
(12) United States Patent 
Su et al. 

(54) 

(75) 

(73) 

( * ) 

(21) 

(22) 

(65) 

(51) 

(52) 

STEINER TREE BASED APPROACH FOR 
POLYGON FRACTURING 

Inventors: Qing Su, Sunnyvale, CA (US); 
Yongqiang Lu, Beijing (CN); Charles 
C. Chiang, Saratoga, CA (US) 

Assignee: Synopsys, Inc., Mountain View, CA 

Notice: 

(US) 

Subject to any disclaimer, the term of this 
patent is extended or adjusted under 35 
U.S.c. 154(b) by 724 days. 

Appl. No.: 12/017,025 

Filed: Jan. 19,2008 

Prior Publication Data 

US 2009/0187876 Al luI. 23, 2009 

Int. Cl. 
G06F 19/50 (2006.01) 
U.S. Cl. .............. 716/124; 716/50; 716/53; 716/54; 

716/55; 7161122; 7161123; 7161125; 716/131; 
716/136; 716/139 

(58) Field of Classification Search ................ 716/7-11, 

(56) 

716119-21,50,118-125,53-55,131,136, 
716/139 

See application file for complete search history. 

References Cited 

U.S. PATENT DOCUMENTS 

5,930,500 A * 
6,324,674 B2 * 
6,728,946 Bl 
6,770,403 B2 
7,022,439 B2 

711999 Scepanovic et al. 
1112001 Andreev et al. 
4/2004 Schellenberg et al. 
8/2004 Park et al. 
4/2006 Luttrell 

716/13 
716/12 

2004/0123260 Al * 6/2004 Teig et al. 716/7 

FRACTIIRE pOI YGONS 
(STEP 314) 

410 

111111 1111111111111111111111111111111111111111111111111111111111111 
US008151236B2 

(10) Patent No.: 
(45) Date of Patent: 

US 8,151,236 B2 
Apr. 3, 2012 

OTHER PUBLICATIONS 

Arora, S., "Approximation schemes for NP-hard geometric optimi­
zation problems: a survey," Math. Program., Ser. B 97:43-69 (2003). 
Asano, T. et aI., "Partitioning a Polygonal Region into Trapezoids," 
Journal of ACM, 33(2):290-312, 1986. 
Bloecker M., et aI., "Metrics to Assess Fracture Quality for Variable 
Shaped Beam Lithography," Proc. of SPIE vol. 6349 (2006) pp. 
63490Z-1 to 63490Z-10. 
Chu, c., "Flute: Fast Lookup Table Based Wirelength Estimation 
Technique," International Conference on Computer-Aided Design, 
pp. 696-701, 2004. 
Du, D-Z. et aI., "Chapter 7, Adaptive Partition," Design and Analysis 
of Approximation Algorithms (Lecture Notes), 2002, 33 pp. 
Garey, M.R. et aI., "The rectilinear Steiner tree problem is NP­
complete," Siam J. App. Math., vol. 32(4), Jun. 1977, pp. 826-834. 
Gelsey, A., et aI., "A Search Space Toolkit," Proceeding of 11th 
Conference on Artificial Intelligence for Applications, pp. 117-123, 
1995. 
Guibas, L.J. et aI., "On computing all northeast nearest neighbors in 
the Ll metric," Information Processing Letters, 17:219-223, 1983. 
Hanan, M., "On Steiner's problem with rectilinear distance," J. Siam 
Appl. Math., vol. 14(2):255-265, 1966. 

(Continued) 

Primary Examiner - Nghia Doan 
(74) Attorney, Agent, or Firm - Haynes Beffel & Wolfeld 
LLP; Warren S. Wolfeld 

(57) ABSTRACT 

Roughly described, a method for mask data preparation is 
described, for use with a preliminary mask layout that 
includes a starting polygon, the vertices of the starting poly­
gon including I-points (vertices of the starting polygon hav­
ing an interior angle greater than 90 degrees), including steps 
of developing a rectilinear partition tree on at least the 
I-points of the starting polygon, and using the edges of the 
partition tree to define the partition of the starting polygon 
into sub-polygons for mask writing. 

38 Claims, 13 Drawing Sheets 

510 

512 

514 



US 8,151,236 B2 
Page 2 

OTHER PUBLICATIONS 

Ho, J-M., et aI., "A New Approach to the Rectilinear Steiner Tree 
Problem," 26th ACMlIEEE Design Automation Conference, Paper 
11.2, 1989, pp. 161-166. 
Ho, J-M. et ai, "New Algorithms for the Rectilinear Steiner Tree 
Problem," IEEE Transactions on Computer-Aided Design, vol. 
9(2):185-193,1990. 
Kahng, A.B. et aI., "A New Class ofIterative Steiner Tree Heuristics 
with Good Performance," IEEE Transactions on Computer-Aided 
Design, vol. 11(7):893-902, 1992. 
Kahng, A.B., et aI., "Yield- and Cost-Driven Fracturing for Variable 
Shaped-Beam Mask Writing," 24th Annual BACUS Sumposium on 
Photomask Technology, Proceedings of SPIE vol. 5567:360-371, 
2004. 
Khang, A.B., et aI., "Fast Yield-Driven Fracture for Variable Shaped­
Beam Mask Writing,"Proc. SPIE Symposium on Photomask and 
NGL Mask Technology XIII (Photomask Japan), Apr. 2006, 
(Morihisa Hoga ed.) vol. 6283,62832R (2006), pp. 2R-I-2R-IO. 
Lingas, A., et aI., "Minimum Edge Length Partitioning of Rectilinear 
Polygons," Proc. 20th Allerton Conf. on Communication, Control, 
and Computing, University of Illinois, pp. 53-63, 1982. 
Mitchell, J.S.B., "Guillotine Subdivisions Approximate Polygonal 
Subdivisions: A Simple New Method for the Geometric k -MST Prob-

