 
2614~ • AT CURRENT X_POSITION ON CURRENT HORIZONTAL SCAN LINE, IN related_edge_status 

MAP, SET THE BOOLEAN STATUS FOR EACH SUCH RELATED PHYSICAL LAYER 

2616~ • COLLECT ALL DERIVED LAYERS DERIVED ULTIMATELY FROM THE PHYSICAL LAYERS 
CONTAINING ANY OF THE EDGES IN CURRENT EDGE GROUP. SORT MONOTONICALLY 

BY DERIVATION RANK 

2618 • ,., 
LOOP THROUGH SUCH DERIVED LAYERS ....... 

2620~ • USE DERIVATION OPERATOR FOR CURRENT DERIVED LAYER TO DERIVE BOOLEAN 
STATUS VECTOR AS A FUNCTION OF BOOLEAN STATUS OF PARENT LAYER(S) 

2622~ ~ 
INSERT BOOLEAN STATUS VECTOR FOR CURRENT DERIVED LAYER AT CURRENT 

X_POSITION ON CURRENT HORIZONTAL SCANLlNE, INTO m_derived_edge_status MAP IN 
EDGE OBJECT FOR 1ST PHYSICAL EDGE OF CURRENT EDGE GROUP 

~ 
2624 ALSO INSERT INTO related_edge_status MAP FOR CURRENT DERIVED I 

LAYER, AT CURRENT X_POSITION ON CURRENT HORIZONTAL SCAN LINE 

~ 
LOOP DONE? 

2626 

) 
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REAL TIME DRC ASSISTANCE FOR 
MANUAL LAYOUT EDITING 

CROSS-REFERENCE TO OTHER 
APPLICATIONS 

This is a Continuation-in-Part of U.S. application Ser. No. 
12/960,086, filed 3 Dec. 2010 now U.S. Pat. No. 8,352,887, 

2 
Merge all same layer shapes into separate islands; 
Shrink all islands by (half the minimum width value+ 

epsilon) 
Eliminate all resulting islands of zero area; 
Grow back the resulting islands by (half the minimum 

width value+epsilon); 
Perform a NOT operation between the original merged 

islands and grown back islands; and 

entitled High Performance Design Rule Checking Technique. 
The parent application is incorporated herein by reference in 10 

its entirety. 

Draw DRC violation markers based on the shapes resulting 
from the NOT operation. 

So long as a good geometry engine is available, the con­
ventional DRC techniques are simple to code, at least for 
simple rules. They are also flexible and powerful if the geom­
etry engine has a scripting API for relevant geometry opera-

BACKGROUND 

The invention relates to electronic design automation, and 
more particularly, to methods and apparatuses for rapid 
checking of design rules in a circuit layout. 

Advancements in process technology have impacted inte­
grated circuit manufacturing in at least two key ways. First, 
scaling of device geometry achieved through sub-wavelength 
lithography has facilitated packing more devices on a chip. 
Second, different process recipes have enabled manufactur­
ing of heterogeneous devices with different threshold and 
supply voltages on the same die. A consequence of these 
improvements, however, has been an explosion in the number 
of design rules that need to be obeyed in the layout. Instead of 
simple width and spacing rules, modern fabrication technolo­
gies prescribe complex contextual rules that have to be 
obeyed for manufacturability. 

The increase in the number of rules has complicated the 
task of creating design rule clean layouts, i.e., layouts that do 
not have design rule violations. Creating design rule clean 
layouts for digital circuit designs can be facilitated by the use 
of standard cell layouts as building blocks, and placement and 
routing tools that are extended to address the design rules. 

Unfortunately, this approach usually does not work for 
analog, RF and custom circuit designs. Layouts for such 
designs are typically created manually using layout editors, 
and because of the number and complexity of the design 
rules, checking them was a laborious process. 

15 tions, and it is relatively straightforward to massively paral­
lelize the DRC process among numerous CPUs. 

On the other hand, it can be seen that checking even simple 
design rules like those above is extremely expensive compu­
tationally. Massive parallelization usually is possible only for 

20 offline checks, which typically are performed only between 
layout iterations. Even then they often can require hours to 
complete. The conventional approach also suffers from 
roughly linear growth of the total run time with respect to the 
number of rules to be checked, with multiple values for a rule 

25 counted as separate rules. This makes it very hard to reduce 
the total run time without turning off selected rules. The 
conventional approach also suffers from linear growth of run 
time for individual rule checks, with respect to the length of 
the geometry operation sequence, i.e., the complexity of the 

30 rule. The conventional approach also involves separate 
checks for Euclidean measurements, and also requires exten­
sive education and training in order to optimize the perfor­
mance of the customer scripts. 

The conventional approach becomes even more difficult 
35 when it is desired to position shapes at their minimum DRC­

clean positions without sacrificing precision, flexibility and 
productivity, especially in high altitude editing where thou­
sands of shapes may be visible, and the mouse is super sen­
sitive. The manual layout editing process could be drastically 

40 facilitated if it could enable the layout designer to work in a 
DRC-clean layout fashion in real time, at very high altitude, 
and still without interfering with normal editing processes. 

A conventional design rule check (DRC) system requires a 
powerful two-dimensional geometry engine which supports 
geometric operations such as Boolean operations like AND, 45 

OR, NOT, XOR; sizing operations like grow/shrink horizon­
tal/vertical/diagonal; other operations like merge, shift, flip, 
cut, smooth; as well as all-angle geometry for true Euclidean 
distance calculations. Individual rules are typically checked 
individually over an entire layout region. This is also true of 50 

individual rule values of same rule (e.g. a check against the 
minimum value for a rule, and another check against a pre­
ferred value for the same rule). Each check basically runs an 
independent sequence of geometry operations, and numerous 
passes through the layout region are required. 

SUMMARY 

A need therefore exists for a robust solution to the problem 
of real time manual layout editing, in a manner that assists the 
designer, also in real time, to position shapes at their mini­
mum DRC-clean positions in a layout. 

Roughly described, a system is described which enables 
interactive manual layout operations to work in a DRC clean 
fashion, in real time, and without interfering with normal 
manual editing process. The system blocks shape movements 
just before a DRC error is created, giving the user a chance to 

55 commit the shape at the minimum DRC-clean position. The 
user can also move the cursor beyond a so called "push 
through value", in which case the blocked shapes will catch 
up with the cursor, giving user the freedom to drag objects 
anywhere without extra key strokes or mouse button presses. 

For example, a conventional series of operations to check a 
minimum spacing rule in a Manhattan only layout, might 
include steps of 

Merge all same layer shapes into separate islands; 
Grow all islands by half the minimum spacing value; 
Perform an AND (intersection) operation among the 

islands; and 
Draw DRC violation markers based on the resulting shapes 

of the AND operation. 

60 The "push through value" can be adjusted manually or auto­
matically anywhere from ° to infinity, enabling very high 
altitude layout editing. 

As another example, a conventional series of operations to 65 

check a minimum width rule in a Manhattan only layout, 
might include steps of 

In an embodiment, still roughly described, the layout edit­
ing operations determine which edges of which shapes are 
moving at what speed ratios. Based on the edge information 
and the DRC rules, the system calculates and keeps track of 
the minimum of the maximum distance the edges are allowed 
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to move with the cursor without violating the specified DRC 
rules, in four linear directions (left, right, top, bottom) and all 
corner directions. In an embodiment, very little overhead is 
required to calculate these bounds. Once a next cursor desti­
nation point is known, a new DRC clean destination point is 
calculated based on the combination of linear bounds and 
corner bounds. If the next cursor destination point is more 
than the push-through distance ahead of the new DRC clean 
destination point, the next cursor destination point is fed back 
into the layout editing operations, which makes the corre­
sponding geometry updates regardless of any design rule 
violations. Otherwise, the new DRC clean destination point is 
fed back to the layout editing operations, which makes the 
corresponding geometry updates, which are guaranteed DRC 
clean. 

The above summary of the invention is provided in order to 
provide a basic understanding of some aspects of the inven­
tion. This summary is not intended to identifY key or critical 
elements of the invention or to delineate the scope of the 
invention. Its sole purpose is to present some concepts of the 
invention in a simplified form as a prelude to the more 
detailed description that is presented later. Particular aspects 
of the invention are described in the claims, specification and 
drawings. 

BRIEF DESCRIPTION OF THE DRAWINGS 

The invention will be described with respect to specific 
embodiments thereof, and reference will be made to the draw­
ings' in which: 

FIG. 1 shows a simplified representation of an illustrative 
digital integrated circuit design flow. 

FIG. 2 is a flow chart illustrating an example user experi­
ence when using an embodiment of the system as described 
herein. 

FIG. 3 is a flow chart of the overall system flow for an 
embodiment of the invention. 

FIGS. 4, 7-10, 12-18, 20 and 23-27 are flow chart details of 
the overall system flow in FIG. 3. 

FIG. 5 illustrates part of a sweep_x data structure referred 
to in FIG. 4. 

FIG. SA illustrates a simple portion of a layout. 
FIG. 6 illustrates part of a sweep_y data structure referred 

to in FIG. 4. 
FIGS. 11A and 11B illustrate simple portions of a layout, 

highlighting convex and concave corners of a layout shape, 
respectively. 

FIGS. 19A, 19B and 19C illustrate certain corner relation­
ships between layout shapes. 

FIG. 19D illustrates two layout shapes for the purpose of a 
particular design rule check. 

FIG. 19E illustrates three layout shapes together forming 
an island. 

FIGS. 21A-21E illustrate example visual indications of 
design rule violations and near-violations. 

FIG. 22 is a simplified block diagram of a computer system 
that can be used to implement software incorporating aspects 
of the present invention. 

FIGS. 28A and 28B illustrate examples of editing edges 
determined from a selection command. 

DETAILED DESCRIPTION 

The following description is presented to enable any per­
son skilled in the art to make and use the invention, and is 
provided in the context of a particular application and its 
requirements. Various modifications to the disclosed embodi-

4 
ments will be readily apparent to those skilled in the art, and 
the general principles defined herein may be applied to other 
embodiments and applications without departing from the 
spirit and scope of the present invention. Thus, the present 
invention is not intended to be limited to the embodiments 
shown, but is to be accorded the widest scope consistent with 
the principles and features disclosed herein. 
Overall Design Process Flow 

FIG. 1 shows a simplified representation of an illustrative 
10 digital integrated circuit design flow. At a high level, the 

process starts with the product idea (step 100) and is realized 
in an EDA (Electronic Design Automation) software design 
process (step 110). When the design is finalized, it can be 
taped-out (step 127). At some point after tape out, the fabri-

15 cation process (step 150) and packaging and assembly pro­
cesses (step 160) occur resulting, ultimately, in finished inte­
grated circuit chips (result 170). 

The EDA software design process (step 110) is itself com­
posed of a number of steps 112-130, shown in linear fashion 

20 for simplicity. In an actual integrated circuit design process, 
the particular design might have to go back through steps until 
certain tests are passed. Similarly, in any actual design pro­
cess, these steps may occur in different orders and combina­
tions. This description is therefore provided by way of context 

25 and general explanation rather than as a specific, or recom­
mended, design flow for a particular integrated circuit. 

A brief description of the component steps of the EDA 
software design process (step 110) will now be provided. 

System design (step 112): The designers describe the func-
30 tionality that they want to implement, they can perform what­

if plauning to refine functionality, check costs, etc. Hardware­
software architecture partitioning can occur at this stage. 
Example EDA software products from Synopsys, Inc. that 
can be used at this step include Model Architect, Saber, Sys-

35 tem Studio, and DesignWare® products. 
Logic design and functional verification (step 114): At this 

stage, the VHDL or Verilog code for modules in the system is 
written and the design is checked for functional accuracy. 
More specifically, the design is checked to ensure that it 

40 produces correct outputs in response to particular input 
stimuli. Example EDA software products from Synopsys, 
Inc. that can be used at this step include VCS, VERA, Design­
Ware®, Magellan, Formality, ESP and LEDA products. 

Synthesis and design for test (step 116): Here, the VHDLI 
45 Verilog is translated to a netlist. The netlist can be optimized 

for the target technology. Additionally, the design and imple­
mentation of tests to permit checking of the finished chip 
occurs. Example EDA software products from Synopsys, Inc. 
that can be used at this step include Design Compiler®, 

50 Physical Compiler, DFT Compiler, Power Compiler, FPGA 
Compiler, TetraMAX, and Design Ware® products. 

Netlist verification (step 118): At this step, the netlist is 
checked for compliance with timing constraints and for cor­
respondence with the VHDLNerilog source code. Example 

55 EDA software products from Synopsys, Inc. that can be used 
at this step include Formality, Prime Time, and VCS products. 

Design planning (step 120): Here, an overall floor plan for 
the chip is constructed and analyzed for timing and top-level 
routing. Example EDA software products from Synopsys, 

60 Inc. that can be used at this step include Astro and Custom 
Designer products. 

Physical implementation (step 122): The placement (posi­
tioning of circuit elements) and routing (connection of the 
same) occurs at this step. Example EDA software products 

65 from Synopsys, Inc. that can be used at this step include the 
Astro, IC Compiler, and Custom Designer products. Aspects 
of the invention can be performed during this step 122. 
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Analysis and extraction (step 124): At this step, the circuit 
function is verified at a transistor level, this in turn permits 
what-if refinement. Example EDA software products from 
Synopsys, Inc. that can be used at this step includeAstroRail, 
PrimeRail, PrimeTime, and Star-RCXT products. 

6 

Physical verification (step 126): At this step various check­
ing functions are performed to ensure correctness for: manu­
facturing, electrical issues, lithographic issues, and circuitry. 
Example EDA software products from Synopsys, Inc. that 
can be used at this step include the Hercules product. Aspects 10 

of the invention can be performed during this step 126 as well. 

can be said to "describe" the derived shapes, only infonnation 
at these physical comers need be calculated, since most of the 
derived layer rules are defined on comers of virtual shapes, 
and these comers all derive from at least one comer position 
of an ancestor (parent, grandparent, etc.) physical layer. The 
X,Y position of a derived comer might not coincide with a 
single physical comer, but if not, then the X position derives 
from one physical comer and the Y position derives from 
another physical comer. 

Again, this can occur as part of the scan of the layout region 
in each particular direction. There need be no limitation on the 
depth or width of the derived layer graph. Tape-out (step 127): This step provides the "tape-out" data 

to be used (after lithographic enhancements are applied if 
appropriate) for production of masks for lithographic use to 
produce finished chips. Example EDA software products 
from Synopsys, Inc. that can be used at this step include the IC 
Compiler and Custom Designer families of products. 

Resolution enhancement (step 128): This step involves 
geometric manipulations of the layout to improve manufac­
turability of the design. Example EDA software products 
from Synopsys, Inc. that can be used at this step include 
Proteus, ProteusAF, and PSMGen products. 

Other data structures are also populated during a scan, such 
as infonnation about an island (such as its area), and infor-

15 mation about vias. 
Once all the data is collected into a layout topology data­

base, design rule checking is accomplished merely by com­
paring the numeric values in the layout topology database 
with the constraint values in the design rule data set. Unlike 

20 geometry engine approaches, the approach described herein 
can be perfonned extremely quickly, often within millisec­
onds, allowing for design rule checking in real time, imme­
diately as the layout designer makes each alteration in the Mask data preparation (step 130): This step provides mask­

making-ready "tape-out" data for production of masks for 
lithographic use to produce finished chips. Example EDA 25 

software products from Synopsys, Inc. that can be used at this 
step include the CATS(R) family of products. 

layout. 
Moreover, since most if not all of the design rules can be 

framed in terms of topological relationships among edges and 
comers, including design rules defined on derived layers, it 
can be seen that the same basic information, collected during 
the scan, can be used in checking most if not all of the design 

Overview of the Technique 
While DRC layout rules are becoming more and more 

complex at smaller and smaller technology nodes, most if not 
all of them still can be decomposed into a combination of the 
relationships among the edges, the comers, and the contours 
of shapes in the layout. Relationships "among" shapes as used 
herein includes relationships about a single shape as well. In 
embodiments herein, multiple perpendicular scan lines are 
used to collect all the required data in one pass, so that the 
combinatorial checking on the data is virtually free. The pass 
speed is improved even further by stopping the scan lines only 

30 rules, including design rules defined on derived layers. In 
most embodiments, there is no need to re-scan the layout 
region in order to check different design rules; one scan is 
sufficient for collecting all the needed data. Still further, since 
the number of topological relationships that can be involved 

35 in checking design rules is itself limited, there is little if any 
additional data collection needed during the scan in order to 
check new and ever more complex rules. The time required to 
perfonn DRC increases less than linearly with increasing 

at comer positions. Note that scans in multiple directions can 
also be combined an a particular embodiment, so that the 40 

algorithm effectively jumps from comer to comer, consider­
ing each comer only once. 

numbers of rules, and tapers off to nearly zero. 
F or example, if minSpacing is supported already, then min-

SameNetSpacing andminNotchSpacing can be supported for 
free (no runtime overhead). If minArea is supported already, 
then minRectArea can be supported for free (no runtime 
overhead). If ID spacing is supported already, then ID exten-

45 sion can be supported easily regardless of whether they share 
the same "width". It can be seen that the more rules that are to 
be checked, the greater the likelihood that the next "new rule" 
can be supported for free or with a little extra overhead. 

In a Manhattan layout, all edges of all shapes are oriented 
either horizontally or vertically. In this case two scan lines 
would be used, one vertical (scanning horizontally) and one 
horizontal (scanning vertically). In each case the scan line 
stops only at endpoints that it encounters of the edges that are 
oriented perpendicularly to the scan line. The vertical scan 
line, for example, stops only at endpoints of horizontally 
oriented edges, and the horizontal scan line stops only at 50 

endpoints of vertically oriented edges. In 45 degree layouts, 
edges can also be oriented at a 45 degree angle or a 135 degree 
angle. In this case four scan lines can be used, each scanning 

Example Implementation 
FIG. 2 illustrates an example user experience when using 

an embodiment of the system as described herein. The flow 
chart of FIG. 2 occurs within step 122 (FIG. 1). 

In step 210, the user develops a preliminary layout from a 
circuit design. As used herein, the term "circuit design" refers in a direction perpendicular to a respective one of the orien­

tations in which edges are included in the layout. While 
scanning the layout region in each particular direction, "cor­
ner" data structures are populated for each comer, with what­
ever information is easily obtainable from the edge endpoints 
at the comer, and from other edges that intersect the same 
scan line. The combined information collected from all the 
scan lines as they encounter the comer, is sufficient to fully 
populate the comer data structure. 

For most of the design rules defined on derived layers, the 
shapes in the derived layers never need to be explicitly 
derived in embodiments herein. Instead, infonnation about 
their shape edges is inserted into the comer data structures for 
physical comers that they intersect. While such infonnation 

55 to the gate or transistor level design, before layout. The circuit 
design is often represented internally to the system in a netlist 
file. The layout is represented internally to the system in a 
geometry file which defines, among other things, all the 
shapes to be fonned on each mask that will be used to expose 

60 the wafer during fabrication. The geometry file can have any 
of several standard formats, such as GDSII, OASIS, CREF, 
and so on, or it can have a non-standard fonnat. The file 
describes the layout of the circuit design in the form of a mask 
definition for each of the masks to be generated. Each mask 

65 definition defines a plurality of polygons. At the time if FIG. 
2, no resolution enhancement (RET) has yet been perfonned. 
Thus the layout geometries with which the user is working in 
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FIG. 2 are in a sense idealized, since they do not yet take into 
account the imperfections oflithographic printing using opti­
cal wavelengths comparable or larger in size than the size of 
the geometries in the layout. For example, rectangles are 
rectangular, and are not yet pre-corrected for diffractive 
effects. 

In step 212, the user views the layout on a computer moni­
tor. The user typically selects a region of the layout for mag­
nified viewing, so that only that region is visible on the moni­
tor. 

In step 214, the user, using a mouse or other pointing 
device, selects a group of one or more shapes from the visible 
layout region and drags them to a different location. In step 
216, as the user drags the shapes, the system shows on the 
monitor any design rule violations in real time. In step 218, 
the user continues to drag the selected shapes until a position 
is found at which all design rule violations disappear. The user 
then performs the next desired editing step, which could be 
another drag-and-drop as in steps 214-218. 

8 
the comers of the wire. These parameters are referred to as 
parWithin and parSpace. The constraint applies when no par­
allel edges occur within the region defined by the minimum 
spacing, or one parallel edge occurs within the region defined 
by the minimum spacing, or two parallel edges. This rule has 
the spacing parameter itself, eolSpacing, as well as the fol­
lowing parameters: eolWidth, eolWithin, parWithin and 
parSpace. 

Design rules can also specifY constraints on edges in dif-
10 ferent layers. The MinDualExtension layer pair constraint, 

for example, specifies the minimum distance a shape on one 
layer must extend past a shape on a second layer. The first or 
second layer or both or neither can be derived layers. This rule 
has one parameter for extensions in the horizontal direction 

15 and another parameter for extensions in the vertical direc­
tions. This rule can also specifY additional pairs of param­
eters, keyed by wire width. Other more complex parameters 
are also available for this rule, including optional parameters 
to qualify when the rule applies. 

It can be seen how useful real time immediate design rule 20 

checking, enabled by the system herein, can be in manual 
layout or layout modification efforts. 

Design rule sets also often include area rules, such as the 
minimum area of an island or a hole in a layer. They can also 
include via rules, which specifY constraints on geometric 
dimensions in the "cut" layer (also sometimes called the via 
layer), the island in the "cover" layer above the via, and the 

Relationship Master 
Before discussing the methods used by an implementation 

of the system, it will be useful to discuss design rules in 
general, and how they can be represented within the system. 
Design rules are a set of rules that are provided by a semicon­
ductor manufacturer, which specifY minimum or maximum 
geometric relationships among the features of a layout. A 
semiconductor manufacturing process always has some vari­
ability, and the purpose of design rules is to ensure that 
sufficient margin is included in the layout geometries to mini­
mize the likelihood that the variability will result in loss of 
yield. A set of design rules is specific to a particular semicon­
ductor manufacturing process, so new rules are provided to 
designers or EDA vendors for each new process or significant 
process change. Despite their specificity to a particular pro­
cess, there are many design rules which are similar, except for 
one or more numeric values, across many processes. 

Design rules range from very simple to very complex. 
Most, however, can be framed as a set of one or more con­
straint parameters, and a set of one or more constraint values 
for the constraint parameters. (As used herein, a "parameter" 

25 island in the "cover" layer below the via. These rules, too, can 
be defined on derived layers. 

Derived layers are defined in the design rule sets. A derived 
layer can be defined by specifYing a name for the derived 
layer, a layer number, the parent layers for the particular 

30 derived layer, and an operator for calculating the derived layer 
as a function of the parent layers. In one embodiment, only 
one or two parent layers can be specified, meaning a derived 
layer must have no more than two parent layers. In another 
embodiment, more than two parent layers can be specified. 

35 The derived layer operator can in one embodiment be a 
simple Boolean logic function (And, Or, XOR, or NOT). In 
another embodiment, the derived layer operator can be a more 
complex Boolean logic expression such as 'Layer! AND 
(Layer2 OR Layer3)'. Also, the parent(s) of a derived layer 

40 need not be physical (layout) layers; one or more of them can 
be other derived layers, thereby allowing a nesting of derived 
layers. As used herein, a "parent" layer refers to an immediate 
parent layer. Grandparents and other ancestors (including 
parents) are referred to herein as "ancestor" layers. 

Ultimately, each derived layer has one or more ultimate 
ancestor which is a physical layer, though the number of 
derived layers in between the particular layer and the ancestor 
physical layer on one side of the family tree may be different 
from the number on another side of the family tree. For 

is merely a slot or container for one or more values. It is not 
itself a value.) For example, a simple design rule is minimum 45 

edge-to-edge spacing (sometimes called minSpacing). This 
rule has one parameter (edge-to-edge spacing), and one value 
which is the minimum spacing allowed by the rule between 
edges in a single layer (physical or derived) of the layout. 
Many design rules specify more than one value for a particu­ 50 example, a first derived layer Dl may be dependent upon 

physical layers PI and P2, and a second derived layer D2 may 
be dependent upon Dl and physical layer P3. Then one ances­
tor physical layer P3 of derived layer D2 has zero derived 
layers in between, whereas ancestor physical layers PI and P2 

lar parameter, such as an "absolute minimum" value and a 
"preferred minimum" value. As used herein, a "physical" 
layer is one for which geometries are specified in the geom­
etry file. 

More complex rules can have multiple parameters. An 
End-of-line spacing rule, for example, specifies the minimum 
spacing between the end of a line and its neighboring geom­
etry. Again, this rule can be defined on any layer, including a 
derived layer. The constraint applies only if the width of the 
wire is less than a specified value, eolWidth. The constraint 
applies when any geometry occurs within a region defined by 
the minimum spacing, where the region includes the distance 
from each side of the wire. This distance is referred to as a 
lateral verification distance eolWithin. The constraint applies 
only if one parallel edge is within a specified rectangular 
region from the comers of the wire, or it applies only if two 
parallel edges are within a specified rectangular region from 

55 each have one derived layer in between the layer D2 and the 
respective physical layer PI or P2. As used herein, the "rank" 
of a particular derived layer is equal to the maximum of the 
number of derived layers to and including the particular 
derived layer from each of its ancestor physical layers. The 

60 rank of a physical layer is considered to be zero, and the rank 
of a particular derived layer can be calculated as one plus the 
maximum rank of all its parent layers. 

The design rules that reference derived layers are of many 
of the same kinds as those that reference only physical layers, 

65 and are expressed in the design rule set in the same way. For 
example, they can be framed as a set of one or more constraint 
parameters and one or more constraint values for the con-
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straint parameters. They can include rules that apply to shapes 
on the particular derived layer (such as minimum edge-to­
edge spacing and end-of-line spacing), as well as rules that 
specifY constraints among different layers (such as MinDu­
alExtension). Rules that reference more than one layer are not 
restricted to referencing only physical layers or only derived 
layers; then can also reference layers of both kinds, such as 
the minimum extension of a shape in a derived layer relative 
to a shape in a physical layer. 

As a simplified example, a design rule set may include a 10 

rule that sets a minimum longitudinal spacing between tran­
sistor gate conductors. In many fabrication processes, a tran­
sistor gate conductor can be identified as the geometric inter­
section where a polysilicon line crosses a diffusion region. In 
order to establish this design rule, the design rule set may 15 

specifY a derived layer G defined as Ll AND L2, where Ll is 
layer defining the polysilicon lines, and L2 is the layer defin­
ing the diffusion implants. In this case the derivation operator 
for derived layer G is "Ll AND L2". The design rule set then 
specifies a design rule that references layer G, recites a 20 

parameter for specifYing the minimum spacing between 
shapes on layer G, and recites a value for that parameter. 

As used herein, a design rule "references" a particular 
derived layer typically by identifying the derived layer. For 
example, a minimum extension rule, which specifies the 25 

minimum distance by which a shape in a derived layer must 
extend beyond the edge of a shape in a physical layer, or 
vice-versa, references both layers that the rule constrains 
(including the derived layer) by explicitly identifYing both 
layers (including the derived layer). Also as used herein, a 30 

derivation operator "references" a particular layer by identi­
fying it as one of its parent layers. In the simplified example 
above, the derivation operator for layer G "references" both 
layers Ll and L2. 

In an embodiment of the invention, all of the values speci- 35 

fied by the design rules are provided to the system in the form 

}; 

10 
-continued 

II the worst case value for neighbor_spacing relationship on 
II tbe same layer, 0 if not applicable 
II (also called parallel spacing) 
int ffi_neighboy_spacing; 
/ / the worst case value for neighboy_ within relationship on 
II tbe same layer, 0 if not applicable 
int ffi_neighboy_ within; 
II the worst case value for neighbor_dimension relationship on 
II tbe same layer 
int ffi_neighboy_ width; 
int ill_area; / / minimum island area 
int hole_area; 
int m_common_run_length; 
std: :map<layer_number, int> 
m_common_run_clearance_ vector_map; 
/ / extensions from this layer to other layers 
std::map<layer_number, int> m_cover_layers; 
/ / extensions from other layers to this layer 
std::map<layer_number, int> m_cut_Iayers; 
/ / worst case different layer clearance, from this layer to other layers 
std: :map<layer_number, int> m_clearance_Iayers; 
I I for via rules 
std: :set<layer_nwnber> m_overlap _layers; 
std::set<layer_nwnber> m_dual_cover_layers; 

Design Rule Checking Flow with DRC Assist 
FIG. 3 is a flow chart of the overall system flow for real time 

visual layout design rule checking. The reader will recognize 
that the flow can be easily modified for use as a batch job 
instead. As with all flowcharts herein, it will be appreciated 
that many of the steps in FIG. 3 can be combined, performed 
in parallel or performed in a different sequence without 
affecting the functions achieved. In some cases a re-arrange­
ment of steps will achieve the same results only if certain 
other changes are made as well, and in other cases a re-
arrangement of steps will achieve the same results only if 
certain conditions are satisfied. However, as described in 
detail hereinafter, there are certain steps which are performed 
prior to other steps, in order to obtain benefits of the invention. 

In step 310, the relationship master data set is built from a 
set of design rules for the target fabrication process. This can 
be done manually, or in some embodiments it can be auto­
mated. It is provided to the DRC system either electronically 
or via a computer readable medium, and it is stored accessibly 
to the system on a computer readable medium. As used 

of a design rule data set. As used herein, the term "data set" 
does not imply any particular organization. For example, it 
includes maps, multimaps, trees, as well as ordinary tables, 
and other data organizations as well. The term also does not 40 

necessarily imply any unity or regularity of structure. For 
example, two or more separate data sets, when considered 
together, still constitute a "data set" as that term is used 
herein. The terms "database" and "data structure" are also 
intended to have the same meaning as "data set". 

In the present embodiment, the design rule data set is 
sometimes referred to herein as the relationship master. A 
class definition for an example relationship master, in pseudo­
C++, is as follows. In order to simplify the discussion, only 
some of the parameters are shown. A relationship_master 50 

object exists for each layer on which design rules are defined, 
including derived layers. 

45 herein, a computer readable medium is one on which infor­
mation can be stored and read by a computer system. 
Examples include a floppy disk, a hard disk drive, a RAM, a 
CD, a DVD, flash memory, a USB drive, and so on. The 

class relationship_master 
{ 

layer_nwnber ill_layer; / / layer number for this instantiation 
std::set<layer_nurnber> m_Iayers_above; II identification oflayers 

above current layer 
std::set<layer_nurnber> m_Iayers_below; II identification oflayers 

below current layer 
/ / the worst case value for spacing relationship on the 
I I same layer, 0 if tbere is no design rule asking for 
I I min_spacing relationship 
int ill_spacing; 
II the worst case value for dimension relationship on the 
II same layer, 0 if not applicable (minimum line widtb) 
int ill_dimension; 

computer readable medium may store information in coded 
formats that are decoded for actual use in a particular data 
processing system. A single computer readable medium, as 
the term is used herein, may also include more than one 
physical item, such as a plurality of CD ROMs or a plurality 
of segments of RAM, or a combination of several different 

55 kinds of media. 
In step 312, the system displays on a monitor the layout or 

layout region selected by the user. As used herein, the term 
"region" refers to a portion as viewed from above, including 
whatever layers are pertinent. As a degenerate case, the entire 

60 layout is also a "region". The user can manipulate (edit) 
objects in the layout using familiar editing commands, such 
as keyboard- or mouse-based behaviors recognized by the 
system. For example, the user can select a group of objects by 
clicking and dragging the mouse pointer to form a rectangle 

65 around them. Only objects on physical layers can be selected; 
derived layers are created only to facilitate the specification of 
certain error checking rules and are not visible to the user 
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editing a layout. The user can then move the 0 bj ects as a group 
by clicking within the rectangle and dragging it. Editing 
commands are recognized by the operating system and deliv­
ered to the application program by way of events in a well 
known manner. For example, user dragging of a group of 
objects might cause a series of events to be delivered to the 
application program, one after each movement by some num­
ber of pixels, or some number of milliseconds. The applica­
tion program receives these events and determines for itself 
what the event represents. Step 312 can include a conven- 10 

tional event loop, whereby the application program repeat­
edly checks for new events. When it receives an event, step 
312 determines that it represents a layout editing command 
such as user dragging of a group of shapes across the layout. 

In step 313, the system determines the type of the editing 15 

command. Typically for a drag operation, the dragging 
behavior is preceded by one or more predecessor behaviors 
which indicate a predecessor command which indicates what 
to do in response to the dragging behavior. One predecessor 
command, for example, can involve selection of a group of 20 

one or more editing shapes to be moved to a different position 
in response to dragging behavior. Another command can 
involve selection of an edge or a corner, so that shape(s) will 

12 
speed ratio for edge 2822, too, is 1. Edges 2824 and 2826 will 
not move during the drag, so their speed ratio is O. Other 
command are more complicated, but can still be modeled 
with edge speed ratios. For example, for a 3x4 array copy of 
a source shape, all the edges of three copies of the shape will 
remain stationary during the drag and therefore have speed 
ratio O.All the edges of the next three copies of the shape have 
a speed ratio of 1. All the edges of the next three copies have 
a speed ratio of 2, and all the edges of the final three copies 
have a speed ratio of3. It is noteworthy that all the speed ratios 
are determinable from the command itself. The direction and 
extent of all the movements, which will not be known until the 
drag behavior commences, are not necessary to determine the 
speed ratios. 

For a derived edge, its speed ratio is determined from its 
ancestor physical edge(s). If all the physical ancestor edges 
having the same speed ratio A, then the derived edge will have 
the same speed ratio A. If some of the physical ancestor edges 
having different speed ratios, that implies that the derived 
geometries are about to experience a sudden change. In this 
case the system forces the speed ratio to zero for the derived 
edge. In practice, most derived edges have only a single 
ancestor physical edge, so these kinds of sudden derived 
geometry changes are infrequent. In addition, derived layers 
are mostly defined on lower physical layers, practically all 
encapsulated inside a P-CELL, so they tend to move together. 
That is, all the ancestor physical edges tend to have the same 
speed ratios. This further decreases the likelihood of sudden 
derived geometry changes. The ancestor physical edges are 

be stretched or contracted in response to dragging behavior. 
Yet another command, known sometimes as an array copy, 25 

can involve selection of one or more shapes to be copied, with 
ever increasing spacing among the copies, in response to 
dragging behavior. At a minimum, all of the predecessor 
commands relevant to the embodiment of FIG. 3 include an 
aspect of object selection, where the object(s) can include 
shapes, edges or corners or other geometries in the layout. 

30 obtained from the 'current edge group' as described in con­
junction with steps 2422 of FIGS. 24 and 2622 of FIG. 26. In 
addition to the Boolean status vector of derived edges, the 
system also caches the derived speed ratio (a single float 

Initially in step 313, if the current editing command 
includes neither object selection nor dragging, then it is 
handled in a step 330. The operation of step 330 is not impor­
tant for an understanding of the invention. 

If the current editing command includes an object selec­
tion, then the system takes advantage of such a selection event 

35 

in order to pre-calculate design rule bounds, which indicate 
the distance that the shapes can move before a design rule is 
violated. Flowpasses to step 314, in which the system collects 40 

all the editing shapes, which are the ones that are being edited 

value) for this purpose. 
In a later step, the system will use the edge speed ratios to 

pre-calculate values indicating bounds imposed by the design 
rules on the distance in various directions that the selected 
objects can be moved. In one embodiment these design rule 
bounds are indicated by left, right, upward, downward and 
radial distances that the selected objects can be moved before 
one of the design rules will be violated. In another embodi-
ment they are represented by a distance in each direction that 
the cursor can be moved before one of the design rules will be 
violated during a drag of the selected objects. This latter 

by the user. For a click-and-drag behavior, the editing shapes 
are the ones that are being moved to a different position in the 
layout. For a shape re-sizing command, the editing shapes are 
the ones being resized. 45 representation is sometimes referred to herein as a 'slack' 

distance, and is the one used in the embodiment described 
herein. In yet another embodiment the bounds are represented 
by the final bounding position in the layout to which the 

In step 315, the system populates edge speed ratios for each 
edge of each selected shape based on the editing command. 
The edge speed ratio is the ratio of edge movement distance 
per unit of cursor movement distance, as appropriate for the 
current selection command. Typically this ratio is 0 or 1, but 50 

could be anything from negative infinity to positive infinity, 
and need not necessarily be integral in all embodiments. 
Speed ratios can be better understood by reference to the 
illustrations in FIGS. 28A and 28B (collectively FIG. 28). 
FIG. 28A illustrates two shapes 2810 and 2812. Shape 2812 55 

has been selected for a simple drag operation. For a simple 
drag, all edges of the shape move in the layout by the same 
distance that the cursor moves during the drag. Thus the speed 
ratio for all edges on shape 2812 is 1. In FIG. 28B, corner 
2814 of shape 2816 has been selected. The subsequent drag 60 

operation will either stretch or contract shape 2816. Edge 
2820, a horizontal edge, will move vertically in the layout by 
the same distance that the cursor moves vertically during the 
drag (upward or downward), so the speed ratio for edge 2820 
is 1. Similarly, edge 2822, a vertical edge, will move horizon- 65 

tally in the layout by the same distance that the cursor moves 
horizontally during the drag (leftward or rightward), so the 

selected objects can be moved before one of the design rules 
will be violated. Other ways of indicating these bounds will 
be apparent. Also, in an embodiment, the set of design rules 
enabled to impose bounds in DRC assist mode need not 
include all the design rules. Fewer than all can be included in 
such a set in a particular embodiment. 

Three types of bounds are calculated in the present 
embodiment: linear bounds (in the four linear directions), 
corner bounds and conditional bounds. Roughly described, 
the linear design rule bounds are calculated in the present 
embodiment by calculating them for each edge and succes­
sively and retaining only the most restrictive bound in each 
direction at each iteration. The corner and conditional bounds 
are applied later to further restrict the overall bounds to avoid 
violating any of the enabled design rules by any of the objects 
in the selection. Linear bounds and corner bounds need not be 
calculated immediately sequentially, and in present embodi­
ment they are not. Rather, each type of bound is calculated 
where most cost-effective to calculate it. In fact, the calcula-
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tion of vertical linear bounds is spread out during the hori­
zontal scan to populate the comer data structures, and the 
calculation of horizontal linear bounds is spread out during 
the vertical scan to populate the comer data structures. Simi­
larly, calculation of comer bounds is performed during the 
scan of comers to check comer-to-comer design rules, and 
the calculation for conditional bounds is performed during 
the check of other comer-based design rules such as the 
end-of-line spacing rule. 