lem," Proceedings of the 7th Annual ACM-SIAM Symposium on 
Discrete Algorithms, pp. 402-408, 1996. 
Nakao, H., et ai., "A New Figure Gracturing Algorithm for Variable­
Shaped EB Exposure-Data Generation," Electronics and Communi­
cations in Japan, Part 3, vol. 83(8), 2000, pp. 87-102. Translated from 
Denshi Joho Tsushin Gakkai Ronbunshi, vol. J80-A, No. 12, Dec. 
1997,pp.2103-2116. 
Ohtsuki, T., "Minimum dissection of rectilinear regions," Proc. ISCS, 
vol. 3, pp. 1210-1213, Rome, 1982, IEEE 82CHI681-6. 
O'Rourke, J., et aI., "Partitioning Orthogonal Polygons into Fat Rect­
angles," Proc. of 13th Canadian Conf. on Compo Geom., pp. 133-136, 
2001. 
Zhou, H., "Efficient Steiner Tree Construction Based on Spanning 
Graphs," IEEE Transactions on Computer-Aided Design of Inte­
grated Circuits and Systems, vol. 23(5):704-710, 2004. 
Chapter 24, Minimum Spanning Trees, Introduction to Algorithms, 
T.H. Cormen et aI., editors, The MIT Press with McGraw-Hill Book 
Company, 1990, pp. 499-511. 
Chapter 23.2, The algorithms of Kruskal and Prim, Introduction to 
Algorithms (2nd ed.), T.H. Cormen et aI., editors, The MIT Press with 
McGraw-Hill Book Company, 2001, pp. 567-579. 
Mar. 31,2009 International Search Report for PCT/US2008/081 070. 

* cited by examiner 



u.s. Patent Apr. 3, 2012 Sheet 1 of 13 US 8,151,236 B2 

'112 
8 u v 
"l / .... 100 

6 

5 

4 e~ ---114 
q k S-rARTING POLYGON 

3 
i t 1 

2 

P !Ti FIG.1A 
0 

~--.......- 110 
-1 

"1 0 1 ? ,,' 4 
,,-

G ] 8 9 ,) :) 

8 u v 
! 

" : 'J •• • 
6 

5 

4 
e 

GRAPH G (ONLY 
3 CONNECTIONS FROM 

. i 
a AND bARE SI-IOWN) 2 ti° 0 .. 

1 cO FIG. 18 
0 

,1 
-1 0 1 ? 3 4 5 G 1 8 9 

8 u v 
-, • • t 

r a .j 
6 • r 
:) 

b 
4 • q .k 3 MINIMAL SPANNING 
2. .1 TREE, I·POINTS ONLY 

d 
1 • P ·0 FIG.1C 
0 

·1 
"1 0 1 2 

., 

.) 4 
,. 
:) 6 ", 

! 8 9 



u.s. Patent Apr. 3, 2012 Sheet 2 of 13 US 8,151,236 B2 

8 
tJ V 

7 

6 

5 

4 SEPARABLE MINIMAL 
q II. SPANNING fREE 

:) 
WITH R,PO!NTS I 

2 ADDED 

0 FIG.1D 
-1 

·1 [) 1 2 3 4 r 
,) t) I 8 9 

8 u v 
7 • • r a .J 6 • 
C 
~1 

4 • q II. RECTIUNE:AR 
3 

SrEINEI~ TREE 
2 .1 

FIG.1E 
0 

,1 
1 0 1 2 :3 4 5 6 7 B 9 



u.s. Patent Apr. 3, 2012 Sheet 3 of 13 

8 u v 
7 • • r a 

• .i 6 • 
5 

b 
4 • q .It 3 

2 .1 
0 ·0 
·1 

·1 0 1 Z 3 4 c ;; 6 -I , 8 8 

112 
8 

"j 

6 

5 ! 
! b 

4 'L!d 3 
9 1 

i t 1 
2 d 

o ".--110 

-1 
01 0 1 2 3 4 5 6 7 8 9 

US 8,151,236 B2 

RECTIUNEAr~ 

STEINER MINIMAL 
TREE WITH 

REDUNDANT EDGES 
REMOVED 

FIG.1F 

FINAL POLYGON 
PARTITION 

FIG.1G 



Product 
)} EllA 

)) Pack~lil1g ) Fabrication & < 

Icl(~a Software 250 )) Assembly 
Chips 

200 270 
210 260 

A r--------------------------------- ---------------------------------1 

Logic DeSi911)Syn.thesiS & 
fmd Func Desiun for 
Verif. 214 Test 216 

Nt;tlls! 
V (~rification 

218 

FIG.2 

Physi<:al 
Implmnent. 

222 

Physical 
Vnrfication 

226 

» 

Resolulion 
EntJanc, 

228 

~ 
7Jl 
• 
~ 
~ 
~ 
~ = ~ 

> 'e 
:-: 
(.H 
~ 

N 
0 .... 
N 

rFJ 

=­('D 
('D ..... 
.j;o. 

o .... .... 
(.H 

d 
rJl 

",010 

"""'" tit 

"""'" N w 
0'1 

= N 



u.s. Patent Apr. 3, 2012 Sheet 5 of 13 US 8,151,236 B2 

310 

INPUT FILE 

314 

230\ 

PR[:~ 

PROCESSING 

FRACTURE ALL 
NON­

TRAPEZOIDAL 
POLYGONS 

318 

FIG. 3 

3"12 

3'16 

t----M OUTPUT 
FILE 

VVRITE MASKS 



u.s. Patent Apr. 3, 2012 Sheet 6 of 13 

FRACTURE POLYGONS 
(STEP 314) 

LOOP THROUGH ALL 
~ INCOMING POL YCONS 

READ 
CURRENT 
POLYGON 

US 8,151,236 B2 

410 

FORM PARTITION S~ElNER TREE OF CUT V 414 
LINES FROM CURr~ENT POLYGON 

~ 416 

FORM POLYGON PARTITION USING EDGES v/ 
OF THE PARTITION TREE AS CUT· LINES 

I /418 
OUTPUT THE RESULTING SUB· POLYGONS V 

FOR USE BY MASK WRITER 

,- 420 
NO 

'------<:;/" LOOP DONE? 