In step 316, the system collects all the surrounding shapes, 10 

which in a click-and-drag command, are the shapes near the 
new position of the editing shapes. Again, only real shapes, 
not those on derived layers, are included. A selection algo­
rithm is used here which errs on the side of collecting more 15 

shapes than necessary, since while inclusion of additional 
shapes could impact performance, the exclusion of relevant 
shapes will impact accuracy. One efficient way to collect 
appropriate shapes is to create a bounding box around the 
editing shapes in their new position, then extend the box in all 20 

four directions by 1.5 times the worst case minimum spacing 
or the worst case minimum inter-layer clearance, whichever 
is larger. All shapes at least partially overlapping with the 
expanded bounding box, in any layer, are then included in the 
result. A conventional range search engine can be used for this 25 

step. Geometry processing is not needed. 
In step 318, horizontal and vertical scan line trees sweep_x 

and sweep_yare built from all of the collected shapes, includ­
ing both the editing shapes and the static shapes. The hori­
zontal scan line tree sweep_x is a map of particular vertical 30 

scan lines, and will be sCamled horizontally across the 
selected layout region, from left to right. The vertical scan line 
tree sweep-y is a map of particular horizontal scan lines, and 
will be scanned vertically across the selected layout region, 35 

from bottom to top. 
FIG. 4 is a flow chart of step 318, and as can be seen, it 

includes a step 410 of building sweep_x and another step 412 
of building sweep-y. 

FIG. 5 illustrates pertinent parts of the sweep_x data struc- 40 

ture 510. It contains two tree data structures, called entectree 
512 and exit_tree 514. Enter-tree is a map of the vertical scan 
lines, and the vertical position on such scan lines, of the 
left-hand endpoints of the horizontal edges. ExiCtree is a map 
of the vertical scan lines, and the vertical position on such 45 

scan lines, of the right-hand endpoints of the horizontal 
edges. No additional entries are provided in the map to 
account for endpoints of edges on derived layers, because the 
great majority of the derived layer rules operate on comers of 
shapes on the derived layers whose xly positions coincide 50 

with at least one comer position of ancestor physical layers, 
and information regarding the derived edges can be stored in 
conjunction with the coincident comer position(s) on the 
ancestor physical layers. Any rules that require additional 
information are handled separately. (As used herein, the "cor- 55 

ner position", or the "location" of a comer, refers to the (x,y) 
location of the comer and is not specific to layer number or 
depth within the ultimate integrated circuit chip.) 

Map 516 is an expansion of exiCtree 514; entectree 512 
has the same structure and is therefore not shown in FIG. 5. It 60 

14 
vertical scan lines, the horizontal sCamling algorithm will be 
able to jump over all horizontal positions that do not contain 
any corners. 

Multimap 518 is an expansion of one of the edge_tree 
structures 520. The other edge_trees have the same structure 
and therefore are not shown in FIG. 5. Edge_tree 520 also 
comprises key-value pairs, except that as a "multimap", mul­
tiple entries are allowed having the same key. In edge_tree 
520 the keys indicate vertical positions, and all the values are 
structures of class 'edge', representing an edge having an 
endpoint on the current vertical scan line. Since this is part of 
the exiCtree 514, only those horizontal edges having right­
hand endpoints at this horizontal position are included in 
edge_tree 520. (In the entectree 512, only edges having 
left-hand endpoints at a given horizontal position are included 
in the edge_tree for the vertical scan line at the given hori-
zontal position.) A multimap is used here rather than a map, in 
order to accommodate multiple edges having a right-hand 
endpoint at the same x and y position in the layout region. 
Multiple edges are possible because some could be on differ­
ent layers in the layout, or some could even be superimposed 
on each other in a single layer. Again, these are physical edges 
only; edges located in derived layers do not have their own 
entries. In another embodiment, however, derived layer edges 
can be given their own edge entries in multimap 518. 

Block 522 is an expansion of one of the edge structures 
524. The other edges have the same structure and therefore 
are not shown in FIG. 5. Edge 524 contains information about 
a particular horizontal edge of one of the shapes in the layout 
region, and also acts as a holding area for certain information 
developed during the scan as described hereinafter. At least 
the following information is included: 

edge ID: an identifYing value for the edge; 
layer ID: an indication of the layer number on which the 

edge lies; 
edge start (x,y): the x and y coordinates of the left-hand 

endpoint of the edge; 
edge end (x,y): the x and y coordinates of the right-hand 

endpoint of the edge; 
edge against scan line? (T/F): a Boolean indicating 

whether the edge is the bottom edge of a shape (True if 
it is a bottom edge, False otherwise); 

quadrant depth vector: four slots indicating how many 
shapes overlap each other in the current layer at the 
right-hand endpoint of the edge (for exiting edges) or the 
left-hand endpoint (for entering edges) or the intersec-
tion point of the edge and the vertical scan line (for all 
other edges in the current scan line), in each of the four 
quadrants centered at that point (for an embodiment that 
supports 45 degree geometries, this is an octant depth 
vector containing eight slots); 

neighbor map: a map of neighboring edges; 
derived edge status map 526: a map of edge status at the 

current X_pos, y _pos for various derived layers. 
Block 528 is an expansion of derived edge status map 526. 

It contains information about horizontal edges in some of the 
derived layers, which edges terminate at or pass through the 
current vertical scan line at the current vertical position on 
that scan line. Each entry contains the derived layer ID, in 
association with a status vector for the edge. The status vector 
for a derived edge is similar to a quadrant depth vector (dis-
cussed later), in that it contains four values indicating status in 
the four respective quadrants centered at the current x- and 
y-position. It differs from a quadrant depth vector in that each 

comprises key-value pairs, in which all the keys indicate 
horizontal positions and all the values are structures of class 
'edge-tree', and represent vertical scan lines. A "map" is a 
standard structure which allows only one entry for each 
unique key. Thus exit_tree organizes all the vertical scan 
lines, and there is one vertical scan line for each horizontal 
position included. Note that by representing only specific 

65 entry of the vector can contain only a lora 0: a 1 indicates that 
the current derived layer does have an island in that quadrant, 
and a 0 indicates that it does not (or vice-versa). There is no 
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need to indicate the number of superimposed shapes in the 
quadrant within a derived layer, because the shapes are 
defined in a Boolean operation: in a given location a shape is 
either present or absent. 

16 
vertical positions and all the values are structures of class 
'edge-tree', and represent horizontal scan lines. Thus exiC 
tree organizes all the vertical scan lines, and since exiCtree is 
a map, there is only one horizontal scan line for each vertical 
position included. Note that by representing only specific 
horizontal scan lines, the vertical scauning algorithm, like the 
horizontal scanning algorithm, will be able to jump over all 
vertical positions that do not contain any comers. 

Multimap 618 is an expansion of one of the edge_tree 

FIG. SA illustrates the functioning of a derived layer status 
vector. The figure illustrates a vertical scan line 530 and three 
vertical positions numbered, from bottom to top, 532, 534 and 
536. A derived shape 538 has its right-hand edge aligned with 
vertical scan line 530, and its bottom and top edges located at 
vertical positions 532 and 536, respectively. As with quadrant 
depth vectors, the quadrants in a derived layer status vector 
are numbered counter-clockwise beginning in the top-right 
quadrant. The status vector at vertical position 532 is (0,1,0, 
0), indicating that the y-position 532 on the vertical scan line 
530 is the lower-right comer of a shape. Similarly, the status 
vector at vertical position 536 is (0,0,1,0), indicating that the 
y-position 536 on the vertical scan line 530 is the upper-right 
comer of a shape. The status vector at vertical position 534 is 
(0,1,1,0), indicating that the shape extends to the left and 
above and below the y-position 532 on the vertical scan line 
530. 

10 structures 620. The other edge_trees have the same structure 
and therefore are not shown in FIG. 6. Edge_tree 620 also 
comprises key-value pairs, except that as a "multimap", mul­
tiple entries are allowed having the same key. In edge_tree 
620 the keys indicate horizontal positions, and all the values 

15 are structures of class 'edge', representing an edge having an 
endpoint on the current horizontal scan line. Since this is part 
of the exiCtree 614, only those vertical edges having upper 
endpoints at this vertical position are included in edge_tree 
620. (In the entectree 612, only edges having lower end-

It can be seen that a status vector having one '1 ' and three 
'O's indicates a convex comer of the derived shape, whereas a 
status vector having one '0' and three' 1 's indicates a concave 
comer of a derived shape. A status vector of (0,0,1,1), (0,1,1, 

20 points at a given vertical position are included in the edge_ 
tree for the horizontal scan line at the given vertical position.) 
Again, these are physical edges only; edges located in derived 
layers do not have their own entries. In another embodiment, 
however, derived layer edges can be given their own edge 

25 entries in multimap 618. 
Block 622 is an expansion of one of the edge structures 

624. The other edges have the same structure and therefore 
are not shown in FIG. 6. Edge 624 contains information about 
a particular vertical edge of one of the shapes in the layout 

0), (1,1,0,0) or (1,0,0,1) indicates a non-comer edge of a 
derived shape. A status vector of (0,1,0,1) or (1,0,1,0) indi­
cates two derived shapes meeting at a common comer; a 
situation that will usually violate design rules. Note that only 
edges and comers of a derived shape appear in derived edge 
status maps. If the status vector at a particular x/y position for 

30 region, and also acts as a holding area for certain information 
developed during the scan as described hereinafter. At least 
the following information is included: a derived layer is (0,0,0,0), then this derived layer has no 

shape at that position. If it is (1,1,1,1), then the current x/y 
position is inside a derived shape. In either case, no entry is 
made for the current derived layer in the derived edge status 35 

map 526. 
It will be appreciated that each x/y position of comers on 

physical layers may be represented numerous times in the 
Sweep_x data structure. It may be represented in both Entec 
tree 512 and ExiCtree 514. It might also be represented at 40 

multiple physical layers (multiple entries in block 518 all 
having a common y_pos key). Because many of the derived 
edges at a particular x/y position can be stored in a single map 
526, there may be multiple edge data structures 522 which 
would serve as an appropriate place to store each derived edge 45 

status map 526. Different embodiments can implement dif­
ferent conventions on this point. In one embodiment, the 
status vectors for all the derived edges on a particular derived 
layer are inserted into an edge data structure for the "first" 
physical layer that is one of its physical ancestors. Preferably 50 

the "first" physical layer is defined as whichever layer is used 
to break a tie when vertical positions of edges are the same in 
the current vertical scan line. In the embodiment of FIG. 5, it 
is the physical layer with the smallest layer number. 

edge ID: an identifYing value for the edge; 
layer ID: an indication of the layer number on which the 

edge lies; 
edge start (x,y): the x and y coordinates of the lower end­

point of the edge; 
edge end (x,y): the x and y coordinates of the upper end­

point of the edge; 
edge against scan line? (T/F): a Boolean indicating 

whether the edge is the left edge of a shape (it will be 
True if it is a left edge, False otherwise); 

quadrant depth vector: four slots indicating how many 
shapes overlap each other in the current layer at the 
lower endpoint of the edge (for exiting edges) or the 
upper endpoint (for entering edges) or the intersection 
point of the edge and the horizontal scan line (for all 
other edges in the current scan line), in each of the four 
quadrants centered at that point (for an embodiment that 
supports 45 degree geometries, this is an octant depth 
vector containing eight slots); 

neighbor map: a map of neighboring edges; 
derived edge status map 626: a map of edge status at the 

current X_pos, y _pos for various derived layers. 
Block 628 is an expansion of derived edge status map 626. 

It contains information about vertical edges in some of the 
derived layers, which edges terminate at or pass through the 
current horizontal scan line at the current horizontal position 
on that scan line. Each entry contains the derived layer ID, in 

FIG. 6 illustrates pertinent parts of the sweep-y data struc- 55 

ture 610. Like sweep_x, sweep_y contains two tree data struc­
tures, called entectree 612 and exit_tree 614. In sweep_y, 
enter-tree is a map of the horizontal scan lines, and the hori­
zontal position on such scan lines, of the lower endpoints of 
the vertical edges. Exit_tree is a map of the horizontal scan 
lines, and the horizontal position on such scan lines, of the 
upper endpoints of the vertical edges. Like sweep_x, no addi­
tional entries are provided in the map to account for endpoints 

60 association with a status vector for the edge. Like for derived 
edge information stored in the Sweep_x data structure, the 
status vectors for all the vertical derived edges on a particular 
derived layer are inserted into an edge data structure 624 for 
the smallest numbered physical layer that is one of the ances-of edges on derived layers. 

Map 616 is an expansion of exiCtree 614; entectree 612 
has the same structure and is therefore not shown in FIG. 6. It 
comprises key-value pairs, in which all the keys indicate 

65 tors of the particular derived layer. 
As can be seen, sweep_x contains only horizontal edges 

(physical and derived) and sweep-y contains only vertical 
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edges (physical and derived). Thus the scan lines in each data 
structure are perpendicular to the edges that will be encoun­
tered during a traversal of the structure. In an embodiment 
supporting diagonal edges as well, two more sweep data 
structures are present as well: one containing scan lines ori­
ented parallel to one diagonal and the other containing scan 
lines oriented parallel to the other diagonal. Each data struc­
ture includes only edges oriented perpendicularly to its scan 
lines, so again, a scan line sweep of the scan lines in each 
structure will encounter only those edges oriented perpen- 10 

dicularly to the scan line. 
FIG. 7 is a flow chart detail of a method 410 for building the 

horizontal scan line tree sweep_x. In step 710, a list is formed 
of all the horizontal edges of all shapes in the selected region, 
including editing shapes. Only shapes on physical layers are 15 

considered in FIG. 7; derived layer information is not yet 
inserted. In step 712, the list is sorted by the horizontal posi­
tion of all the left-hand endpoints of the edges. There may be 
multiple edges whose left-hand endpoints have the same hori­
zontal position, and these would be grouped together in the 20 

sort. 
In step 714, entectree is created for sweep_x. This is 

accomplished by, at each unique horizontal position repre­
sented in the sorted list (step 716), creating a scan line mul­
timap (of class 'edge_tree') for a vertical scan line at that 25 

horizontal position (step 718). In step 720, the scan line 
multimap at that horizontal position is populated with all the 
edges (structures of class 'edge') in the list having left-hand 
endpoints at the current horizontal position. 

After entectree has been created and populated for 30 

sweep_x, the list from step 710 is re-sorted by horizontal 
position of all the right-hand endpoints of the edges. Again, 
there may be multiple edges whose right-hand endpoints have 
the same horizontal position. In step 724, exiCtree is created 
for sweep_x. Similarly to the creation of entectree, this is 35 

accomplished by, at each unique horizontal position repre­
sented in the sorted list (step 726), creating a scan line mul­
timap (of class 'edge_tree') for a vertical scan line at that 
horizontal position (step 718). In step 720, the scan line 
multimap at that horizontal position is populated with all the 40 

edges (structures of class' edge') in the list having right-hand 
endpoints at the current horizontal position. 

FIG. 8 is a flow chart detail of a method 412 for building the 
horizontal scan line tree sweep_yo In step 810, a list is formed 

18 
line multimap at that vertical position is populated with all the 
edges (structures of class 'edge') in the list having upper 
endpoints at the current vertical position. 

Returning now to FIG. 3, after the horizontal and vertical 
scan line trees have been built (step 318), all of the required 
topographical relationships among the shapes in the layout 
region are now extracted (step 320). The linear design rule 
bounds are calculated during this step as well. 

FIG. 9 is a flow chart of step 320, and as can be seen, it 
includes a step 910 of scarming the horizontal scan tree 
sweep_x and another step 912 of scanning the vertical scan 
tree sweep-y. Vertical linear design rule bounds for DRC 
assist are calculated during step 910, and horizontal linear 
design rule bounds are calculated during step 912. Note that 
in another embodiment the vertical scan can be performed 
first and the horizontal scan thereafter. In yet another embodi-
ment' the two scans can be performed in an alternating man­
ner. In a particularly advantageous embodiment, since the two 
scans are independent of each other, and discover different 
items of information for populating the comer data structures, 
the two scans are performed simultaneously on two different 
processor cores. In yet another embodiment, the two scans are 
coordinated with each other so that they proceed from comer 
to comer, with all data for a given comer populated before 
jumping to the next comer. As used herein, the two scans are 
said to be performed "concurrently" with each other if they 
overlap in time in such a way that comer data is extracted 
from at least one endpoint of at least one horizontal edge 
before comer data is extracted from at least one endpoint of at 
least one vertical edge, and comer data is extracted from at 
least one endpoint of at least one vertical edge before comer 
data is extracted from at least one endpoint of at least one 
horizontal edge. 

FIG. 10 is a flow chart of step 910, for scarming the hori­
zontal scan tree sweep_x. In step 1008, the vertical scan line 
edge-tree multimap object currenCscan_line is created. In 
step 1010, current_scan_line traverses both entectree and the 
exit_tree together so that the vertical scan lines from both 
trees are considered in monotonically varying sequence, left 
to right. Since these two trees contain only those vertical scan 
lines on which an endpoint of a horizontal physical edge lies, 
intervening vertical scan lines are skipped during this scan. 
The existence of derived edges does not alter this plan since it 
is assumed for this part of the algorithm that all derived edge 
endpoints are co-located with (coincident with) at least one 
physical edge endpoint. The current vertical scan line is main-
tained in a multimap object of class edge_tree, having the 
structure of edge_tree 520 (FIG. 5). It has a current horizontal 
scauning position, and stores the information shown in block 

of all the vertical edges of all shapes in the selected region, 45 

including editing shapes. In step 812, the list is sorted by the 
vertical position of all the lower endpoints of the edges. 
Again, there may be multiple edges whose lower endpoints 
have the same vertical position, and these would be grouped 
together in the sort. 50 522 for each horizontal edge that intersects a vertical line at 

the current horizontal scarming position. In step 814, entectree is created for sweep_yo This is 
accomplished by, at each unique vertical position represented 
in the sorted list (step 812), creating a scan line multimap (of 
class 'edge_tree') for a horizontal scan line at that vertical 
position (step 818). In step 820, the scan line multimap at that 55 

vertical position is populated with all the edges (structures of 
class 'edge') in the list having lower endpoints at the current 
vertical position. 

After entectree has been created and populated for 
sweep-y, the list from step 810 is re-sorted by horizontal 60 

position of all the upper endpoints of the edges. Again, there 
may be multiple edges whose upper endpoints have the same 
vertical position. In step 824, exit_tree is created for sweep_yo 
As before, this is accomplished by, at each unique vertical 
position represented in the sorted list (step 822), creating a 65 

scan line multimap (of class 'edge_tree') for a horizontal scan 
line at that vertical position (step 818). In step 820, the scan 

In step 1012, currenCscan_line is updated by adding all 
horizontal edges having a left-hand endpoint located at the 
current horizontal scan position. In step 1014, the quadrant 
depth vector (FIG. 5) for each edge in the current vertical scan 
line multimap is updated. In order to illustrate this step, ref-
erence is made to FIGS.11A and 11B, which illustrate simple 
portions of a layout. FIG. 11A highlights a convex comer 
1114, whereas FIG.11B highlights a concave comer 1134. In 
FIG. 11A, 1110 is the current vertical scan line and 1112 is a 
particular edge being considered. Edge 1112 is represented in 
the entectree and in current_scan_line, and has a left-hand 
endpoint 1114 located on vertical scan line 1110. Edge 1112 
also forms the upper edge of a rectangle 1116. Four other 
rectangles are also shown in the figure, 1118, 1120, 1122 and 
1124. Four quadrants, centered at endpoint 1114 and num-
bered I, II, III and IV for purposes of the present discussion, 
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are also shown in FIG. 11A. Similarly, in FIG. 11B, 1130 is 
the current vertical scan line and 1132 is a particular edge 
being considered. Edge 1132 is represented in the entectree, 
and has a left-hand endpoint 1134 located on vertical scan line 
1110. Edge 1132 also forms the upper edge of a rectangle 
1136. Four other rectangles are also shown in the figure, 1138, 
1140, 1142 and 1144. The four quadrants I, II, III and 1\1, 
centered at endpoint 1134, are also shown in FIG. 11B. 

The quadrant depth vector indicates the number of shapes 
in a particular layer that border a particular edge endpoint in 
each of the four quadrants centered at that endpoint. In FIG. 
11A, quadrants I, II and III contain no shapes that border 
endpoint 1114, and quadrant IV contains one such shape 
1116. Thus the quadrant depth vector at endpoint 1114 is 
(0,0,0,1). On the other hand, inFIG.11B, quadrant II contains 
no shapes that border endpoint 1134, whereas quadrants I, III 
and IV each contain one such shape. Thus the quadrant depth 
vector at endpoint 1134 is (1,0,1,1). It can be seen that if 
exactly one quadrant depth is zero, then the point represents a 
concave corner of an island, as in FIG. 11B. If exactly two 
values are zero, and they are in adjacent quadrants, then the 
endpoint is not on a corner of an island. If the two zeros are in 
diagonally opposite quadrants, then the endpoint is a corner 
of two diagonally adjacent islands, sharing the one corner. If 
exactly three values are zero, as in FIG. 11A, then the end­
point represents a convex corner of an island, island 1116 in 
FIG. 11A. Ifnone of the values are zero, then the endpoint is 
inside an island and does not represent a corner of an island. 
The quadrant depth vector is used in later steps, as described 
hereinafter. 

In step 1014, the updating of the quadrant depth vector for 
an edge in the entectree (i.e. an edge whose left-hand end­
point lies on the current vertical scan line), involves incre­
menting the value for either quadrant I or quadrant IV by one. 
The value for quadrant I is incremented if the "edge against 
scan line?" Boolean for the edge 1112 indicates True (i.e. the 
edge is the bottom edge of a shape), or the value for quadrant 
IV is incremented if the "edge against scan line?" Boolean for 
the edge 1112 indicates False (i.e. the edge is the top edge of 
a shape). Similarly, the updating of the quadrant depth vector 
for an edge in the exiCtree (i.e. an edge whose right-hand 
endpoint lies on the current vertical scan line), involves dec­
rementing the value for either quadrant I or quadrant IV by 
one. The value for quadrant I is decremented if the "edge 
against scan line?" Boolean for the exiting edge indicates 
True (i.e. the edge is the bottom edge of a shape), or the value 
for quadrant IV is decremented if the "edge against scan 
line?" Boolean for the exiting edge indicates False (i.e. the 
edge is the top edge of a shape). It can be seen that the 
quadrant depth vector increments quantities as the vertical 
scan line encounters shapes while moving left-to-right across 
the region. It decrements quantities as the scan line moves 
past shapes. 

In step 1015, the derived layer information is populated for 
each derived layer having an edge intersecting the current 
scan line. FIG. 24 is a flow chart detail of step 1015. Referring 
to FIG. 24, in step 2410, a loop is begun to traverse through all 
the y _positions, bottom to top, at which one or more physical 
horizontal edges intersect the current vertical scan line. These 
edges are collinear with each other, in plan view. Some may 
be on different layers, and some may occupy the same layer 
and be superimposed on each other. This group of collinear 
edges intersecting the current vertical scan line at current 
y _position is sometimes referred to herein as an "edge 
group". 

In step 2412, the system collects all the "related" physical 
layers related to any of the physical horizontal edges in cur-

20 
rent edge group. As used in FIG. 24, two physical layers are 
considered "related" if they are both ancestors of a common 
derived layer. Preferably, the collections of "related" layers 
have been precompiled and cached for easy retrieval in this 
step 2412. 

In step 2414, at the current y_position on current vertical 
scan line, the Boolean status vector for each related physical 
layer is determined and written into a map object referred to 
herein as a related_edge_status map. At this step, the related_ 

10 edge_status map is populated only for physical layers. 
In step 2416, all the derived layers derived ultimately from 

physical layers containing any of the edges in current edge 
group are collected. The system sorts these monotonically 
according to their rank. Thus derived layers that involve fewer 

15 derivation steps appear earlier in this collection than those 
that involve more derivation steps. This arrangement ensures 
that during a traversal of the collection in sorted order to 
calculate derived layer information, those derived layers 
which are ancestors of a child derived layer will already have 

20 been calculated by the time the child derived layer is reached. 
In step 2418, a loop is begun through the derived layers in 

the collection, in sorted order. In step 2420, the derivation 
operator for the current derived layer is used to derive the 
Boolean status vector for the derived edge on the current 

25 derived layer at the current x/y position. The four elements of 
the Boolean status vector are calculated simply by applying 
the derivation operator for the current derived layer separately 
to each of the four elements of the Boolean status of the parent 
layer(s) referred to by the derivation operator for the current 

30 derived layer. For example, if the derivation operator for 
derived layer D1 is "PI AND P2", where PI and P2 are 
physical layers, and the Boolean status vectors for PI and P2 
at the current x/y position are (a,b,c,d) and (e,f,g,h), respec­
tively, then the Boolean status vector for the derived edge on 

35 the current derived layer at the current x/y position is calcu­
lated as (a'e, b·f, C'g, d·h). 

In step 2422, the Boolean status vector just calculated for 
current derived layer at current y _position on current vertical 
scan line is inserted into the m_derived_edge status map in 

40 the edge object 524 for the first physical edge of current edge 
group. In step 2424, the Boolean status vector just calculated 
is also inserted into the related_edge_status map for the cur­
rent derived layer, at the current y _position on the current 
vertical scan line. This prepares the related_edge_status map 

45 in case a subsequent derived layer of higher rank refers to the 
current derived layer in its derivation operator. 

In step 2426, it is determined whether there are any more 
derived layers in the collection prepared in step 2416. If so, 
then the system returns to step 2418 to derive the Boolean 

50 status vector for the next such derived layer. If not, then the 
system returns to step 2410 to address the edge group inter­
secting the current vertical scan line at the next y-position. If 
there are no more such y-positions, then step 1015 for popu­
lating the derived layer information for derived layers having 

55 an edge intersecting the current vertical scan line is complete 
(step 2428). It can be seen that in the embodiment of FIG. 24, 
no shapes are actually calculated for the derived layers. Only 
certain information about the derived edges are calculated 
and stored at positions where they intersect the specific ver-

60 tical scan lines that correspond to endpoints of horizontal 
physical edges in the layout. As used herein, any information 
about the location or shape of derived shapes is considered to 
constitute "shape information". In addition, it will be seen 
that the shape information that the system derives in step 1015 

65 about derived shapes includes, among other things, sufficient 
information to indicate the locations of the corners of the 
derived shape. 
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Returning to FIG. 10, in step 1016, each of the edges whose 
left-hand endpoint lies on the current scan line are processed. 
These are the edges represented in entectree. As they are 
processed, a "corner" data structure for the endpoint is popu­
lated. The vertical linear design rule bounds imposed by these 
particular edges are calculated here as well. The corner data 
structure, which is used for both physical and derived corners, 
stores the information illustrated in FIGS. 11A and 11B. It 

22 
-continued 

II the second point is the y position of the m_dimension_ray_y, i.e., the 
head 0 f the arrow 

}; 
}; 

p_ray->m_p2.x = m_origin_x->m_pointl.x; 
p_ray->m_p2.y = m_space_dimension_y->m_pointl.y; 
return p_ray; 

can be described in a c++ like pseudocode class definition as 
follows: 10 

Note that for derived corners, the edge* objects in the 
above class all represent physical edges. Only the position of 
the edge* are useful (borrowed) for derived edges. 

class corner 

edge* 

edge* 

II ori_x vertical edge meeting at the 
comer. Of the edge endpoints, only the x­
coordinates are populated. 
II ori_y horizontal edge meeting at the 
comer. Of the edge endpoints, only the y­
coordinates are populated. 
II tar_x nearest vertical edge, walking 
horizontally along shape contour from corner 
II tar_y nearest horizontal edge, walking 
vertically along shape contour from corner 
/ / s_ray _x nearest vertical facing edge, 
walking horizontally from corner, away from 
shape 
lis_ray _y nearest horizontal facing edge, 
walking vertically from corner, away from 
shape 

edge* lid_ray _x last vertical edge walking 
ffi_dimensioll_ray _x; horizontally into shape, before exiting 

shape 
edge* lid_ray y last horizontal edge walking 
ffi_dimensioll_ray_y; vertically into shape, before exiting shape 
std::list<comer*> m_neighbor_list; II list of nearest neighbor 

corners 
bool ffi_is_convex; II whether the corner is convex or concave 
ray* create_space_ray _xC ) { 

ray* p_ray ~ new ray(this); 
II the first point is the corner position, i.e., the tail of the arrow 

p_ray->m_pl.x = ffi_origin_x->ffi_pointl.x; 
p_ray->m_p1.y ~ m_origin_y->m_point1.y; 

II the second point is the x position of the m_space_ray_x, i.e., the head 
of the arrow 

}; 

p_ray->m_p2.x = m_space_ray _x->m_pointl.x; 
p_ray->m_p2.y ~ m_origin_y->m_point1.y; 
return p_ray; 

ray* create_space_ray_y() { 
ray* p_ray ~ new ray(this); 

II the first point is the corner position, i.e., the tail of the arrow 
p_ray->m_pl.x = m_origin_x->m_pointl.x 
p_ray->m_p1.y ~ m_origin_y->m_point1.y; 

II the second point is the y position of the m_space_ray_y, i.e., the head 
of the arrow 

}; 

p_ray->m_p2.x = m_origin_x->m_pointl.x; 
p_ray->m_p2.y ~ m_space_ray _y->m_pointl.y; 
return p_ray; 

ray* create_dim ens ion_ray _xC ) { 
ray* p_ray ~ new ray(this); 

II the first point is the corner position, i.e., the tail of the arrow 
p_ray->m_pl.x = m_origin_x->m_pointl.x; 
p_ray->m_p1.y ~ m_origin_y->m_point1.y; 

II the second point is the x position of the m_dimension_ray_x, i.e., the 
head of the arrow 

}; 

p_ray->m_p2.x = m_space_dimension_x->m_pointl.x; 
p_ray->m_p2.y ~ m_origin_y->m_point1.y; 
return p_ray; 

ray* create_dim ens ion_ray _y( ) { 
ray* p_ray ~ new ray(this); 

II the first point is the corner position, i.e., the tail of the arrow 
p_ray->m_pl.x = m_origin_x->m_pointl.x; 
p_ray->m_p1.y ~ m_origin_y->m_point1.y; 

A ray object represents essentially an arrow with a head 
point and tail point. All the tail points coincide with the 

15 current comer. For Manhattan layouts the rays are either 
horizontal or vertical, though in 45 degree layouts it can also 
have either of the two diagonal orientations. The 'ray' class is 
described in a c++ like pseudocode class definition as fol­
lows: 

20 

25 

class ray 
{ 

corner* m_parent_corner; 
bool is_s_ray; 
pointm_pl; 
pointm_p2; 

The corner data structures developed during the scan are 
30 maintained as entries in a synchronized_cornecmap struc­

ture. This structure is a map, in which the keys identifY a 
physical or derived layer number and an x and y position on 
that layer, and the values are objects of class 'comer'. Only 
edges on physical layers are handled in this step 1016; derived 

35 layer edges are processed in step 1019. 
FIG. 12 is a flow chart detail of step 1016, for processing 

the entering edges. In step 1210, each of the physical entering 
edges represented in the current vertical scan line are consid­
ered. In FIG. 11A, this will be only edge 1112. In FIG. 11B, 

40 this will be edge 1132, as well as the top and bottom edges of 
rectangle 1138. In step 1214, it is determined whether the 
left-hand endpoint of the current edge is a comer of an island. 
This is determined by reference to the current quadrant vec­
tor, as described previously. If it is not a corner of an island, 

45 then the edge is skipped. 
In step 1216, a corner data structure for the left-hand end­

point of the current edge is instantiated in synchronized_cor­
necmap if it does not already exist. The corner data structure 
might already exist in synchronized_comecmap if, for 

50 example, the corner had already been encountered because of 
a different horizontal edge on the same layer that starts at the 
same point (such as the bottom edge of rectangle 1138 in FI G. 
11B), or as part of the vertical scan in an embodiment in 
which the vertical scan precedes or operates concurrently 

55 with the horizontal scan. In step 1218, the system walks 
upward and downward along the current vertical scan line 
from the current horizontal edge, populating the available 
corner information as it is learned. In particular, referring to 
the comer data structure definition above and the illustrations 

60 in FIGS. 11A and 11B, the edges Sjay y, tary and djay y, 
as well as any others required by the design rules, are popu­
lated. Note that these values identifY the shape edges at the 
head of the respective ray. The ray itself is identified sepa-

65 

rately in the corner data structure, as previously mentioned. 
In one embodiment, all design rule checks are performed 

only after all scans are complete. However, the present 
embodiment incorporates a feature in which the system per-
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forms certain simple edge-based rule checks as part of step 
1218. For example, if the current edge is a top edge and the 
walk upwards along the current vertical scan line meets the 
bottom edge of a shape in the same layer, then Sjay y is 
populated in the comer data structure and the minimum spac­
ing rule is checked as well. This check involves comparing the 
length of Sjay_y with the minimum spacing value in the 
relationship_master. If the current edge is a top edge and the 
walk upwards along the current vertical scan line meets the 
top edge of a shape in a different layer, then the minimum 10 

extension rule is checked by comparing the distance walked 
to the minimum extension value for the appropriate layer pair 
in the relationship_master. If the current edge is a bottom 
edge and the walk upwards along the current vertical scan line 
meets the top edge of a shape in the same layer, then djay _y 15 

is populated, and also the minimum dimension rule is 
checked. This check involves comparing the value of djay_y 
with the minimum dimension value in the relationship_mas­
ter. If the current edge is a bottom edge and the walk upwards 
along the current vertical scan line meets the top edge of a 20 

shape in a different layer, then the minimum overlap rule is 
checked. Similar checks are performed during the walk 
downward from the current edge. If during the walks up and 
down the current vertical scan line, the distance walked 
exceeds the worst case limit from the relationship master, 25 

there is no design rule violation encountered and it is not 
necessary to populate further items in the comer data struc­
ture that would be encountered in the current walking direc-
tion. 

After the available comer structure information items have 30 

24 
zontal edges intersecting the current vertical scan line or any 
other vertical scan line in the vertical scan line multimap can 
still further restrict the distance that the cursor should be 
allowed to move vertically upward or downward during the 
drag. Since only the one most restrictive slack distance need 
be stored for the upward direction and one for the downward 
direction, each new calculation of a slack distance overwrites 
the previous slack distance if the new slack distance is more 
restrictive (smaller). This procedure also occurs for each 
design rule in the set of design rules enabled for DRC assist, 
including design rules setting a maximum rule value r rather 
than a minimum rule value, with always the most restrictive 
slack distance overwriting a less restrictive slack distance in 
the same direction. 

After the available comer structure information items have 
been populated, then the system returns to step 1210 to con­
sider the next entering edge in the current vertical scan line. 

FIG. 13 is a flow chart detail of step 1018 for processing 
exiting edge comers. Again, only physical edges are 
addressed in step 1018. In step 1310, each of the exiting 
physical edges represented in the current vertical scan line are 
considered. In step 1314, it is determined whether the right­
hand endpoint of the current edge is a comer of an island. This 
is determined by reference to the current quadrant vector, as 
described previously. If it is not a comer of an island, then the 
edge is skipped. 

In step 1316, a comer data structure for the right-hand 
endpoint of the current edge is instantiated in synchronized_ 
cornecmap if it does not already exist. Again, the comer data 
structure might already exist in synchronized_cornecmap if, 
for example, the comer had already been encountered 
because of a different horizontal edge on the same layer that 
ends at the same point, or as part of the vertical scan in an 
embodiment in which the vertical scan precedes or operates 

been populated, the system then calculates the vertical linear 
design rule bounds for the current entering edge in the current 
vertical scan line (step 1220). In order to best understand this 
calculation, call the current horizontal edge e1 and call the 
next lower horizontal entering edge in the current vertical 
scan line e2. Assume the current distance between them is d, 
and the minimum rule value is r. Depending on the particular 
design rule being evaluated, r could be a minimum spacing 
value, minimum width, minimum extension, minimum over­
lap, and so on. Further assume that e1 has a speed ratio 
(determined in step 315) of sl and e2 has a speed ratio of s2. 
According to the calculation, if sl =s2, then the two edges will 
remain the same distance from each other vertically during 
the drag operation. Thus no vertical linear design rule bound 

35 concurrently with the horizontal scan. In step 1318, the sys­
tem walks upward and downward along the current vertical 
scan line from the current horizontal edge, populating the 
available comer information as it is learned. In particular, 
referring to the comer data structure definition above and the 

40 illustration in FIGS. 11A and 11B, the edges Sjay-y, tary 
and djay _y, as well as any others required by the design 
rules, are populated. 

is created. If sl <s2, that means e1 will move more slowly than 

In addition, preferably but not essentially, the system also 
in step 1318 performs the same edge-based rule checks for the 

45 exiting edges as performed and described above with respect 
to step 1218 for entering edges. s2 during the drag operation. If the drag has a vertically 

downward vector component, then the spacing between the 
two edges will increase during the drag and no minimum 
distance rule will be violated. Again, therefore, no vertical 
linear design rule bound is created for downward linear move- 50 

ment. But if the drag has a vertically upward vector compo­
nent, then the spacing between the two edges will decrease 
during the drag and eventually violate the design rule. The 
maximum distance that edge e1 can be allowed to move 
upward is then given by (d-r), which corresponds to a maxi- 55 

mum allowable upward cursor movement (i.e. the linear 
upward slack distance) of d/ls2-s11-r. Thus a linear upward 
slack distance is cached for the current horizontal edge el. 

Note that vertical movement of e1 relative to the next 

After the available comer structure information items have 
been populated, the system then calculates additional vertical 
linear design rule bounds for the current exiting edge in the 
current vertical scan line (step 1320). These bounds are cal­
culated similarly as set forth above with respect to step 1220, 
and again, only the most restrictive upward and downward 
vertical slack distances are retained. 

After the available comer structure information items have 
been populated, then the system returns to step 1310 to con­
sider the next exiting edge in the current vertical scan line. 