YES 
r- 422 

C DONE: 

FIG. 4 



u.s. Patent Apr. 3, 2012 Sheet 7 of 13 US 8,151,236 B2 

For~M PAf-<TITION Tf-<EE OF CUT,LINES FROM 
CURRENT POLYGON 

(STEP 414) 

IDENTIFY I-POINTS AND R-POINlS 
OF SUBJECT POLYGON 

F'ORM MINIMAL SPANNING TREE 
SPANNING THE IDENTIFIED I 

POINTS AND R·POINTS 

FORM RE:CTILINEAR STE:INER 
MINIMAL 'rRET FROM THE MINIMAL 

SPANNING Tr~EE 

FIG. 5. 

510 

512 

514 



u.s. Patent Apr. 3, 2012 Sheet 8 of 13 

FORM MINIMAL SPANNING TREE SPANNING THE 
IDENTIFIED I·POINTS AND f<·PO!NTS 

(STEP 512) 

BUILD SEPt\RABLE MINIMAL SPANNING TREE 
CONNECTING THE IDENTIFIED I·POINTS ONLY 

US 8,151,236 B2 

V 610 

. CONNECIALL ~~PC)lNIS'~lnITHEI~RESPECTlVEV 612 
PARr:NTI~POINTS 

DONE ) 

FIG. 6 



u.s. Patent Apr. 3, 2012 Sheet 9 of 13 US 8,151,236 B2 

BUILD SEPARABLE MINIMAL SPANNING TREE 
CONNECTING THE IDENTIFIED I-POINTS ONLY 

(STEP 610) 

710 

.. LOOP THROUGH .ALI. . .. 
'·POINTS 

~, Vl12 
FOr~ CURRENT '·POINT, FIND NEAREST 

NEIGHBOR IN EACH OF 8 OCT/\NTS. 
CREATE EDGES TO THEM IN GRAPH. 

/-714 

YES ~ 

MORE I-POINTS? 

NO 

GRAPH AU. THE I POINTS, ~ITH CONNECTIONS ONLY TO V 
THE NEAREST NEIGHBOHS IN EACH OCTANT 

~ V/ FIND MINIMAL SPANNING TREE FROM GRAPH, LIMITING 
SEAr~CH SPACE TO EDGES IN THE GRAPH 

~ 

DONE ) 

FIG. 7 

716 

71B 



u.s. Patent Apr. 3, 2012 Sheet 10 of 13 US 8,151,236 B2 

FOHM RECTILINEAR STEINER MINIMAL TREE FROM 
THE MINIMAL SPANNING Tr~EE 

(STEP 514) 

~810 

/ CHOOSE AN I,POINT OF SMST AS ROOT NODE. INInALIZE 
SMT WITH EACH NODE'S MINIMAL COST AS EMPTY 

/812 

TRAVERSE: TREF DEPTH,FIRST, FROM ROOf NODE TO BOTTOM LEAF 
NODES. RECURSIVE LV CALL GeLNode~Cost(currenLnode, 

parenLpatluype) . 
RETURNS MIN COST AND OPTIMAL PATH TYPE COMBINATION FOR 

cunenL.node's GIVEN PARENT EDClE TYPE 

/- 814 

RECURSIVELY TRAVERSE TREE NODES TOP-[)O\lVN FROM 
ROOT NODE. FOR EACH NODE, RECORD TO GRAPH GRID, 
CURRENT NODE AND OPTIMAL PATH TYPE COMBINATION 

FROM PARENT NODE 

816 

REMOVE REDUNDANT EDGES 

~ 

( DONE 



u.s. Patent Apr. 3, 2012 Sheet 11 of 13 US 8,151,236 B2 

~ , .' - ~ ~ .. < Gel Node-' CostrcurWll1 nodp p'lfPrll palh illPpl 

910~-
ENUMEF{ATE ALL OF current node's CHILDREN I 

EDGES' DIHERENT PATH TYPE COMBINATIONS 

J. 912 
LOOP THROUC;H THE CHILD EDGE .... 

PATH TYPE COMBINATIONS 

~ 

I 
(ifT AU, CHILD EDGES' COPHESPONDING PATH 1,_/914 

TYPES FOR THIS PATH TYPE COMBINATION 

~ 
LOOP THROUGH CUfrenLno(le's 916 

CHILD NODES 
... 

II FOR THIS CHIl.D EDGE'S GIVEN PATH TYPE, THE CHILD NODE'S COST V 918 
UNKNOWN, CALL qcCoodPJOst(ctlikUlode,ctJild_ed9fUlattuype). PE TUPNS COST 
FOR ClJRHENT CHIlD NODE WITH GIVEN PATH TYPE OF THE CHII.D EDGE, El.Se 

DIRECTI.Y GET CHILD NODE'S COST FROM MEMORY, 

~ 
/920 I ADD COST TO CURRENT PATH TYPE COMBINATION COST 

YES .L /'-- 922 
...... MOF~E CHILD NODES? 

~NO I ADD PARENT EDGE'S COSf (IF ANY) TO CURRENT PATH 924 
TYPE COMBINATION COST 

~ 
SUBTRACT FROM CURRENT PATH TYPE COMBINATION COST ALL 

~««'926 
OVERLAPS AMONG PARFNI EDGE (IF ANY) AND ALL CHILDREN 

EDCES IN CURRENT PATH TYPE COMBINATION 

~ 
~ 928 YES MORE CHILD EDGE PATH 

TYPE COMBINATIONS? 

~ NO 

CHOOSE CHILD EDGE PATH TYPE COMBINATION WITH LEAST COST. ASSICN COST OF 
~ CHOSEN CHILD EDGE PA Til TYPE COMBINA TION AS current ... nodEl"s. COST. RECORD 

930 

CHOSEN PATH TYPE COMBINATION AS OPTIMAL 

~ 
( DONE ) 



u.s. Patent Apr. 3, 2012 Sheet 12 of 13 

REMOVE REDUNDANT EDGES 
(STEP 816) 

I GET CROSSING POINTS OF INTERSECTING R,EOGES 

,~ 

I GET REDUNDANT EDGES (MOVABLE CUT LINES) 

, 
I SORT REDUNDANT EDGES BY COST 

,~ 

I DELETE GREATER COST REDUNDANT EDGES 

, 
( DONE ) 

FIG. 10 

• Rl • R2 

I I 
I I 

n I Cl I C2 R3 
0---1----.1--. 