Returning to FIG. 10, after both the entering and exiting 
physical edges having an endpoint on the current vertical scan 
line are processed, the system processes all the derived cor­
ners in the current vertical scan line (step 1019). FIG. 25 is a 
flow chart detail of step 1019. Because derived edge status 
vectors are by convention kept on the first physical edge of 
each unique position in the current scan line in the present 
embodiment, it is not useful to loop separately through edges 

higher horizontal entering edge in the current vertical scan 60 

line must be considered as well, and that might result in a 
linear downward slack distance and/or a further restriction on 
the linear upward slack distance. Subsequent calculations (in 
step 1018 for example, for exiting edges) might further 
restrict the distance that edge e1 can move upward or down­
ward, thereby further restricting the linear upward or down­
ward slack. Furthermore, slack calculations for other hori-

65 in Entectree separately from edges in ExiCtree. Instead, one 
loop is performed vertically along the current vertical scan 
line, from bottom to top, stopping at each unique vertical 
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position at which there is an edge object. Thus referring to 
FIG. 25, in step 2510, the current vertical scan line is walked 
from bottom to top, stopping at each unique vertical position 
at which an edge object exists. In step 2512, it is determined 
whether the first physical edge object at the current vertical 
position contains any derived edge status vectors. Only the 
first physical edge object need be checked at each vertical 
position, because by convention in the present embodiment, 
that is where the derived edge status map for all horizontal 
derived edges at the current x/y position are kept. If it is 10 

determined that there are no derived edges in the first physical 
edge object at the current vertical position, then the system 
returns to step 2510 to consider the next unique vertical 
position in the current vertical scan line. 

If there are derived edges, then in step 2514 the system 15 

begins another loop through all the derived edges in the 
derived edge status map in the first physical edge object at the 
current vertical position. In step 2516, it is determined 
whether the Boolean status of the current derived edge indi­
cates a valid corner. As previously explained, so long as the 20 

Boolean status is neither all zeros nor all ones, the corner is 
valid. If the current derived edge is not a corner, then the edge 
is skipped. 

If the current derived edge is a valid corner, then in step 
2518, a corner data structure for the current derived edge is 25 

instantiated in synchronized_cornecmap if it does not 
already exist. In step 2520, the system walks upward and 
downward along the current vertical scan line from the cur­
rent derived edge, populating the available derived corner 
information as it is learned. In particular, as for physical layer 30 

edges, Sjay _y, taCY and djay _y, as well as any others 
required by the design rules, are populated. Also in step 2520, 
like in step 1218 for physical layer edges, the system per­
forms certain simple edge-based rule checks such as mini­
mum spacing and minimum dimension on the current derived 35 

layer, and minimum extension and minimum overlap relative 
to other layers (physical or derived). All the same design rule 
checks are performed on the derived layers as set forth above 
with respect to step 1218. Additionally, like in step 1218, if 
during the walks up and down the current vertical scan line on 40 

the current derived layer, the distance walked exceeds the 
worst case limit from the relationship master, there is no 
design rule violation encountered and it is not necessary to 
populate further items in the corner data structure that would 

26 
horizontally, and are updated as the vertical scan line moves 
across them horizontally, corner to corner. Islands are deter­
mined and checked on both physical layers and derived lay­
ers. Pertinent parts of the 'island' data structure are described 
in a c++ like pseudocode class definition as follows: 

class island 

}; 

/ / For horizontal scan, this is the iterator in 
II current_scan_line of the bottom_most_edge of the island 
edge_tree: :iterator ill_start_iterator; 
/ / For horizontal scan, this is the iterator in 
II current_scan_line of the top_most_edge of the island 
edge_tree::iterator ill_end_iterator; 
I I the unique id of the island. 
II Islands are split or merged during the horizontal scan. 
II When an island is split, the island id is not split 
II (i.e., multiple islands will share same id), so we know 
II these islands are actually sub-islands of a larger island; 
II When multiple islands merge together, the smallest island 
II id is used as the shared id for all the islands merged together. 
int ffi_island_id; 
/ / accumulating the common run length against the same layer. 
/ / For efficiency, 2D spacing rules are checked during scan, 
II not after. In another embodiment they could be checked afterwards. 
int ffi_last_ valid_common_nlil_position; 
I I accumulating the common run length against different layers 
std: :map<layer_llumber, int> ffi_last_ valid_top_position_ vector; 
std: :map<layer_llumber, int> 
ffi_last_ valid_bottom_position_ vector; 
II accumulating the area of this island so far 
intm_area; 
II accumulating the area of the potential hole right above this island. 
int ill_hole_area; 
/ / Horizontal position that current_sean_line stopped last time 
int m_Iast_position_updated; 

Among other things, the island data structure accumulates 
the following information about a particular island during the 
process of the horizontal scan: area of the island, area of a hole 
just above the island, common run lengths against other 
islands in the same layer and islands in other layers. For 
clarity of illustration, the present description will concentrate 
primarily on the island area as an example of island-based 
rule checking. Reference will be made to FIG. 19E, which 
illustrates a sample layout region having three overlapping 
rectangles 1932, 1934 and 1936, all on a single physical layer. 

be encountered in the current walking direction. 
In step 2524, the system then calculates additional vertical 

linear design rule bounds for the current derived edge. These 
bounds are calculated similarly as set forth above with respect 

45 Because they overlap on a single layer, they form a single 
island 1930. 

to step 1220, and again, only the most restrictive upward and 
downward vertical slack distances are retained. 

After the available derived corner structure information 
items have been populated, and the vertical design rule 
bounds imposed by the current derived edge have been taken 
into account, then the system returns to step 2514 to consider 
the next derived edge in the current physical edge object. If 
there are no more derived edges in the current physical edge 
object, then the system returns to step 2510 to move to the 
next unique vertical position in the current vertical scan line. 
If there are no more vertical positions represented in the 
current vertical scan line, then step 1019 concludes (step 
2522). 

Roughly described, island area is accumulated during the 
horizontal scan by using the shape corners to divide the island 
into non-overlapping "island rectangles", the area of which 

50 are easily determined from the horizontal edges represented 
in the current vertical scan line. In the example of FIG. 19E, 
the method divides the island 1930 into five island rectangles 
bounded horizontally by the broken vertical lines 1938. Like 
for the extraction of corner data, the updating of island data 

55 takes place only at those vertical scan lines containing a 
corner of the island. Horizontal scauning does not stop any­
where between corners. A rectangle (not shown) disposed 
entirely within rectangle 1932, for example, will not bear on 
any island design rule and does not become a stopping place 

60 during the scan. A high level description of the process is 
illustrated in the flow chart of FIG. 23. 

Returning to FIG. 10, after both the physical and derived 
layer edges at the current vertical scan line are processed, the 
system populates or updates information about islands (step 
1020). Islands are represented in objects of class 'island', and 65 

maintained in a map of class 'island_map'. They are instan­
tiated as the vertical scan line encounters them as it scans 

Referring to FI G. 23, as mentioned, the islands are stored in 
a map called island_map. The keys of island_map identify the 
lower left corner of a respective island. In step 2310, each 
island having a corner lying on the current vertical scan line is 
considered. In step 2312, if the corner represents an island 
being encountered for the first time during the scan, a new 
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island data structure is instantiated in island_map (step 2314). 
The area is set to zero (step 2316), and in step 2324, the value 
of m_IasCposition updated for the new island is set equal to 
the x-position of the current vertical scan line. 

If the current island is already represented in island_map, 
then effectively a vertical slice is made through the current 
island at the current vertical scan line; and the area of the 
left-adjacent rectangle is added to the area being accumu­
lated. Accordingly, in step 2318, the height H of the left­
adjacent rectangle is calculated as the distance along the 
current vertical scan line from the bottom edge of the current 
island to the top edge of the current island. This information 
is available in current_sean_line, because at least one of the 
top and bottom edges is a comer, and the y-position of the 
comer is available as the left- or right-hand endpoint of a 
horizontal edge in the current vertical scan line. The other of 
the top and bottom edges may also be a comer, or may be an 
edge that merely intersects the current vertical scan line. In 
either case its y-position is available as well in currenCscan_ 
line. In step 2320, the width W of the left-adjacent rectangle 
is calculated as the horizontal position of the current scan line 
minus the last scan line position at which island information 
was updated, which is the value in m_Iast_position updated. 
In step 2322 the product ofH and W is added to the area value 
for the current island. 

In step 2324, as mentioned above, the value of m_Iast_po­
sition updated for the new island is set equal to the x-position 
of the current vertical scan line. The method then returns to 
step 2310 for consideration of the next island having a comer 
on the current vertical scan line. 

Once all islands having a comer on the current vertical scan 
line have been considered, then any two or more of such 
islands that are now vertically-adjacent are merged into a 
single island in step 2326 and their area values summed. In 
step 2328, any island that is now split into two, perhaps 
separated vertically by a newly encountered hole or notch, are 
split. The details of the merging and splitting operations are 
not important for an understanding of the invention. Note that 
whereas island area information is captured during the hori­
zontal scan, it is not compared to the design rule values in the 
present embodiment until later. Note also that whereas FIG. 
19E and the flow chart of FIG. 23 have been described with 
respect to an island on a physical layer, the process is the same 
for islands on a derived layer. 

Returning to FI G. 10, after the island data has been updated 
based on the current scan line, in step 1022, as a time saving 
technique, the quadrant depth vectors for each of the entering 
horizontal edges in the current vertical scan line are copied 
from the right-hand quadrants to the corresponding left-hand 
quadrants. In this manner the left-hand quadrant depth values 
can be incremented or decremented as the vertical scan line 
moves rightward, and will contain accurate values when the 
scan line reaches the right hand endpoint of the edge. No such 
updating is required for the status vectors for edges on derived 
layers. In step 1024, all the exiting edges are removed from 
the current vertical scan line. The routine then returns to step 
1010 for the next horizontal scan position. 

Returning to FIG. 9, after the horizontal scan tree has been 
scanned, the vertical scan tree is scanned (step 912). FIG. 14 
is a flow chart of step 912, for scanning the vertical scan tree 
sweep-y. 

FIG. 14 is a flow chart of step 912, for scanning the vertical 
scan tree sweep-y. In step 1408, the horizontal scan line 
edge-tree multimap object current_sean_line is created. In 
step 1410, currenCscan_Iine traverses bothentectree and the 
exit_tree together so that the horizontal scan lines from both 
trees are considered in monotonically varying sequence, bot-

28 
tom to top. Since these two trees contain only those horizontal 
scan lines on which an endpoint of a vertical edge lies, inter­
vening horizontal scan lines are skipped during this scan. 
Again, the existence of derived edges does not alter this plan 
since it is assumed for this part of the algorithm that all 
derived edge endpoints are co-located with at least one physi­
cal edge endpoint. The current horizontal scan line is main­
tained in a multimap object of class edge_tree, having the 
structure of edge_tree 620 (FIG. 6). It has a current horizontal 

10 scanning position, and stores the information shown in block 
622 for each vertical edge that intersects a horizontal line at 
the current vertical scanning position. 

In step 1412, currenCscan_Iine is updated by adding all 
vertical edges having a lower endpoint located at the current 

15 horizontal scan position. In step 1414, the quadrant depth 
vector (FIG. 6) for each edge in the current horizontal scan 
line multimap is updated. This step involves, for an edge in the 
entectree (i.e. a vertical edge whose lower endpoint lies on 
the current horizontal scan line), incrementing the value for 

20 either quadrant I or quadrant II by one. The value for quadrant 
I is incremented if the "edge against scan line?" Boolean for 
the edge 1112 indicates True (i.e. the edge is the left-hand 
edge of a shape), or the value for quadrant II is incremented if 
the "edge against scan line?" Boolean for the edge 1112 

25 indicates False (i.e. the edge is the right-hand edge of a 
shape). Similarly, the updating of the quadrant depth vector 
for an edge in the exit_tree (i.e. an edge whose upper endpoint 
lies on the current horizontal scan line), involves decrement­
ing the value for either quadrant I or quadrant II by one. The 

30 value for quadrant I is decremented if the "edge against scan 
line?" Boolean for the exiting edge indicates True (i.e. the 
edge is the left-hand edge of a shape), or the value for quad­
rant II is decremented if the "edge against scan line?" Boolean 
for the exiting edge indicates False (i.e. the edge is the right-

35 hand edge of a shape). It can be seen that the quadrant depth 
vector increments quantities as the horizontal scan line 
encounters shapes while moving upward across the region. It 
decrements quantities as the scan line moves past shapes. 

In step 1415, the derived layer information is populated for 
40 each derived layer having an edge intersecting the current 

scan line. FIG. 26 is a flow chart detail of step 1415. Referring 
to FIG. 26, in step 2610, a loop is begun to traverse through all 
the x_positions, left-to-right, at which one or more physical 
vertical edges intersect the current horizontal scan line. These 

45 edges are collinear with each other, in plan view. Some may 
be on different layers, and some may occupy the same layer 
and be superimposed on each other. Like in FIG. 24, this 
group of collinear edges intersecting the current horizontal 
scan line at current x_position is sometimes referred to herein 

50 as an "edge group". 
In step 2612, the system collects all the "related" physical 

layers related to any of the physical vertical edges in current 
edge group. Again, as used in FIG. 26, two physical layers are 
considered "related" if they are both ancestors of a common 

55 derived layer. Preferably, the collections of "related" layers 
have been precompiled and cached for easy retrieval in this 
step 2612. 

In step 2614, at the current x_position on current horizontal 
scan line, the Boolean status vector for each related physical 

60 layer is determined and written into a related_edge_status 
map. At this step, the related_edge_status map is populated 
only for physical layers. 

In step 2616, all the derived layers derived ultimately from 
physical layers containing any of the edges in current edge 

65 group are collected. The system sort these monotonically 
according to their rank, for the same reason as set forth above 
with respect to step 2416. 
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In step 2618, a loop is begun through the derived layers in 
the collection, in sorted order. In step 2620, the derivation 
operator for the current derived layer is used to derive the 
Boolean status vector for the derived edge on the current 
derived layer at the current x/y position. The four elements of 
the Boolean status vector are calculated by applying the deri­
vation operator for the current derived layer separately to each 
of the four elements of the Boolean status of the parent 
layer(s) referred to by the derivation operator for the current 
derived layer. 10 

In step 2622, the Boolean status vector just calculated for 
current derived layer at current x_position on current hori­
zontal scan line is inserted into the m_derived_edge status 
map in the edge object 524 for the first physical edge of 15 

current edge group. In step 2624, the Boolean status vector 
just calculated is also inserted into the related_edge_status 
map for the current derived layer, at the current x_position on 
the current horizontal scan line. This prepares the related_ 
edge_status map in case a subsequent derived layer of higher 20 

rank refers to the current derived layer in its derivation opera-
tor. 

30 
In an embodiment, certain edge-based rule checks are also 

performed as part of step 1518, similar to those performed in 
step 1218. For example, if the current edge is a right-hand 
edge and the walk rightward along the current horizontal scan 
line meets the left-hand edge of a shape in the same layer, then 
Sjay_x is populated in the comer data structure and the 
minimum spacing rule is checked as well. This check involves 
comparing the length of Sjay _x with the minimum spacing 
value in the relationship_master. If the current edge is a right­
hand edge and the walk rightwards along the current horizon­
tal scan line meets the right-hand edge of a shape in a different 
layer, then the minimum extension rule is checked by com­
paring the distance walked to the minimum extension value 
for the appropriate layer pair in the relationship _master. If the 
current edge is a left-hand edge and thewalkrightwards along 
the current horizontal scan line meets the right-hand edge of 
a shape in the same layer, then djay _x is populated, and also 
the minimum dimension rule is checked. This check involves 
comparing the value of djay_x with the minimum dimen­
sion value in the relationship_master. If the current edge is a 
left-hand edge and the walk rightwards along the current 
horizontal scan line meets the right-hand edge of a shape in a 
different layer, then the minimum overlap rule is checked. 
Similar checks are performed during the walk leftward from 

In step 2626, it is determined whether there are any more 
derived layers in the collection prepared in step 2616. If so, 
then the system returns to step 2618 to derive the Boolean 
status vector for the next such derived layer. If not, then the 
system returns to step 2610 to address the edge group inter­
secting the current horizontal scan line at the next x-position. 

25 the current edge. If during the walks leftward and rightward 
along the current horizontal scan line, the distance walked 
exceeds the worst case limit from the relationship master, 
there is no design rule violation encountered and it is not 
necessary to populate further items in the comer data struc-If there are no more such x-positions, then step 1415 for 

populating the derived layer information for derived layers 
having an edge intersecting the current horizontal scan line is 
complete (step 2628). It can be seen again that in the embodi­
ment of FIG. 26, no shapes are actually calculated for the 
derived layers. Only certain information about the derived 
edges are calculated and stored at positions where they inter- 35 

sect the specific horizontal scan lines that correspond to end­
points of vertical physical edges in the layout. 

30 ture that would be encountered in the current walking direc-
tion. 

After the available comer structure information items have 
been populated, the system then calculates the horizontal 
linear design rule bounds for the current entering edge in the 
current horizontal scan line (step 1520). This calculation is 
similar to that set forth above with respect to step 1220, but 

Returning to FIG. 14, in step 1416, each of the physical 
edges whose lower endpoint lies on the current scan line are 
processed. These are the edges represented in entectree. As 40 

they are processed, the "comer" data structure for the end­
point is populated in synchronized_comecmap. As men­
tioned, the relevant comer data structure may already exist 
from a previously encountered different vertical edge on the 
same layer that starts at the same point, or as part of the 45 

horizontal scan in an embodiment in which the horizontal 

will be adapted here for clarity. Call the current vertical edge 
e1 and call the next lower vertical entering edge in the current 
horizontal scan line e2. Assume the current distance between 
them is d, and the minimum rule value is r. Further assume 
that e1 has a speed ratio (determined in step 315) of sl and e2 
has a speed ratio of s2. If sl =s2, then the two edges will 
remain the same distance from each other horizontally during 
the drag operation and no horizontal linear design rule bound 
is created. If sl <s2, that means e1 will move more slowly than 
s2 during the drag operation. If the drag has a horizontally 

vertical scan precedes or operates concurrently with the ver­
tical scan. The horizontal linear design rule bounds imposed 
by these particular edges are calculated here as well. 

FIG. 15 is a flow chart detail of step 1416, for processing 
the entering edges. In step 1510, each of the entering physical 
edges represented in the current horizontal scan line are con­
sidered. In step 1514, it is determined whether the lower 
endpoint of the current edge is a comer of an island. This is 
determined by reference to the current quadrant vector, as 
described previously. If it is not a comer of an island, then the 
edge is skipped. 

In step 1516, a comer data structure for the left-hand end­
point of the current edge is instantiated in synchronized_cor­
necmap if it does not already exist. In step 1518, the system 
walks leftward and rightward along the current horizontal 
scan line from the current vertical edge, populating the avail­
able comer information as it is learned. In particular, referring 
to the comer data structure definition above and the illustra­
tions in FIGS. 11A and 11B, the edges Sjay-x, tacx and 
djay _x, as well as any others required by the design rules, 
are populated. 

leftward vector component, then the spacing between the two 
edges will increase during the drag and no minimum distance 
rule will be violated. Again, therefore, no horizontal linear 

50 design rule bound is created for leftward linear movement. 
But if the drag has a horizontally rightward vector compo­
nent, then the spacing between the two edges will decrease 
during the drag and eventually violate the design rule. The 
maximum distance that edge e1 can be allowed to move 

55 rightward is then given by (d-r), which corresponds to a 
maximum allowable rightward cursor movement (i.e. the 
right linear slack distance) of dlls2-s11-r. Thus a right linear 
slack distance is cached for the current vertical edge el. 

Again, horizontal movement will also be restricted by left 
60 and right linear slacks calculated for the same and other edges 

of the selected objects, as well as for satisfaction of other 
design rules. Since only the one most restrictive linear slack 
distances need be stored for drag vector components in each 
of the leftward and rightward directions, each new calculation 

65 of a slack distance overwrites the previous slack distance if 
the new slack distance is more restrictive (smaller). Only one 
linear slack distance in each direction remains. 
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After the available comer structure information items have 
been populated, then the system returns to step 1510 to con­
sider the next entering edge in the current horizontal scan line. 

FIG. 16 is a flow chart detail of step 1418 for processing 
exiting edge comers. Again, only physical edges are 
addressed in step 1418. In step 1610, each of the exiting edges 
represented in the current horizontal scan line are considered. 
In step 1614, it is determined whether the upper endpoint of 
the current edge is a comer of an island. This is determined by 
reference to the current quadrant vector, as described previ­
ously. If it is not a comer of an island, then the edge is skipped. 

In step 1616, a comer data structure for the upper endpoint 
of the current edge is instantiated in synchronized_comec 
map if it does not already exist. Again, the comer data struc­
ture might already exist in synchronized_comecmap. In step 
1618, the system walks leftward and rightward along the 
current horizontal scan line from the current vertical edge, 
populating the available comer information as it is learned. In 
particular, referring to the comer data structure definition 
above and the illustration in FIGS. 11A and 11B, the edges 
Sjay _x, tar_x and djay _x, as well as any others required by 
the design rules, are populated. 

In addition, preferably but not essentially, the system also 

32 
Boolean status is neither all zeros nor all ones, the comer is 
valid. If the current derived edge is not a comer, then the edge 
is skipped. 

If the current derived edge is a valid comer, then in step 
2718, a comer data structure for the current derived edge is 
instantiated in synchronized_comecmap if it does not 
already exist. In step 2720, the system walks left and right 
along the current horizontal scan line from the current derived 
edge, populating the available derived comer information as 

10 it is learned. Also in step 2720, like in step 1218 for physical 
layer edges, the system performs certain simple edge-based 
rule checks such as minimum spacing and minimum dimen­
sion on the current derived layer, and minimum extension and 
minimum overlap relative to other layers (physical or 

15 derived). All the same design rule checks are perfonned on 
the derived layers as set forth above with respect to step 1218. 
Additionally, like in step 1218, if during the walks to the left 
and right along the current horizontal scan line on the current 
derived layer, the distance walked exceeds the worst case 

20 limit from the relationship master, there is no design rule 
violation encountered and it is not necessary to populate 
further items in the comer data structure that would be 
encountered in the current walking direction. 

in step 1618 performs similar edge-based rule checks for the 
exiting edges as perfonned and described above with respect 25 

to step 1318. 

In step 2724, the system then calculates additional hori­
zontallinear design rule bounds for the current derived edge 
in the current horizontal scan line. These bounds are calcu­
lated similarly as set forth above with respect to step 1520, 
and again, only the most restrictive left and right linear slacks 
are retained. 

After the available comer structure information items have 
been populated, the system then calculates additional hori­
zontallinear design rule bounds for the current exiting edge in 
the current horizontal scan line (step 1620). These bounds are 30 

calculated similarly as set forth above with respect to step 
1520, and again, only the most restrictive left and right linear 
slacks are retained. 

After the available derived comer structure infonnation 
items have been populated and horizontal linear slacks have 
been updated, then the system returns to step 2714 to consider 
the next derived edge in the current physical edge object. If 
there are no more derived edges in the current physical edge After the available comer structure information items have 

been populated, then the system returns to step 1610 to con­
sider the next exiting edge in the current horizontal scan line. 

35 object, then the system returns to step 2710 to move to the 
next unique horizontal position in the current horizontal scan 
line. If there are no more horizontal positions represented in 
the current horizontal scan line, then step 1419 concludes 

Returning to FIG. 14, after both the entering and exiting 
physical edges having an endpoint on the current horizontal 
scan line are processed, the system processes all the derived 
comers in the current horizontal scan line (step 1419). FIG. 27 40 

is a flow chart detail of step 1419. Because derived edge status 
vectors are by convention kept on the first physical edge of 
each unique position in the current scan line in the present 
embodiment, it is not useful to loop separately through edges 

(step 2722). 
Returning to FIG. 14, after both the physical and derived 

layer edges at the current horizontal scan line are processed, 
it is not necessary to populate or update information about 
islands. This was done during the horizontal scan (step 1020 
in FIG. 10), and no additional infonnation will be determined 

45 during the vertical scan. For example, the area of an island, 
determined as a vertical scan line scans across the island 
horizontally, will not be any different than the area deter­
mined as a horizontal scan line scans across the island verti-

in Entectree separately from edges in Exit_tree. Instead, one 
loop is performed horizontally along the current horizontal 
scan line, from left to right, stopping at each unique horizontal 
position at which there is an edge object. Thus referring to 
FIG. 27, in step 2710, the current horizontal scan line is 
walked from left to right, stopping at each unique horizontal 50 

position at which an edge object exists. In step 2712, it is 
determined whether the first physical edge object at the cur­
rent horizontal position contains any derived edge status vec­
tors. Only the first physical edge object need be checked at 
each horizontal position, because by convention in the present 
embodiment, that is where the derived edge status map for all 
vertical derived edges at the current x/y position are kept. If it 

cally. 
In step 1422, as a time saving technique, the quadrant depth 

vectors for each of the entering vertical edges in the current 
horizontal scan line are copied from the upper quadrants to 
the corresponding lower quadrants. In this mauner the lower 
quadrant depth values can be incremented or decremented as 

55 the horizontal scan line moves upward, and will contain accu­
rate values when the scan line reaches the upper endpoint of 
the edge. It is not necessary to update status vectors for 
derived edges in the same mauner. In step 1424, all the exiting 
edges are removed from the current horizontal scan line. The 

is detennined that there are no derived edges in the first 
physical edge object at the current horizontal position, then 
the system returns to step 2710 to consider the next unique 
horizontal position in the current horizontal scan line. 

If there are derived edges, then in step 2714 the system 
begins another loop through all the derived edges in the 
derived edge status map in the first physical edge object at the 
current horizontal position. In step 2716, it is determined 
whether the Boolean status of the current derived edge indi­
cates a valid comer. As previously explained, so long as the 

60 routine then returns to step 1410 for the next vertical scan 
position. 

Returning to FIG. 3, after step 320, all the topographical 
relationships needed to perfonn the checks in the design rule 
set have been collected into a layout topology database. This 

65 includes all the needed relationships on both physical and 
derived layers. As mentioned, the tenn 'database' as used 
herein does not imply any unity or regularity of structure, and 
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in the present embodiment the layout topology database 
includes synchronized_cornecmap, island_map and 
via_map, and other collections of data as well. In step 322, the 
values in the layout topology database are compared to those 
in the relationship master, in order to check all the design 
rules. In one embodiment, all design rule violations are 
reported, whereas in another embodiment, only those viola­
tions involving editing shapes are reported. The corner and 
conditional design rule bounds are calculated during this step 
as well. 10 

34 
1920 is again calculated and compared to the mlmmum 
dimension rule value in relationship_master (step 1820). 

If the intersecting rays are not both dimensionjays, then in 
step 1822 it is detennined whether one is a spacejay on one 
layer, and the other is a dimensionjay on a different layer. 
Since the corner from which the spacejay extends is convex, 
and the corner from which the dimensionjay extends in 
concave, the situation is as illustrated in FIG. 19C. In this 
figure, sjay 1922 from a corner of shape 1921 intersects 
djay 1924 from a corner of shape 1923, and the two shapes 
are on different layers. In this case the distance that the shape 
on one layer extends past the edge of the shape the other layer 
is calculated in both dimensions, and compared to the min­
Extension or minDualExtension value in relationship_master 

15 (step 1824). 

FIG. 17 is a flow chart detail of step 322. These are illus­
trative examples of design rules that are checked in the 
present embodiment only after the scans across the layout 
region have been completed. The grouping of these checks as 
shown in FIG. 17 is only for convenience of the present 
description; it mayor may not correspond to any grouping in 
any particular embodiment. For purposes of the present 
description, the design rules that are checked in FIG. 17 are 
grouped as follows. Corner-to-corner rules are checked in 20 

step 1710, and other corner-based rules are checked in step 
1712. Island-based rules are checked in step 1714, and other 
rules (such as via-based rules) are checked in step 1716. 
Details are provided herein regarding some of the corner-to­
corner rules, some other corner-based rules, and some island- 25 

based rules. All of the design rule checks described below 
with respect to steps 171 0-1716 are checked for both physical 
and derived layer features if they are identified in the design 
rule set. Design rules that reference derived layers are 
checked in the steps of FIG. 17, as well as those that reference 30 

only physical layers. 

Various other corner-based design rule checks can be per­
formed within this loop as well, not shown in FIG. 18. Corner 
slacks are then calculated in step 1826, and the routine then 
loops back to step 1812 to continue scanning for more inter­
secting rays. 

A corner slack is the slack between two corners, i.e. one 
pair of horizontal and one pair of vertical edges. A corner 
slack has two linear slack values, one horizontal (either left or 
right) and one vertical (either up or down). These horizontal 
and vertical linear slack components of the corner slack are 
calculated in the same way that the horizontal and vertical 
linear slack values are calculated within step 320. However, 
the values calculated for corner slacks are cached separately 
and not merged with those calculated for the linear slacks. 

FIG. 20 is a flow chart detail of step 1712, for checking 
certain other corner-based rules. These rules are checked 
inside a loop 2010 which traverses the synchronized_cornec 
map. In step 2012, the edge length rule is checked from the 
current corner. For the horizontal edge meeting at this corner, 

Corner design rule bounds are calculated as part of the 
check of corner-to-corner rules in step 1710. Conditional 
design rule bounds are calculated as part of the check of other 
corner-based rules in step 1712. 

FIG. 18 is a flow chart detail of step 1710, for checking the 
corner-to-corner rules. In step 1810, the system builds a map 
of space and dimension rays from the ray infonnation previ­
ously populated into the synchronized corner map. Rays from 

35 this involves subtracting the x-position of the corner (ori_x) 
from the x-position of the nearest vertical edge, walking 
horizontally along the shape contour (tacx) and comparing 
the absolute value of the difference to the minimum edge 

all layers are included, from both physical and derived layers, 40 

but only those spacejays that extend from convex corners, 
and only those dimensionjays that extend from concave 
corners, are included in this ray map. In addition, instead of 
the rays representing the shape edges encountered when 
walking away from the corner, the rays in the ray map formed 45 

in step 1810 represent true rays from the cornerto the encoun­
tered edge. 

length value in the relationship_master. For the vertical edge 
meeting at this corner, this involves subtracting the y-position 
of the corner (ori_y) from the y-position of the nearest hori-
zontal edge, walking vertically along the shape contour 
(tar_y) and comparing the absolute value of the difference to 
the minimum edge length value in the relationship_master. 

In step 2014, it is determined whether the current corner is 
concave or convex. If it is concave, then in step 2016 the 
concave corner edge length rule is checked. This rule requires 
that at least one of the two adjacent edges forming a concave 
corner have at least a minimum length. This test can be 

In step 1812, the ray map is scanned left-to-right to identify 
intersections of the rays. A conventional scan line algorithm 
can be used for this purpose. 50 perfonned using the same values from the corner data struc­

ture as used in step 2012 (ori_x, tar_x, ori-y and taCY). The 
lengths determined for the two edges are compared to the 
minimum concave corner edge length value in the relation-

In step 1814, it is determined whether the current ray 
intersection is an intersection of two spacejays. The two 
corners from which these spacejays extend both have to be 
convex, so the situation is as illustrated in FIG. 19A, where 
Sjays 1910 and 1912 intersect. In this case the corner-to- 55 

corner Euclidean spacing 1914 is calculated. If the two shapes 
are located on the same layer, the spacing 1914 is compared to 
the minimum corner-to-corner spacing value in relationship_ 
master. If they are on different layers, it is compared to the 
minimum corner-to-corner clearance in relationship_master 60 

(step 1816). 
If the intersecting rays are not both space jays, then in step 

1818 it is determined whether they are both dimensionjays 
in the same layer. The two corners from which these dimen­
sionjays extend both have to be concave, so the situation is 65 

as illustrated in FIG. 19B, where djays 1916 and 1918 inter­
sect. In this case the corner-to-corner Euclidean dimension 

ship_master. 
In step 2018, the notch rule is checked. This rule requires 

that a 'notch' in an island have at least a specified minimum 
width. Framed in tenns of corners, the rule requires that two 
adj acent concave corners be at least a specified distance apart. 
This rule need be checked for a horizontally-adjacent corner 
only of the horizontally-adjacent corner is concave, and need 
be checked for a vertically-adjacent corner only of the verti-
cally-adjacent corner is concave. For example, in the illustra­
tion of FIG. 11B, only the horizontally-adjacent corner need 
be checked for violation of the notch rule. The notch rule can 
be tested by subtracting the x-position of the current corner 
(ori_x) from the x-position of the nearest vertical facing edge, 
walking horizontally from corner, away from the shape, 



US 8,453,103 B2 
35 

which is already available in the current comer data structure 
as spacejay_x. The absolute value of the difference is then 
compared to the minimum notch width value in the relation­
ship_master. For a notch formed with a vertically-adjacent 
concave comer, the y-position of the current comer (ori_y) is 
subtracted from the y-positionofthe nearest horizontal facing 
edge, walking vertically from the current comer, away from 
the shape, which is already available in the current comer data 
structure as spacejay _yo The absolute value of the difference 
is then compared to the minimum notch width value in the 10 

relationship_master. 
If in step 2014, it is determined that the current comer is 

convex, then in step 2020 the convex comer edge length rule 

36 
that can be checked here include the minimum island area 
rule, the minimum hole area rule, minimum common run 
dependent separation against other islands in the same layer, 
and minimum common run dependent separation against 
islands in other layers. In an embodiment, these are all 
checked within a single traversal of island_map, where the 
values for all required topological relationships in the layout 
region have already been populated. For example, the area of 
each island in island_map has already been populated during 
the horizontal scan. The step of checking the minimum island 
area rule, therefore, is accomplished simply by comparing the 
stored island area for the current island with the minimum 
area value in the relationship master. Note that in an embodi­
ment, during the horizontal scan, accumulation of island area is checked. This rule requires that at least one of the two 

adjacent edges forming a convex comer have at least a mini­
mum length. This test can be performed using the same values 
from the comer data structure as used in step 2012 (ori_x, 
tacx, ori-y and tar-y). The lengths determined for the two 
edges are compared to the minimum convex comer edge 
length value in the relationship_master. 

15 is aborted once the accumulated area exceeds the worst case 
minimum required in the relationship master. The stored area 
values will still be determined in this step 1714 to satisfY the 
minimum island area rule. 

Other rules, such as via-based rules, are checked in step 
20 1716. 

Returning to FIG. 3, after step 322, in step 326, the system 
saves the design rule bounds calculated in steps 320 and 322 
to a cache. 

Also after step 322, in step 324 the system reports any 
design rule violations to the user or to another entity. In one 
embodiment, if the current editing command did not involve 
any movement of shapes, then nothing is output in this step. It 
will be seen however that another iteration through steps 
314-322 occurs when the user begins dragging behavior, in 
which case any design rule violations can be reported. If 
reported to the user, the report can take place promptly (e.g. 
for real time feedback) or later (e.g. if performed as a batch 
job). Where the violations are reported to the user promptly, 
this enables the user to modify the layout to correct for the 
design rule violations. Whereas any form of reporting can be 
used, preferably the design rule violations are reported by 
way of visual indications on the user's monitor, as markers on 
the layout region itself. In an embodiment, near violations are 
also indicated. Marker information can be anything that can 
be used to render a visual indicator of the violation, but 
preferably it identifies a rectangle for designating the location 
of the violation within the layout region. In an embodiment, 
the rectangle is shown in a size which indicates the magnitude 
of the primary value of the rule being violated. This informa­
tion can be very useful as it indicates graphically how much is 
needed to correct the violation. For near-violations, it can be 
a ruler indicating the current spacing. For example, if the 
violation is a minimum spacing violation, a rectangle might 
encompass the (too-small) spacing area, or a ruler disposed 

In step 2022, an end-of-line spacing rule is checked. In its 
simplest form, this rule requires that at the end of a line, a 
specified minimum spacing is required to the neighboring 
geometry. Referring to FIG. 19D, where the line in question is 
line 1926, the rule requires that for an end-of-line width 25 

eolWidth less than one specified value, the end-of-line spac­
ing eolSpace must be at least another specified value. If the 
current comer is convex comer 1828, then the width of the 
line 1926 in the horizontal dimension is easily determined by 
subtracting the x-position of the current comer (ori_x) from 30 

the x-position of the last vertical edge walking horizontally 
into shape, before exiting shape, which is already available in 
the current comer data structure as djay _x. The spacing to 
the next neighboring geometry is available in the current 
comer data structure as Sjay_y. Thus the absolute value of 35 

the subtraction is compared to the value for eolWidth in the 
relationship_master, and if small enough to invoke the rule, 
Sjay_y is then compared to the value for eolSpace in the 
relationship_master. For a horizontally-oriented line, the 
width of the line in the vertical dimension is determined by 40 

subtracting the y-position of the current comer (ori_y) from 
the y-position of the last horizontal edge walking vertically 
into shape, before exiting shape, which is already available in 
the current comer data structure as djay _yo The spacing to 
the next neighboring geometry is available in the current 45 

comer data structure as Sjay_x. Thus the absolute value of 
the subtraction is compared to the value for eolWidth in the 
relationship_master, and if small enough to invoke the rule, 
Sjay_x is then compared to the value for eolSpace in the 
relationship_master. 50 across the space might indicate actual spacing if it is larger 

than the minimum. After all the desired rules are checked for the current cor­
ner, conditional design rule bounds are calculated in step 
2026. The routine then returns to step 2010 to consider the 
next comer in synchronized_comecmap. 

A conditional slack is the slack for a general conditional 
rule context. Complex design rules with multiple sub-rules, 
such as for example some of the design rules checked in FIG. 
20, can be handled with such a slack. Multiple groups of pairs 
of edges are considered, with a conjunctive relationship of 
conditions inside each group and a disjunctive relationship 
among groups. A conditional slack has multiple groups of 
horizontal and linear slack values, each of which is calculated 
in the same way that the horizontal and vertical linear slack 
values are calculated within step 320. 

Returning to FIG. 17, after the comer-based rules have 
been checked in steps 1710 and 1712, island-based rules are 
then checked in step 1714. Example island-based design rules 

All of the design rule checks output marker information for 
any violation. The marker information is collected in a map 
structure. In step 324, the marker information is converted to 

55 visible form on the user's monitor or provided to another 
entity. 