I I 
I I 
I I 
I I 

cb 12 <!> 13 

FIG. 11 

US 8,151,236 B2 

r- 1010 

1012 

1014 

1016 



u.s. Patent Apr. 3, 2012 Sheet 13 of 13 US 8,151,236 B2 

/ '1210 

1226 ..... ~ STOHAGE SUBSYSTEM COMPlJTEf~ SYSTEM 

1228") /1224 

MEMORY SUBSYSTEM v' 
1222) 

12i2R2,1Z;Orl, FILE 
STORAGE USER INTERFACE 

SUBSYSTEM INPUT DEVICES 

; .-T 1212 ; 
j~ r 1214 , 1216 J 

~ ",-1220 
PROCESSOR NETWORK llSER INTERFACE 
SUBSYSTEM INTERFACE OUTPUT DEVICES 

j~ 

~. 

COMMUNICATION F1218 
NETWORK 

FIG. 12 



US 8,151,236 B2 
1 

STEINER TREE BASED APPROACH FOR 
POLYGON FRACTURING 

BACKGROUND 

2 
FIG. 2 shows a simplified representation of an illustrative 

integrated circuit design flow. 
FIG. 3 is a flowchart illustrating portions of the mask 

preparation step of FIG. 2. 
FIGS. 4-10 together constitute a flowchart illustrating 

methods partitioning a starting polygon. 
FIG. 11 illustrates a portion of a Steiner tree. 

The invention relates to mask data preparation for inte­
grated circuit manufacturing, and more particularly it relates 
to an innovative tree-based approach for fracturing of layout 
polygons into sub-polygons (more usefully, into trapezoids) 
for mask writing. 

FIG. 12 is a simplified block diagram of a computer system 
1210 that can be used to implement software for performing 

10 aspects of the present invention. As device technology continues to scale below the 65 nm 
process node, the number of geometries added by the heavy 
application of resolution enhancement techniques (RET) 
continues to grow. In part, this is a consequence of 193 nm 
lithography having to suffice for tighter geometries with 
every new process node. As a result, issues associated with 15 

mask data preparation (MDP) such as complexity, run time, 
and quality are growing in severity. As one major and core 
step in MDP, polygon fracturing (partitioning) converts the 
complex polygons generated by the layout process, into non­
overlapping trapezoids suitable for mask writing. The parti- 20 

tioning run time and quality directly impacts the cost, integ­
rity, and quality of the written mask. 

For modern MDP, the main criteria for a high quality poly­
gon partitioning solution are (1) to minimize the number of 
small unprintable geometries known as slivers; (2) to mini- 25 

mize the exposed boundary length of such slivers ifunavoid­
able; and (3) to avoid CD (critical dimension) slicing cut 
lines. In most typical approaches, cut line based heuristics are 
used to solve the polygon partitioning problem. These heu­
ristics need to go through iterations of local cut line evalua­
tion, correction, and re-evaluation. Hence the cut line evalu- 30 

ation order and iteration depth can significantly impact the 
final result quality. For some examples, the global quality of 
the resulting partition is difficult to control. 

DETAILED DESCRIPTION 

The following detailed description is made with reference 
to the figures. Preferred embodiments are described to illus­
trate the present invention, not to limit its scope, which is 
defined by the claims. Those of ordinary skill in the art will 
recognize a variety of equivalent variations on the description 
that follows. 
Overview of Polygon Fracturing Approach 

The innovative approach to solving the polygon partition-
ing problem described herein is based on formulating a vari­
ant Steiner minimal tree which is referred to from here on as 
the minimal partition tree (MPT). The inflection vertices of 
the original polygon and some additional points intersected 
by candidate cut lines and polygon boundaries, are used as 
terminal nodes of the tree. By constructing a specially formu-
1ated Steiner tree on these tree terminals, a partition is 
obtained whose cut lines are suggested by the resulting tree 
edges. 

Thus the technique achieves optimal polygon partitioning 
results by constructing an optimal tree. Embodiments are 
described herein in which all the candidate cut lines, which 
are considered as tree edges in tree approach, can be simul­
taneously considered during the tree construction. Hence the 
processing order and iteration depth will not affect the final 
quality of results as in traditional methods. In addition, since 
the new approach inherits the strong theoretical foundation 
from existing Steiner tree research, several mature and effi­
cient algorithms are available that can be applied to solve the 
reformulated Steiner tree problem. Some of these are 
described herein, and others will be apparent to the reader. 
Moreover, the new approach permits relatively easy changes 

The ever-increasing demand for a high quality of partitions 
requires a significant improvement over current algorithms. 35 

To meet all the above criteria, current cut line based heuristics 
are becoming more difficult to apply and the results are fre­
quently trapped in local optima. In addition, each cut line 
based heuristic is usually designed and tailored toward a 
specific optimization objective such as minimizing the cut 40 

line length, or minimizing the figure count. If it becomes 
necessary to change the optimization objective, then the 
entire algorithm typically must be changed. The flexibility 
and portability of such changes for these cut line based meth­
ods are low. 45 in optimization objectives. Often such changes will not need 

to change any of the algorithm framework. As an example, if 
the objective is changed from minimizing the total cut line 
length of a partition to maximizing the minimal cut line 
length, the underlying Steiner tree to be formulated can sim-

There is a significant need, therefore, for new and better 
algorithms for achieving high quality polygon partitions for 
mask data preparation. 

SUMMARY 

According to the invention, roughly described, a method 
for mask data preparation is described, for use with a prelimi­
nary mask layout that includes a starting polygon, the vertices 

50 ply be changed from a Steiner minimal tree to a min-max 
Steiner tree. Finally, embodiments of the new approach can 
operate with high speed, greatly improving the quality of 
polygon partitioning results without a significant CPU runt-
ime penalty. 

of the input (later referred to as "starting") polygon including 55 

I-points being those of the starting polygon vertices with an 
interior angle strictly greater than 90 degrees, comprising the 
steps of developing a rectilinear partition tree on at least the 

In the main embodiments described herein, one goal is to 
minimize the number of slivers. A sliver, as used herein, is a 
small dimension figure that is difficult to print on a mask 
because of its narrowness relative to the resolution of the 
mask writing equipment. It is known that the number of I -points of the starting polygon, and using the edges of the 

partition tree to define the partition of the starting polygon 
into sub-polygons for mask writing. 

BRIEF DESCRIPTION OF THE DRAWINGS 

60 slivers can be minimized by targeting a partition whose rect­
angles have an aspect ratio as close to unity as possible, and it 
is known that the latter objective is equivalent to minimizing 
the total cut line length of the partition. Therefore, the class of 

FIGS.1A-1G (collectively FIG. 1) illustrate various stages 65 

of a polygon partitioning example according to features of the 
invention. 

optimization problems to which the polygon partitioning 
problem belongs is known traditionally as minimum cut 
length rectangular partition (MCLRP) problems. The 
embodiments described herein modifY the minimum cut 



US 8,151,236 B2 
3 

length criteria in a manner that also pennits incorporation of 
other objectives and requirements of the mask-making envi-
ronment. 
Overview of System Flow 

FIG. 2 shows a simplified representation of an illustrative 
digital integrated circuit design flow. At a high level, the 
process starts with the product idea (step 200) and is realized 
in an EDA (Electronic Design Automation) software design 
process (step 210). When the design is finalized, the fabrica­
tion process (step 250) and packaging and assembly pro­
cesses (step 260) occur resulting, ultimately, in finished inte­
grated circuit chips (result 270). 

4 
Physical verification (step 226): At this step various check­

ing functions are perfonned to ensure correctness for: manu­
facturing, electrical issues, lithographic issues, and circuitry. 
Example EDA software products from Synopsys, Inc. that 
can be used at this step include the Hercules product. 

Tape-out (step 227): This step provides the "tape-out" data 
for production of masks for lithographic use to produce fin­
ished chips. Example EDA software products from Synopsys, 
Inc. that can be used at this step include the CATS(R) family 

10 of products. 
Resolution enhancement (step 228): This step involves 

geometric manipulations of the layout to improve manufac­
turability of the design. Example EDA software products 
from Synopsys, Inc. that can be used at this step include 

15 Proteus, ProteusAF, and PSMGen products. 

The EDA software design process (step 210) is actually 
composed of a number of steps 212-230, shown in linear 
fashion for simplicity. In an actual integrated circuit design 
process, the particular design might have to go back through 
steps until certain tests are passed. Similarly, in any actual 
design process, these steps may occur in different orders and 
combinations. This description is therefore provided by way 20 

of context and general explanation rather than as a specific, or 
recommended, design flow for a particular integrated circuit. 

Mask preparation (step 230): This step includes both mask 
data preparation and the writing of the masks themselves. 
Certain aspects of the invention herein can take place during 
this step. 

FIG. 3 is a flowchart illustrating portions of mask prepara-
tion step 230. As with all flowcharts herein, it will be appre­
ciated that many of the steps in FIG. 3 can be combined, 
perfonned in parallel or perfonned in a different sequence 
without affecting the functions achieved. The input file 310 to 

A brief description of the components steps of the EDA 
software design process (step 210) will now be provided. 

System design (step 212): The designers describe the func­
tionality that they want to implement, they can perfonn what­
if plauning to refine functionality, check costs, etc. Hardware­
software architecture partitioning can occur at this stage. 
Example EDA software products from Synopsys, Inc. that 
can be used at this step include Model Architect, Saber, Sys­
tem Studio, and Design Ware® products. 

Logic design and functional verification (step 214): At this 
stage, the VHDL or Verilog code for modules in the system is 
written and the design is checked for functional accuracy. 
More specifically, the design is checked to ensure that pro­
duces the correct outputs in response to particular input 
stimuli. Example EDA software products from Synopsys, 
Inc. that can be used at this step include VCS, VERA, Design­
Ware®, Magellan, Formality, ESP and LEDA products. 

Synthesis and design for test (step 216): Here, the VHDLI 
Verilog is translated to a netlist. The netlist can be optimized 
for the target technology. Additionally, the design and imple­
mentation of tests to permit checking of the finished chip 
occurs. Example EDA software products from Synopsys, Inc. 
that can be used at this step include Design Compiler®, 
Physical Compiler, Test Compiler, Power Compiler, FPGA 
Compiler, Tetramax, and Design Ware® products. 

Netlist verification (step 218): At this step, the netlist is 
checked for compliance with timing constraints and for cor­
respondence with the VHDL % Verilog source code. Example 
EDA software products from Synopsys, Inc. that can be used 
at this step include Formality, PrimeTime, and VCS products. 

Design planning (step 220): Here, an overall floor plan for 
the chip is constructed and analyzed for timing and top-level 
routing. Example EDA software products from Synopsys, 
Inc. that can be used at this step include Astro and IC Com­
piler products. 

25 the mask preparation step 230 is typically provided by a 
design house, but could instead be generated by the same 
organization that is preparing the mask data. The input file 
310 typically arrives in any of several standard fonnats, such 
as GDS, OASIS, CREF, etc. The file describes the layout of 

30 the circuit design in the fonn of a mask definition for each of 
the masks to be generated. Each mask definition defines a 
plurality of polygons, many of which can be quite complex. 
Any resolution enhancement (RET) has already been per­
formed by this point in the process, as has physical verifica-

35 tion. 
In step 312 the input polygons are pre-processed for the 

fracturing process. This step can include such manipulations 
as flattening, exploding, sizing and healing of the input poly­
gons. The resulting polygons are then partitioned in step 314, 

40 and then written to an output file 316.All incoming polygons 
that are not already in the required shape (trapezoidal in one 
embodiment, rectangular in another embodiment) are parti­
tioned in step 314. (As used herein, a trapezoid is a polygon 
having four sides, at least two of which are parallel to each 

45 other. A rectangle is a special case of a trapezoid.) The poly­
gon descriptions in the output file 316, all of which do have 
the required shape, are then provided to a mask writing ser­
vice (which may be in-house) for exposing the masks. In one 
embodiment the polygon descriptions are written to an output 

50 file 316 may be stored in memory within or outside of the 
systems implementing the fracturing step 314, or as another 
example may be stored on computer readable mediums such 
as hard drives, CD-ROMs and DVDs. Also, they may be 
transmitted over a communication network such as intercon-

55 nected computer systems and communication links to the 
mask writing service. The communication links may be wire­
line links, optical links, wireless links, and combinations 
thereof or any other mechanisms for communication of infor­
mation. 