As shown in FIG. 3, once design rule bounds have been 
saved to cache and any markers have been output, the system 
returns to step 312 to await the next editing command. Sig-

60 nificantly, since design rule bounds calculated in steps 314-
322 do not depend on the knowing the direction or distance of 
the subsequent drag operation, they are performed prior to 
receipt by the system of the next user command. There is no 
need to await the next drag operation before performing these 

65 calculations. Since knowing the design rule bounds greatly 
simplifies the determination of whether the drag violates a 
design rule, or what is the best DRC-clean position if it does, 
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the pre-calculation of such bounds before receipt of such next 
user command can enable immediate user feedback and true 
real-time rapid manual editing of the layout with optimum 
DRC-clean placement of geometries. 

38 
of those. This latter process involves adjusting the destination 
point in two separate monotonic sequences. The first 
sequence is X_first, and the second sequence is Y _first. Each 
sequence is monotonic in the sense that no step in the 
sequence backtracks either horizontally or vertically. For 
example, for an adjustment toward the upper right, the X_first 
sequence is to the right, then upward, then to the right, and so 
on until either the destination point is reached, or both the 
right and upward directions are blocked. The corresponding 

10 Y _first sequence is the same, except that it begins with an 
adjustment upward. At each step inside the sequence, the 
destination point is adjusted by a small amount, and the four 
linear slacks (Ls, Rs, Bs, Ts) are recalculated based on 

Returning to step 313, if the current editing command 
involves dragging selected objects, then the design rule 
bounds that were pre-calculated during a previous traversal 
through steps 314-322 are used to assist the placement of the 
objects at the design rule boundary nearest the user's desired 
destination point. Note that the current drag operation may be 
just the next increment of a longer drag, in which case the 
most recent traversal through steps 314-322 (and therefore 
the most recent pre-calculation of design rule bounds) will 
have been in response to a previous drag command rather than 
the selection command just described. Either way, in step 328 15 

the system determines whether the destination position of the 
drag event exceeds the pre-calculated design rule bounds. If 
not, then the system merely moves the editing objects to the 
target position. If so, then the system adjusts the target posi­
tion to the position nearest the user's target position, but 
which does not violate any of the design rules in the set of 
design rules enabled for DRC-assist. Push-through is also 
performed here. 

Note further that the present embodiment is intended to 
assist in continuous geometry changes associated with mouse 
drag. In the case of sudden geometry changes associated with 
the drag, which is possible for some of the user commands, 
step 328 will not do anything to block them. The operation is 
treated the same as push-through. 

The following pseudocode describes the pertinent aspects 
of step 328. The starting position of the objects selected for 
editing is p1(x,y), and the user's destination or target position 
is p2(x,y): 

Let the pre-calculated left, right, up and down linear slacks be called Ls, 
Rs, Us and Ds, respectively. 
If any ofLs, Rs, Us and Ds is negative, this means there is already DRC 
violation. Continue to step 314 without adjusting p2. 
If p2(x) > pI (x), that means the mouse movement has a rightward vector 
component. Set horizontal slack Hs~Rs. Otherwise, if p2(x) < pI (x), that 
means the mouse movement has a leftward vector component. Set horizontal 
slack Hs~Ls. 
If p2(y) > pI (y), that means the mouse movement has an upward vector 
component. Set vertical slack Vs~Us. Otherwise, if p2(y) < pI (y), that means 

adjusted positions and all the corner and conditional slacks. 
Whether or not step 328 results in any adjustment of the 

destination position p2 as signaled by the user's drag com­
mand, the system next traverses steps 314-326 again to check 
the new position against the design rules and output markers 
if appropriate, and to pre-calculate, in advance of the next 

20 editing command, a new set of design rule bounds based on 
the new position p2 of the selected objects. The system then 
returns to step 312 to await the next editing command. This 
may be as simple as another slight movement of the current 
editing shapes being dragged across the layout region, which 

25 would result in another traversal through steps 314-326 of 
FIG. 3, thus causing a change in the visual indicator as seen by 
the user and yet another pre-calculation of design rule bounds 
in preparation for yet another editing command. Because of 
the efficiency of the design rule checking techniques and the 

30 DRC assistance techniques described herein, in the embodi­
ment herein the new markings will appear nearly immediately 
with each drag of the editing shapes and a movement which 
exceeds a design rule bound will be immediately stopped. 

the mouse movement has a downward vector component. Set vertical slack Vs=Ds. 
Set L\.x ~ Ip2(x) - pl(x)1 
Set L\.y ~ Ip2(y) - pl(y)1 
If(L\.x - Hs >~ a push_through_threshold OR L\.y - Vs >~ 
push_through_threshold), this means the user has pushed through. Continue to 
step 314 without adjusting p2. Objects will appear to jump to destination 
position if they had been stopped and a DRC-clean position earlier in the 
drag behavior. Note that push-through can be disabled by setting the 
push_through_threshold to infinity. 
If (L\.x <~ Hs), then no horizontal DRC bound has been reached. Do not adjust 
p2(x) 
Else if L\.x > Hs, then the horizontal slack distance has been exceeded. 

If p2 is moving to the right, adjust p2(x) ~ p2(x) - (L\.x - Hs). 
Ifp2 is moving to the left, adjust p2(x) ~ p2(x) + (L\.x - Hs). 

If (L\.y <~ Vs), then no horizontal DRC bound has been reached. Do not adjust 
p2(y) 
Else if L\.y > Vs, then the vertical slack distance has been exceeded. 

Ifp2 is moving upward, adjust p2(y) ~ p2(y) - (L\.y - Vs). 
Ifp2 is moving downward, adjust p2(y) ~ p2(y) + (L\.y - Vs). 

The above pseudocode blocks the user's drag operation 
from exceeding any of the linear slacks, and operates by 
adjusting the destination position p2 to the nearest position 
that prevents any such violation. Next, the system checks the 
corner and conditional slacks, based on the adjusted destina­
tion position p2, and further adjusts p2 to avoid violating any 

FIG. 21A is an example visual indication of a violation of 
a minimum spacing rule. In this drawing, editing rectangle 
2112 has been moved too close to static rectangle 2110, and a 

65 box 2114 appears indicating how much end-of-line spacing is 
required by the rule. If the minimum spacing value that is 
being violated is an absolute value, then the box 2114 might 
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appear in one color, whereas if it is a preferred value that is 
being violated, then the box 2114 might appear in another 
color. A third color can be used to indicate a most preferred 
value, and so on. As the user pulls the editing shape 2112 apart 
from static shape 2110, the box 2114 disappears and a ruler 
appears, such as ruler 2116 in FIG. 21B. Ruler 2116 indicates 
the actual distance between the end of editing shape 2112 and 
the nearest edge of static shape 2110, and thereby indicates 
how much closer shape 2112 can be brought to shape 2110 
before the minimum spacing rule will be violated. 

FIG. 21C is an example visual indication of a violation of 
a corner-to-corner spacing rule. In this drawing, editing rect­
angle 2112 has been moved too close to a corner of static 
rectangle 2110, and a box 2118 appears indicating the viola­
tion. Again, the box 2118 can appear in either of two colors to 
indicate violation of an absolute or preferred value for this 
design rule. As the user pulls the editing shape 2112 apart 
from static shape 2110, the box 2114 disappears and a ruler 
appears, such as corner-to-corner ruler 2120 in FIG. 21D. 
Ruler 2120 indicates the actual corner-to-corner distance 
between the end of editing shape 2112 and the nearest edge of 
static shape 2110. 

FIG. 21E is an example visual indication of a violation of 
a corner-to-corner minimum dimension rule. In this drawing, 
a corner of editing rectangle 2112 overlaps a corner of a same 
layer static rectangle 2110, but the overlap is too small to 
satisfY the minimum dimension rule. A box 2122 appears 
indicating the violation. 

Similar visual indicators to indicate violations of other 
design rules will be apparent to the reader. In addition, note 
that all of the design rule checks indicated in FIGS. 21A-21E 
can reference derived layers or physical layers or both. It can 
be seen that the markings provide nearly immediate feedback 

40 
computer systems and communication links. These commu­
nication links may be wireline links, optical links, wireless 
links, or any other mechanisms for communication of infor­
mation. While in one embodiment, communication network 
2218 is the Internet, in other embodiments, communication 
network 2218 may be any suitable computer network. 

The physical hardware component of network interfaces 
are sometimes referred to as network interface cards (NICs), 
although they need not be in the form of cards: for instance 

10 they could be in the form of integrated circuits (ICs) and 
connectors fitted directly onto a motherboard, or in the form 
of macrocells fabricated on a single integrated circuit chip 
with other components of the computer system. 

User interface input devices 2222 may include a keyboard, 
15 pointing devices such as a mouse, trackball, touchpad, or 

graphics tablet, a scanner, a touch screen incorporated into the 
display, audio input devices such as voice recognition sys­
tems, microphones, and other types of input devices. In gen­
eral, use of the term "input device" is intended to include all 

20 possible types of devices and ways to input information into 
computer system 2210 or onto computer network 2218. 

User interface output devices 2220 may include a display 
subsystem, a printer, a fax machine, or non-visual displays 
such as audio output devices. The display subsystem may 

25 include a cathode ray tube (CRT), a flat-panel device such as 
a liquid crystal display (LCD), a projection device, or some 
other mechanism for creating a visible image. The display 
subsystem produces the images illustrated in FIGS. 21A-21E, 
for example. The display subsystem may also provide non-

30 visual display such as via audio output devices. In general, 
use of the term "output device" is intended to include all 
possible types of devices and ways to output information 
from computer system 2210 to the user or to another machine 

to the user as the layout is edited, thereby greatly facilitating 
the manual layout effort. It should be noted that the absence of 35 

any visual indication to the user also constitutes a notification 

or computer system. 
Storage subsystem 2224 stores the basic progranm1ing and 

data constructs that provide the functionality of certain 
embodiments of the present invention. For example, the vari­
ous modules implementing the functionality of certain 
embodiments of the invention may be stored in storage sub­
system 2224. These software modules are generally executed 
by processor subsystem 2214. 

to the user that no design rule violation has been detected. 
In the embodiments described herein, all the corner data 

structures are completely populated before the corner-based 
rules are checked. This is the most advantageous arrange- 40 

ment, but some benefits of the invention can be obtained even 
Memory subsystem 2226 typically includes a number of 

memories including a main random access memory (RAM) 
2230 for storage of instructions and data during program 
execution and a read only memory (ROM) 2232 in which 
fixed instructions are stored. File storage subsystem 2228 
provides persistent storage for program and data files, and 
may include a hard disk drive, a floppy disk drive along with 
associated removable media, a CD-ROM drive, an optical 

if only some (i.e. more than one; preferably more than two) of 
the corner data structures are completely populated before the 
corner-based rules are checked. Similarly, all island data 
structures are completely populated before the island-based 45 

rules are checked. Again, while this is the most advantageous 
arrangement, some benefits of the invention can be obtained 
even if only some (i.e. more than one; preferably more than 
two) of the island data structures are completely populated 
before the island-based rules are checked. 50 drive, or removable media cartridges. The databases and 

modules implementing the functionality of certain embodi­
ments of the invention may be stored by file storage sub­
system 2228. The host memory 2226 contains, among other 
things, computer instructions which, when executed by the 

Hardware 
FIG. 22 is a simplified block diagram of a computer system 

2210 that can be used to implement software incorporating 
aspects of the present invention. Computer system 2210 
includes a processor subsystem 2214 which communicates 
with a number of peripheral devices via bus subsystem 2212. 
These peripheral devices may include a storage subsystem 
2224, comprising a memory subsystem 2226 and a file stor­
age subsystem 2228, user interface input devices 2222, user 
interface output devices 2220, and a network interface sub­
system 2216. The input and output devices allow user inter­
action with computer system 2210. Network interface sub­
system 2216 provides an interface to outside networks, 
including an interface to communication network 2218, and 
is coupled via communication network 2218 to correspond­
ing interface devices in other computer systems. Communi­
cation network 2218 may comprise many interconnected 

55 processor subsystem 2214, cause the computer system to 
operate or perform functions as described herein. As used 
herein, processes and software that are said to run in or on "the 
host" or "the computer system", execute on the processor 
subsystem 2214 in response to computer instructions and data 

60 in the host memory subsystem 2226 including any other local 
or remote storage for such instructions and data. 

Bus subsystem 2212 provides a mechanism for letting the 
various components and subsystems of computer system 
2210 communicate with each other as intended. Although bus 

65 subsystem 2212 is shown schematically as a single bus, alter­
native embodiments of the bus subsystem may use multiple 
busses. 
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Computer system 2210 itself can be of varying types 
including a personal computer, a portable computer, a work­
station, a computer terminal, a network computer, a televi­
sion, a mainframe, or any other data processing system or user 
device. Due to the ever-changing nature of computers and 
networks, the description of computer system 2210 depicted 
in FIG. 22 is intended only as a specific example for purposes 
of illustrating certain embodiments of the present invention. 
In another embodiment, the invention can be implemented 
using multiple computer systems, such as in a server farm. 10 

Many other configurations of computer system 2210 are pos­
sible having more or less components than the computer 
system depicted in FIG. 22. 

42 
signal, event or value inputs. If the given signal, event or value 
is the same as the predecessor signal, event or value, this is 
merely a degenerate case in which the given signal, event or 
value is still considered to be "responsive" to the predecessor 
signal, event or value. "Dependency" of a given signal, event 
or value upon another signal, event or value is defined simi­
larly. 

The foregoing description of preferred embodiments of the 
present invention has been provided for the purposes of illus­
tration and description. It is not intended to be exhaustive or 
to limit the invention to the precise forms disclosed. Obvi­
ously, many modifications and variations will be apparent to 
practitioners skilled in this art. In particular, and without 
limitation, any and all variations described, suggested or 
incorporated by reference in the Background section of this 
patent application are specifically incorporated by reference 
into the description herein of embodiments of the invention. 
The embodiments described herein were chosen and 
described in order to best explain the principles of the inven-

20 tion and its practical application, thereby enabling others 
skilled in the art to understand the invention for various 

In an embodiment, the steps set forth in the flow charts and 
descriptions herein are performed by a computer system hav- 15 

ing a processor such as processor subsystem 2214 and a 
memory such as storage subsystem 2224, under the control of 
software which includes instructions which are executable by 
the processor subsystem 2214 to perform the steps shown. 
The software also includes data on which the processor oper­
ates. The software is stored on a computer readable medium, 
which as mentioned above and as used herein, is one on which 
information can be stored and read by a computer system. 
Examples include a floppy disk, a hard disk drive, a RAM, a 
CD, a DVD, flash memory, a USB drive, and so on. The 25 

computer readable medium may store information in coded 
formats that are decoded for actual use in a particular data 
processing system. A single computer readable medium, as 
the term is used herein, may also include more than one 
physical item, such as a plurality of CD-ROMs or a plurality 30 

of segments of RAM, or a combination of several different 
kinds of media. When the computer readable medium storing 
the software is combined with the computer system of FIG. 
22, the combination is a machine which performs the steps set 
forth herein. Means for performing each step consists of the 35 

computer system (or only those parts of it that are needed for 
the step) in combination with software modules for perform­
ing the step. The computer readable medium storing the soft­
ware is also capable of being distributed separately from the 
computer system, and forms its own article of manufacture. 40 

Additionally, the geometry file or files storing the layout, 
the relationship master dataset, and the layout topology data­
base are themselves stored on computer readable media. Such 
media can be distributable separately from the computer sys­
tem, and form their own respective articles of manufacture. 45 

When combined with a computer system programmed with 
software for reading, revising, and writing the geometry files, 
and for design rule checking, they form yet another machine 
which performs the steps set forth herein. 

As used herein, the "identification" of an item of informa- 50 

tion does not necessarily require the direct specification of 
that item of information. Information can be "identified" in a 
field by simply referring to the actual information through 
one or more layers of indirection, or by identifYing one or 
more items of different information which are together suffi- 55 

cient to determine the actual item of information. In addition, 
the term "indicate" is used herein to mean the same as "iden­
tifY". 

As used herein, a given signal, event or value is "respon­
sive" to a predecessor signal, event or value if the predecessor 60 

signal, event or value influenced the given signal, event or 
value. If there is an intervening processing element, step or 
time period, the given signal, event or value can still be 
"responsive" to the predecessor signal, event or value. If the 
intervening processing element or step combines more than 65 

one signal, event or value, the signal output of the processing 
element or step is considered "responsive" to each of the 

embodiments and with various modifications as are suited to 
the particular use contemplated. It is intended that the scope 
of the invention be defined by the following claims and their 
equivalents. 

The invention claimed is: 
1. A method for assisting a user editing a region of an 

integrated circuit layout, the layout including a plurality of 
objects, 

for use by a computer system having access to a design rule 
data set indicating constraint values of design rules in the 
data set, the method comprising the steps of: 

in response to a first user command indicating movement 
of a selected set of editing objects to a destination posi­
tion in the layout, the computer system moving the edit­
ing objects to a first updated starting position in the 
layout; 

the computer system, in conjunction with the moving step 
and prior to receipt by the computer system of any sub­
sequent user command indicating further movement of 
the editing objects, pre-calculating a first bound indicat­
ing a maximum distance by which the editing objects 
can be moved from the first updated starting position in 
a first direction in the layout before violating any of the 
design rules in the data set; and 

the computer system storing the first bound and displaying 
the editing objects perceptibly to the user in the first 
updated starting position in the layout. 

2. A method according to claim 1, further comprising the 
steps of: 

prior to receipt by the computer system of the first user 
command, the computer system pre-calculating a prior 
bound indicating a maximum distance by which the 
editing objects can be moved from a prior starting posi­
tion in a second direction in the layout before any of the 
design rules in the data set; and 

the computer system storing the prior bound. 
3. A method according to claim 2, wherein the computer 

system performs the step of pre-calculating a prior bound in 
response to a user command selecting the set of editing 
objects from the plurality of objects. 

4. A method according to claim 2, wherein the second 
direction is the same as the first direction. 

5. A method according to claim 1, further comprising the 
steps of: 

in response to a second user command indicating further 
movement of the selected set of editing objects to a 
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second destination position in the layout, where the sec­
ond destination position is beyond the first bound in the 
first direction, the computer system moving the editing 
o bj ects to a second updated starting position at which the 
position of the editing objects in the first direction is no 
farther in the first direction from the first updated starting 
position than is indicated by the first bound; and 

the computer system displaying the editing objects, per­
ceptibly to the user, in the second updated starting posi­
tion in the layout, the second updated starting position 10 

differing from the second destination position indicated 
by the second user command. 

6. A method according to claim 5, further comprising the 
steps of: 

44 
the third destination position in a second direction in the 
layout before violating any of the design rules in the data 
set; and 

the computer system storing the third bound. 
10. A method according to claim 1, wherein the editing 

objects collectively comprise at least one editing edge, and 
wherein step of the computer system pre-calculating a first 
bound comprises the steps of: 

the computer system iteratively considering the editing 
edges oriented in a second dimension different from the 
first dimension, and for each given one of the editing 
edges being considered, determining a maximum dis­
tance by which the given editing edge can be moved in 
the first dimension before violating any of the design 
rules in the data set; and 

the computer system determining the first bound in depen­
dence upon a minimum of all such maximum distances. 