Physical implementation (step 222): The placement (posi­
tioning of circuit elements) and routing (counection of the 
same) occurs at this step. Example EDA software products 60 

from Synopsys, Inc. that can be used at this step include the 
Astro and IC Compiler products. 

In step 316, a mask is fabricated for each layer of the 
integrated circuit layout using the sub-polygons created in 
step 314. The mask writing process can be any type oflitho­
graphic process for fabricating semiconductor chips, includ­
ing processes that make use of, deep-ultraviolet (DUV) radia-

Analysis and extraction (step 224): At this step, the circuit 
function is verified at a transistor level, this in turn permits 
what-if refinement. Example EDA software products from 
Synopsys, Inc. that can be used at this step includeAstroRail, 
PrimeRail, Primetime, and Star RC/XT products. 

65 tion, extreme ultraviolet (EUV) radiation, X-rays, and 
electron beams. The writing method can be raster-based, or 
can use a variable shaped beam (VSB), or can be any other 



US 8,151,236 B2 
5 

method. In one embodiment, the mask writing process pro­
ceeds as follows. On a quartz substrate, a Cr/Cr02 layer is 
formed by sputtering. A photoresist coating is then formed 
over the Cr/Cr02layer. Using E-Beam or Laser lithography 
equipment, the desired pattern is written onto the surface of 
the photoresist layer. The patterns are the trapezoids output 
from the fracturing process described above. Using a chemi-
cal developer, the photoresist is removed either where the 
photoresist was exposed or where it was not exposed by the 
lithography equipment, depending on whether a positive or 10 

negative process is being used. Using either a dry or a wet 
etching technique, the now-exposed Cr/Cr02 layer is etched 
to reveal the quartz surface. The area still covered by photo­
resist is unaffected. The remaining photoresist is then 
removed using a stripping process, followed by cleaning and 15 

drying steps. At this stage, the photomask surface is com­
posed of dark and clear areas, the dark areas being those 
quartz areas still covered by CrlCr02 and the clear areas 
being those areas of quartz no longer covered by Cr/Cr02. 
Typically, these steps are followed by critical dimension mea- 20 

surements performed over the dark or clear space patterns. 
Positional accuracy of key patterns are also measured. 
Defects are identified and any necessary repair work is per­
formed. There then follows a cleaning step, and then a pellicle 
is mounted over the finished side of quartz plate in order to 25 

prevent potential contamination. 
Terminology 

Before describing the polygon partItioning method in 
detail, it will be useful to establish some terminology as used 
herein. FIG. 1 G illustrates a starting polygon (also sometimes 30 

referred to herein as a "subject" polygon) on which a partition 
has been made. The starting polygon is drawn in the figure on 
a grid defined by axes 110 and 112, but the axes are actually 
arbitrary. It is most useful for the discussion herein if the axes 
are defined in dependence upon the polygon. Specifically, as 35 

used herein, one axis is taken as any line parallel to a bound­
ary segment of the starting polygon, and the other axis is taken 
as any line perpendicular to the first axis. 

In FIG. IG, the starting polygon is defined by solid lines. 
"Cut-lines", shown as broken lines, have been added for the 40 

partition. The starting polygon is an example of a "rectilinear 
polygon", which as used herein is a polygon with all the 
boundaries being axis parallel. While aspects of the invention 
apply equally to non-rectilinear polygons (i.e. polygons hav­
ing at least one boundary not parallel to an axis), rectilinear 45 

starting polygons are used inmost examples described herein. 
As used herein, an inflection vertex (or I -vertex or I -point 

for short) of a polygon is a vertex of the polygon whose 
interior angle is greater than 90°. If the polygon includes a 
hole, the region inside the hole is considered herein to be part 50 

of the exterior, not interior of the polygon. Thus the following 
points in FIG. IG constitute I-points: a, b, c, d, e, f, g, hand i. 
In a rectilinear polygon, all I -vertices have an interior angle of 
270°. 

6 
x-axis or y-axis. In an embodiment that permits non-rectilin­
ear partitions, a cut-line need not lie parallel to an axis and the 
resulting sub-polygons of the partition need not be rectangu­
lar. 

Ifboth endpoints of a cut line are I-vertices of the starting 
polygon, then the cut-line is sometimes referred to herein as a 
"chord". Otherwise the cut line is sometimes referred to 
herein as a "cutting ray". Examples of chords in FIG. IG are 
ae, fb and id. Examples of cutting rays in FIG. IG are Sg, hn 
and tc. If cutting rays are drawn from every I -vertex in the two 
rectilinear directions across the interior of the polygon, if they 
do not meet another I-point, they will intersect the nearest 
polygon boundary at what are referred to herein as ray cross­
ing vertices or R-vertices or R-points. Points t and n in FIG. 
IG are examples ofR-points. It can be seen that in a rectan­
gular partitioning, the sum of the number of chords that can be 
drawn from any given I -point and the number of cutting rays 
that can be drawn from the given I-point, is always 2. Neither, 
one, or both of the cut-lines are chords and the remainder are 
cutting rays. No I-point can have more than two R-points. As 
used herein, the I-point from which a cutting ray is drawn to 
a particular R-point is sometimes referred to herein as the 
parent I-point of the particular R-point, and the particular 
R-point is sometimes referred to herein as the child. 

In the embodiments described herein, the cut lines rather 
than the resulting sub-polygons are the critical components 
for the polygon partitioning problem. All the cut lines, the 
endpoints and the intersecting points of these cut lines can be 
considered to form a graph which is referred to herein as a 
partition graph (or partition in short). That is, as used herein, 
a "partition" is the entire set of cut lines with their endpoints. 
The "cost" of a partition herein is generally measured by the 
total cut line length, as modified by other objectives. If the 
graph has no cycles, the corresponding partition is referred to 
as a acyclic partition; otherwise the graph-corresponding par­
tition is referred to as a cyclic partition. More particularly, an 
"anchored partition", as used herein, means a partition with 
each of its cut lines having at least one endpoint being an 
inflection vertex. 