11. A method according to claim 10, wherein the step of the 
computer system iteratively considering the editing edges 
oriented in a second dimension comprises the steps of: 

the computer system scanning the layout region monotoni­
cally in the second dimension so as to encounter end­
points of the editing edges to be considered. 

the computer system, in conjunction with the step of the 15 

computer system moving the editing objects to a second 
updated starting position and prior to receipt by the 
computer system of any user command, after the second 
user command, which indicates further movement of the 
editing objects, calculating a second bound indicating a 20 

maximum distance by which the editing objects can be 
moved from the second updated starting position in a 
second direction in the layout before violating any of the 
design rules in the data set, the second direction being 
different than the first direction; and 

12. A method according to claim 10 wherein the step of the 
25 computer system iteratively considering the editing edges 

oriented in a second dimension comprises the steps of: the computer system storing the second bound. 
7. A method according to claim 5, further comprising the 

steps of: 
the computer system, in conjunction with the step of mov­

ing the editing objects to a first updated starting position 30 

and prior to receipt by the computer system of the second 
user command, pre-calculating an additional first bound 
indicating a maximum distance by which the editing 
objects can be moved from the first updated starting 
position in the second direction in the layout before 35 

violating any of the design rules in the data set; and 
the computer system, in conjunction with the step of mov­

ing the editing objects to a second updated starting posi­
tion and prior to receipt by the computer system of any 
user command, after the second user command, which 40 

indicates further movement of the editing objects, cal­
culating an additional second bound indicating a maxi­
mum distance by which the editing objects can be moved 
from the second updated starting position in the first 
direction in the layout before violating any of the design 45 

rules in the data set. 
8. A method according to claim 5, further comprising the 

steps of: 

the computer system scanning the layout region monotoni-
cally in the second dimension and for each particular 
position in the second dimension at which an endpoint of 
an editing edge oriented in the second dimension is 
encountered, the computer system considering as one of 
the given edges each editing edge oriented in the second 
dimension and having an endpoint at the particular posi­
tion in the second dimension. 

13. A method according to claim 10 wherein the computer 
system determines the minimum of all such maximum dis­
tances by, as each given maximum distance is determined in 
the step of the computer system iteratively considering, 
updating a single variable for the first direction with the 
minimum of (a) the given maximum distance and (b) any 
prior value of the single variable for the first direction. 

14. A method according to claim 10, wherein the computer 
system, in conjunction with the step of the computer system 
moving the editing objects to a second updated starting posi­
tion and prior to receipt by the computer system of any user 
command after the second user command which indicates 
further movement of the editing objects, pre-calculating and 
storing a second bound indicating a maximum distance by 
which the editing objects can be moved from the second in response to a third user command indicating still further 

movement of the selected set of editing objects to a third 
destination position in the layout, where the third desti­
nation position is beyond the first bound in the first 
direction and is also beyond a push-through position in 
the first direction, the computer system moving the edit­
ing objects to the third destination position; and 

50 updated starting position in the second direction in the layout 
before violating any of the design rules in the data set, the 
second direction being different than the first direction, 

wherein the step of the computer system pre-calculating a 
second bound comprises the steps of: 

the computer system displaying the editing objects, per­
ceptibly to the user, in the third destination position in 
the layout. 

9. A method according to claim 8, further comprising the 
steps of: 

55 

60 

the computer system, in conjunction with the step of the 
computer system moving the editing objects to the third 
destination position and prior to receipt by the computer 
system of any user command after the third user com­
mand which indicates further movement of the editing 65 

objects, calculating a third bound indicating a maximum 
distance by which the editing objects can be moved from 

the computer system iteratively considering the editing 
edges oriented in the first dimension, and for each par­
ticular one of the editing edges oriented in the first 
dimension and being considered, determining a maxi­
mum distance by which the particular editing edge can 
be moved in the second dimension before violating any 
of the design rules in the data set; and 

the computer system determining the second bound in 
dependence upon a minimum of the maximum distances 
determined for the editing edges oriented in the first 
dimension. 

15. A method according to claim 14, wherein the computer 
system determines the minimum of the maximum distances 



US 8,453,103 B2 
45 

determined for the editing edges oriented in the first dimen­
sion by, as each particular maximum distance is determined in 
the step of the computer system iteratively considering the 
editing edges oriented in the first dimension, updating a single 
variable for the second direction with the minimum of (a) the 
particular maximum distance and (b) any prior value of the 
single variable for the second direction. 

16. A system for assisting a user editing a region of an 
integrated circuit layout, the layout including a plurality of 
objects, comprising: 

a computer system having access to a design rule data set 
indicating constraint values of design rules in the data 
set, the computer system further having access to com­
puter instructions and data which, when applied to the 
computer system, perform the steps of: 

in response to a first user command indicating movement 
of a selected set of editing objects to a destination posi­
tion in the layout, moving the editing objects to a first 
updated starting position in the layout; 

10 

15 

in conjunction with the moving step and prior to receipt by 20 

the computer system of any subsequent user command 
indicating further movement of the editing objects, pre­
calculating a first bound indicating a maximum distance 
by which the editing objects can be moved from the first 
updated starting position in a first direction in the layout 25 

before violating any of the design rules in the data set; 
and 

storing the first bound for subsequent use. 
17. A system according to claim 16, wherein the computer 

instructions and data, when applied to the computer system, 30 

further perform the steps of: 
prior to receipt by the computer system of the first user 

command, pre-calculating a prior bound indicating a 
maximum distance by which the editing objects can be 
moved from a prior starting position in a second direc- 35 

tion in the layout before any of the design rules in the 
data set; and 

the storing the prior bound. 
18. A system according to claim 17, wherein the computer 

instructions and data are such that the computer system per- 40 

forms the step of pre-calculating a prior bound in response to 

46 
by the computer system of any user command, after the 
second user command, which indicates further move­
ment of the editing objects, calculating a second bound 
indicating a maximum distance by which the editing 
objects can be moved from the second updated starting 
position in a second direction in the layout before vio­
lating any of the design rules in the data set, the second 
direction being different than the first direction; and 

storing the second bound. 
22. A system according to claim 20, wherein the computer 

instructions and data, when applied to the computer system, 
further perform the steps of: 

in conjunction with the step of moving the editing objects 
to a first updated starting position and prior to receipt by 
the computer system of the second user command, pre­
calculating an additional first bound indicating a maxi-
mum distance by which the editing 0 bj ects can be moved 
from the first updated starting position in the second 
direction in the layout before violating any of the design 
rules in the data set; and 

in conjunction with the step of moving the editing objects 
to a second updated starting position and prior to receipt 
by the computer system of any user command, after the 
second user command, which indicates further move­
ment of the editing objects, calculating an additional 
second bound indicating a maximum distance by which 
the editing objects can be moved from the second 
updated starting position in the first direction in the 
layout before violating any of the design rules in the data 
set. 

23. A system according to claim 20, wherein the computer 
instructions and data, when applied to the computer system, 
further perform the steps of: 

in response to a third user command indicating still further 
movement of the selected set of editing objects to a third 
destination position in the layout, where the third desti­
nation position is beyond the first bound in the first 
direction and is also beyond a push-through position in 
the first direction, moving the editing objects to the third 
destination position; and 

displaying the editing objects, perceptibly to the user, in the 
third destination position in the layout. a user command selecting the set of editing objects from the 

plurality of objects. 
19. A system according to claim 17, wherein the second 

direction is the same as the first direction. 

24. A system according to claim 20, wherein the computer 
instructions and data, when applied to the computer system, 

45 further perform the steps of: 
20. A system according to claim 16, wherein the computer 

instructions and data, when applied to the computer system, 
further perform the steps of: 

in response to a second user command indicating further 
movement of the selected set of editing objects to a 50 

second destination position in the layout, where the sec­
ond destination position is beyond the first bound in the 
first direction, moving the editing objects to a second 
updated starting position at which the position of the 
editing objects in the first direction is no farther in the 55 

first direction from the first updated starting position 
than is indicated by the first bound; and 

displaying the editing objects, perceptibly to the user, in the 
second updated starting position in the layout, the sec­
ond updated starting position differing from the second 60 

destination position indicated by the second user com­
mand. 

21. A system according to claim 20, wherein the computer 
instructions and data, when applied to the computer system, 
further perform the steps of: 

in conjunction with the step of moving the editing objects 
to a second updated starting position and prior to receipt 

65 

in conjunction with the step of moving the editing objects 
to the third destination position and prior to receipt by 
the computer system of any user command after the third 
user command which indicates further movement of the 
editing objects, calculating a third bound indicating a 
maximum distance by which the editing objects can be 
moved from the third destination position in a second 
direction in the layout before violating any of the design 
rules in the data set; and 

storing the third bound. 
25. A system according to claim 16, wherein the editing 

objects collectively comprise at least one editing edge, and 
wherein the computer instructions and data are such that the 
step of pre-calculating a first bound comprises the steps of: 

iteratively considering the editing edges oriented in a sec­
ond dimension different from the first dimension, and 
for each given one of the editing edges being considered, 
determining a maximum distance by which the given 
editing edge can be moved in the first dimension before 
violating any of the design rules in the data set; and 

determining the first bound in dependence upon a mini-
mum of all such maximum distances. 
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26. A system according to claim 25, wherein the computer 
instructions and data are such that the step of iteratively 
considering the editing edges oriented in a second dimension 
comprises the steps of: 

scanning the layout region monotonically in the second 
dimension so as to encounter endpoints of the editing 
edges to be considered. 

27. A system according to claim 25 wherein the computer 
instructions and data are such that the step of iteratively 
considering the editing edges oriented in a second dimension 10 

comprises the steps of: 
scanning the layout region monotonically in the second 

dimension and for each particular position in the second 
dimension at which an endpoint of an editing edge ori­
ented in the second dimension is encountered, consider- 15 

ing as one of the given edges each editing edge oriented 
in the second dimension and having an endpoint at the 
particular position in the second dimension. 

28. A system according to claim 25 wherein the computer 
instructions and data are such that the computer system deter- 20 

mines the minimum of all such maximum distances by, as 
each given maximum distance is determined in the step of 
iteratively considering, updating a single variable for the first 
direction with the minimum of (a) the given maximum dis­
tance and (b) any prior value of the single variable for the first 25 

direction. 
29. A system according to claim 25, wherein the computer 

instructions and data are such that in conjunction with the step 
of moving the editing objects to a second updated starting 
position and prior to receipt by the computer system of any 30 

user command after the second user command which indi­
cates further movement of the editing objects, the computer 
system pre-calculates and stores a second bound indicating a 
maximum distance by which the editing objects can be moved 
from the second updated starting position in the second direc- 35 

tion in the layout before violating any of the design rules in the 
data set, the second direction being different than the first 
direction, 

wherein the pre-calculation of a second bound comprises 
the steps of: 

iteratively considering the editing edges oriented in the first 40 

dimension, and for each particular one of the editing 
edges oriented in the first dimension and being consid­
ered, determining a maximum distance by which the 
particular editing edge can be moved in the second 
dimension before violating any of the design rules in the 45 

data set; and 
determining the second bound in dependence upon a mini­

mum of the maximum distances determined for the edit­
ing edges oriented in the first dimension. 

30. A system according to claim 29, wherein the computer 50 

instructions and data are such that the computer system deter­
mines the minimum of the maximum distances determined 
for the editing edges oriented in the first dimension by, as each 
particular maximum distance is determined in the step of the 
computer system iteratively considering the editing edges 55 

oriented in the first dimension, updating a single variable for 
the second direction with the minimum of (a) the particular 
maximum distance and (b) any prior value of the single vari­
able for the second direction. 

31. A computer program product for assisting a user editing 
a region of an integrated circuit layout, the layout including a 60 

plurality of objects, 
for use by a computer system having access to a design rule 

data set indicating constraint values of design rules in the 
data set, the computer program product comprising 

a computer readable medium having stored thereon a plu- 65 

rality of software code portions and data which when 
executed by the computer system perform the steps of: 

48 
in response to a first user command indicating movement 

of a selected set of editing objects to a destination posi­
tion in the layout, the computer system moving the edit­
ing objects to a first updated starting position in the 
layout; 

the computer system, in conjunction with the moving step 
and prior to receipt by the computer system of any sub­
sequent user command indicating further movement of 
the editing objects, pre-calculating a first bound indicat­
ing a maximum distance by which the editing objects 
can be moved from the first updated starting position in 
a first direction in the layout before violating any of the 
design rules in the data set; and 

the computer system storing the first bound and displaying 
the editing objects perceptibly to the user in the first 
updated starting position in the layout. 

32. A computer program product according to claim 31, 
wherein the software code portions and data when executed 
by the computer system further perform the steps of: 

prior to receipt by the computer system of the first user 
command, the computer system pre-calculating a prior 
bound indicating a maximum distance by which the 
editing objects can be moved from a prior starting posi­
tion in a second direction in the layout before any of the 
design rules in the data set; and 

the computer system storing the prior bound. 
33. A computer program product according to claim 32, 

wherein the software code portions and data are such that 
when executed by the computer system the computer system 
performs the step of pre-calculating a prior bound in response 
to a user command selecting the set of editing objects from the 
plurality of objects. 

34. A computer program product according to claim 32, 
wherein the second direction is the same as the first direction. 

35. A computer program product according to claim 31, 
wherein the software code portions and data when executed 
by the computer system further perform the steps of: 

in response to a second user command indicating further 
movement of the selected set of editing objects to a 
second destination position in the layout, where the sec­
ond destination position is beyond the first bound in the 
first direction, the computer system moving the editing 
objects to a second updated starting position at which the 
position of the editing objects in the first direction is no 
farther in the first direction from the first updated starting 
position than is indicated by the first bound; and 

the computer system displaying the editing objects, per­
ceptibly to the user, in the second updated starting posi­
tion in the layout, the second updated starting position 
differing from the second destination position indicated 
by the second user command. 

36. A computer program product according to claim 35, 
wherein the software code portions and data when executed 
by the computer system further perform the steps of: 

the computer system, in conjunction with the step of the 
computer system moving the editing objects to a second 
updated starting position and prior to receipt by the 
computer system of any user command, after the second 
user command, which indicates further movement of the 
editing objects, calculating a second bound indicating a 
maximum distance by which the editing objects can be 
moved from the second updated starting position in a 
second direction in the layout before violating any of the 
design rules in the data set, the second direction being 
different than the first direction; and 

the computer system storing the second bound. 
37. A computer program product according to claim 35, 

wherein the software code portions and data when executed 
by the computer system further perform the steps of: 
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the computer system, in conjunction with the step of mov­
ing the editing objects to a first updated starting position 
and prior to receipt by the computer system of the second 
user command, pre-calculating an additional first bound 
in~icating a maximum distance by which the editing 
obJ~~ts c~ be moved from the first updated starting 
posItion m the second direction in the layout before 
violating any of the design rules in the data set; and 

the computer system, in conjunction with the step of mov­
ing the editing objects to a second updated starting posi- 10 

tion and prior to receipt by the computer system of any 
user command, after the second user command which 
indicates further movement of the editing obje~ts, cal­
culatin~ an additional second bound indicating a maxi­
mum dIstance by which the editing objects can be moved 
from the second updated starting position in the first 15 

direction in the layout before violating any of the design 
rules in the data set. 

50 
the computer system scanning the layout region monotoni­

cally in the second dimension so as to encounter end­
points of the editing edges to be considered. 

42 . . A computer program product according to claim 40 
wherem the software code portions and data are such that the 
~tep of the c.omputer system iteratively considering the edit­
mg edges onented in a second dimension comprises the steps 
of: 

the computer system scanning the layout region monotoni­
cally in the second dimension and for each particular 
position in the second dimension at which an endpoint of 
an editing edge oriented in the second dimension is 
encountered, the computer system considering as one of 
the given edges each editing edge oriented in the second 
dimension and having an endpoint at the particular posi­
tion in the second dimension. 

43. A computer program product according to claim 40 
wherein the software code portions and data are such that the 
computer system detennines the minimum of all such maxi­
mum distances by, as each given maximum distance is deter-

38. !'c computer program product according to claim 35, 
wherem the software code portions and data when executed 
by the computer system further perform the steps of: 20 m!ned in th~ step ?fthe computer system iteratively consid­

enng, updatmg a smgle variable for the first direction with the 
m!nimum of (a) the given maximum distance and (b) any 
pnor value of the single variable for the first direction. 

in response to a third user command indicating still further 
movement of the selected set of editing objects to a third 
destination position in the layout, where the third desti­
nation position is beyond the first bound in the first 
direction and is also beyond a push-through position in 25 

the first direction, the computer system moving the edit­
ing objects to the third destination position; and 

the cOJ:?puter system displaying the editing objects, per­
ceptibly to the user, in the third destination position in 
the layout. 

39. !'c computer program product according to claim 38, 
wherem the software code portions and data when executed 
by the computer system further perform the steps of: 

30 

the computer system, in conjunction with the step of the 
computer system moving the editing objects to the third 
destination position and prior to receipt by the computer 35 

system of any user command after the third user com­
m~nd which in~icates further movement of the editing 
objects, calculatmg a third bound indicating a maximum 
distance by which the editing objects can be moved from 
the third destination position in a second direction in the 40 

layout before violating any of the design rules in the data 
set; and 

the computer system storing the third bound. 
40. !'c comp~~er program product according to claim 31, 

w~~rem the edltmg objects collectively comprise at least one 45 

edltmg edge, and wherein the software code portions and data 
are such that the step of the computer system pre-calculating 
a first bound comprises the steps of: 

the compu!er sys.tem iteratively considering the editing 
edges onented m a second dimension different from the 
first dimension, and for each given one of the editing 50 

edges being considered, determining a maximum dis­
tance by which the given editing edge can be moved in 
the first dimension before violating any of the design 
rules in the data set; and 

the computer system detennining the first bound in depen- 55 

dence upon a minimum of all such maximum distances. 
41. !'c computer program product according to claim 40, 

wherem the software code portions and data are such that the 
~tep of the computer system iteratively considering the edit­
mg edges oriented in a second dimension comprises the steps 60 

of: 

44. !'c computer program product according to claim 40, 
wherem the software code portions and data are such that 
~hen ~xec~ted b~ the computer system the computer system, 
m con~~nctlO~ wIth the step of the computer system moving 
the edltmg objects to a second updated starting position and 
prior to receipt by the computer system of any user command 
after the second user command which indicates further move­
ment of the editing objects, pre-calculating and storing a 
second bound indicating a maximum distance by which the 
~diting .o!,jec.ts can be moved from the second updated start­
m~ posItIOn m the second direction in the layout before vio-
latmg any of the design rules in the data set, the second 
direction being different than the first direction 

wherein the software code portions and data 'are such that 
when executed by the computer system the step of the 
computer system pre-calculating a second bound com­
prises the steps of: 

the computer system iteratively considering the editing 
~dges oriented in the first dimension, and for each par­
ticular one of the editing edges oriented in the first 
dimension and being considered, detennining a maxi­
mum dist<l?ce by which the particular editing edge can 
be moved m the second dimension before violating any 
of the design rules in the data set; and 

the computer system detennining the second bound in 
dependence upon a minimum of the maximum distances 
determined for the editing edges oriented in the first 
dimension. 

45. !'c computer program product according to claim 44, 
wherem the software code portions and data are such that 
when e:cecuted by.t~e computer system the computer system 
determmes the mlmmum of the maximum distances deter­
mined for the editing edges oriented in the first dimension by, 
as each particular maximum distance is detennined in the step 
of the computer system iteratively considering the editing 
edges oriented in the first dimension, updating a single vari­
able. for the se.cond di~ection with the minimum of (a) the 
p.artlcular .maxlmum dIstance and (b) any prior value of the 
smgle vanable for the second direction. 

* * * * * 