A Hanan Grid on a Polygon (HGP), as used herein, is a set 
of X and Y gridlines constructed on a polygon such that all 
vertices of the polygon are crossings of the grid and all grid­
lines intersect at least one of the polygon vertices. Addition­
ally, all gridlines of an HGP either coincide with a boundary 
segment of the polygon or are completely interior to the 
polygon. Thus an HGP includes all the rectilinear boundaries 
of the polygon. 

A "graph", as used herein, is a set of nodes counected 
together by edges. A "tree", as used herein, means a con­
nected graph with no cycles. There is no requirement herein 
that any particular node of a tree be designated as a root node. 
A "Sparming Tree", as used herein, is a graph which is a tree 
and which passes through all the vertices of the original 
graph. A graph can have many different spanning trees. A 

A rectilinear partitioning on a polygon (or rectangular par­
titioning for a rectilinear polygon), as these terms are used 
herein, is a division of the polygon into a set of disjoint 
rectangles or trapezoids whose union equals the polygon, 
such as the rectangles separated by the broken lines in FIG. 
IG. "Cut-lines", as the term is used herein, are the line seg­
ments in the polygon interior that divide the polygon into 
sub-polygons (rectangles or trapezoids for a rectilinear par­
titioning). As used herein, "cut-lines" includes not only those 
that start and end on boundaries of the original polygon (such 
as line segments ae, fb, hn, tc andidinFIG.IG), but also those 
that terminate inside the polygon (such as Sg in FIG. IG). In 
rectilinear partitioning, the cut -lines are all parallel to the 

55 Minimal Spauning Tree (MST) is that Spauning Tree of a 
graph in which the edges of the tree satisfy some predefined 
minimum total length criteria. In embodiments described 
herein, the total length of a Sparming Tree is the sum of the Ll 
lengths of all the edges of the Spanning Tree. The Lllength of 

60 an edge (also called the Manhattan length of the edge) is the 
distance between its endpoints in the X direction plus the 
distance between its endpoints in the Y direction. Ll length 
differs from L2 length (also called Euclidean length or dis­
tance), which is the length of a straight line from one endpoint 

65 to the other. A Separable Minimal Spanning Tree (SMST), as 
used herein, is a Minimal Sparming Tree in which no two 
non-adjacent tree edges have their bounding boxes touching 



US 8,151,236 B2 
7 

or intersecting each other. As described in more detail else­
where herein, separability guarantees that the construction of 
a Steiner tree from an SMST is independent of tree edge 
processing order. Furthermore, it allows the complexity of 
constructing a Steiner tree from it to be as low as being linear 
to the number of spanning tree edges. 

A "Steiner Tree", as used herein, is a tree connecting all the 
nodes of a graph. Unlike a Spanning Tree, however, a Steiner 
Tree can (but is not required to) also include additional nodes, 
not in the original graph. The additional nodes are sometimes 10 

referred to herein as Steiner vertices or Steiner points. As used 
herein, a Steiner Tree need not be a Steiner Minimal Tree. A 
"Steiner Minimal Tree" (SMT), as used herein, is that Steiner 
Tree of a graph in which the edges of the tree satisfY some 
predefined cost minimization criteria. In embodiments 15 

described herein, the cost of a particular Steiner Tree depends 
not only on the total Lllengthofits edges, but also on its level 
of compliance with various desired objectives. A "Partition 
Tree", as used herein, is a tree used for partitioning a polygon 

8 
the boundaries and cut-lines shown in FIG. IG define six 
sub-polygons (in the present embodiment all rectangles) of 
the starting polygon 100. It can be seen further that all sides of 
all of the sub-polygons lie on either a bonndary of the starting 
polygon (those sides indicated in the figure with solid lines) or 
an edge of the partition tree (those sides shown in broken 
lines) or both (such as side ai and side dt). 

In step 418, the sub-polygons are output individually for 
use by the mask writer to make the mask. In an embodiment 
in which all the sub-polygons are required to be rectangles, 
the sub-polygons can be output in a manner that identifies the 
X and Y positions of any two diagonally opposite vertices. In 
an embodiment in which the sub-polygons can be trapezoids 
(such as where a boundary of a sub-polygon, the trapezoid, 
coincides with a diagonal boundary segment of the starting 
polygon), the sub-polygons (trapezoids) can be output in a 
manner that identifies the X and Y positions of all four verti­
ces. In an embodiment in which the sub-polygons can have 
non-trapezoidal shapes, other ways can beused to identify the 
vertices and edges of the sub-polygons. 

In step 420 it is determined whether there are additional 
polygons to fracture. If so, then the process returns to step 410 
to fracture the next starting polygon. If not, then polygon 
fracturing step 314 completes (step 422). 

as described in more detail below. Preferably it comprises a 20 

variant rectilinear Steiner Minimal Tree, but that is not essen­
tial in all embodiments of the invention. The preferred form of 
Partition Tree is sometimes referred to herein as a Minimal 
Partition Tree (MPT), the features and characteristics of 
which are described herein. 25 Preferred Method for Developing Partition Tree 
Polygon Fracturing 

FIGS. 4-10 together constitute a flowchart illustrating 
methods according to aspects of the invention for partitioning 
a starting polygon (step 314, FIG. 3). The flowcharts will be 
described with reference to the partitioning of an example 30 

starting polygon, specifically polygon 100 shown in FIG. lA. 
Initially, it can be seen that polygon 100 consists of a plurality 
ofbonndary segments (shown in solid lines) connecting pairs 
of starting polygon vertices (shown as comers of the poly­
gon). Polygon 100 includes a hole 114. Polygon 100 has an 35 

interior, being the region inside the outer boundary and out­
side the hole 114. Polygon 100 includes inflection vertices 
(I-points) a, b, c, d, e, f, g, hand i, shown in the figure with 
open dots. Also shown in FIG. lA are the R-points j, k, I, m, 
n, 0, p, q, r, u and v of polygon 100, shown in the figure with 40 

solid dots. While many of the techniques described herein 
apply to both rectilinear and non-rectilinear polygons, Poly­
gon 100 is a rectilinear polygon since all its boundaries are 
parallel to one or the other of the axes 110, 112. 

Referring to FIG. 4, the overall process is shown. It begins 45 

with a loop 410 through all of the incoming polygons. In step 
412, the current polygon, for example polygon 100, is read. In 
step 414 a Partition Tree is developed from the cut-lines of the 
current polygon. Preferably the Partition Tree has been opti­
mized, for example in a manner described herein, but that is 50 

not required in some of the broadest aspects of the invention. 
An example of a Partition tree developed from the polygon 
100 is the tree shown in FIG. IF. It can be seen that this tree 
includes all the I-points of the polygon 100, with at least one 
edge connected to each of the I-points. The Partition tree of 55 

FIG. IF also includes two of the R-points nand t, and also 
includes one Steiner point S. The Partition tree of FIG. IF is 
a rectilinear Steiner tree, although not all embodiments of the 
invention require that it be a Steiner tree. 

There are many ways to develop a Partition tree on a 
starting polygon. In one embodiment, all possible rectilinear 
cut -rays are drawn from each of the I-points to their respective 
R -points, and the Partition Tree is given by the complete set of 
I-points, R-points and cut-rays. In another embodiment, such 
a Partition Tree is in some sense optimized before transferring 
it to the starting polygon. For example, an exhaustive search 
can be performed on the initial Partition Tree for an optimal 
subset of the cut-rays. Many other methods of developing the 
Partition Tree will be apparent to the reader. 

In a preferred embodiment, the Partition Tree is a cost­
minimized rectilinear Steiner Minimal Tree, referred to 
herein as a Minimal Partition Tree (MPT). It is a variant 
Steiner minimal tree which offers a global and systematic 
algorithm for obtaining an optimal solution. In addition, the 
MPT inherits a solid theoretical foundation from existing 
Steiner tree research. Therefore there are several mature and 
efficient algorithms available that can be applied to solve the 
reformulated Steiner tree problem. Furthermore, by using 
cost minimization rather than simply total tree edge length 
minimization, other quality metrics such as sliver control can 
be incorporated into the optimization objectives. In addition, 
using a Steiner tree as basis of the polygon partitioning 
approach makes changing optimization objectives an easy 
task and does not necessarily require changing algorithms. An 
example is that if the objective is changed from minimizing 
the total cut length to minimizing the maximum cut length, 
the variant Steiner tree can simply be switched from a Steiner 
minimal tree to a min-max Steiner tree. 

FIG. 5 illustrates a preferred method for developing the 
Partition Tree, (step 414 in FIG. 4). It comprises a two-step 
process of first forming a Minimal Spanning Tree connecting 
all the I-points and R-points, and then constructing a rectilin­
ear Steiner Minimal Tree from the Minimal Spanning Tree. 

In step 416, the starting polygon is partitioned by transfer­
ring the edges of the Partition tree onto the starting polygon as 
cut-lines. This is shown in FIG. IG for the polygon 100. In the 
embodiment shown, all the edges of the Partition tree are used 
as cut-lines in the final partition except to the extent they 
coincide with bonndaries of the starting polygon (in which 
case no cut is required). The cut-lines, which are ae, bf, gS, hn, 
ct and di, are indicated with broken lines. It can be seen that 

60 Thus in step 510, all of the I-points and R-points of the 
starting polygon are identified. As mentioned, the I -points are 
all the inflection vertices of the starting polygon, and in the 
polygon 100 in FIG. lA they are a, b, c, d, e, f, g, hand i. The 
R-points are identified by drawing cutting rays from every 

65 I-point in the two rectilinear directions across the interior of 
the polygon. The R-points are then the intersection of these 
cutting rays with the nearest polygon bonndary, excluding 



US 8,151,236 B2 
9 

intersections which are already designated as I-points. The 
R-points of polygon 100 are identified in FIG.IA asj, k, I, m, 
n, 0, p, q, r, u and v, and are shown in the figures with solid 
dots. 

In step 512, a Minimal Spanning Tree is constructed, span­
ning all the identified I-points and R-points. Preferably this 
tree is a Sparming Tree which minimizes the sum of the Ll 
lengths of all its edges. A Minimal Sparming Tree on the 
polygon 100 is shown in FIG. ID. An efficient algorithm is 
described hereinafter for constructing such a Minimal Span­
ning Tree. (Edge ao is illustrated in an offset manner in the 
figure, but this is only for clarity of illustration. In actuality it 
is a straight line segment from I-point a to R-point 0, and 
coincides in parts with line segments ae and ei.) 

In step 514, the Minimal Spanning Tree is converted to a 
variant rectilinear Steiner minimal tree. The sense in which 
this tree is "minimal" depends on the embodiment, but pref­
erably a cost function is defined as described hereinafter and 
it is this cost function which is minimized. Preferably the 
construction of the variant Steiner minimal tree is constrained 
in two respects: first, although the tree is rectilinear, it does 
not include any L-shaped edges (no Steiner points of degree 
2); and each I-point has at least one edge that does not com­
pletely overlap the polygon boundary. A rectilinear Steiner 
minimal tree on the polygon 100 is illustrated in FIG. IF. It 
can be seen that one Steiner point S has been added, and it is 
of degree 3. It can be seen also that each of the I -points has at 
least one cut-ray connected to it. An efficient algorithm is 
described hereinafter for constructing such a rectilinear 
Steiner minimal tree from a Minimal Sparming Tree. 

FIG. 6 is a flow chart of a method for constructing the 
Minimal Sparming Tree (step 512). It comprises a step 610 of 
building a Separable Minimal Spanning Tree on only the 
I-points, and then a step 612 of connecting all the R-points 
with their respective parent I-points. A separable tree is used 
in step 610 primarily to enable use of a highly efficient algo­
rithm for converting the Sparming tree to a Steiner tree. In 
another embodiment, the Minimal Spanning Tree constructed 
in step 610 need not be separable. The tree in step 610 is 
constructed only on the I-points, because not all the R-points 
will be included in the final MPT, and it is difficult to deter­
mine during the construction of the SMST which R-points to 
include and which to omit. Instead it is preferred to leave it to 
the enumeration stage (discussed hereinafter with respect to 
FIG. 9) to determine which R-edges to include and which to 
remove. In another embodiment, however, steps 610 and 612 
can be combined into a single algorithm that builds the sepa­
rable minimal spanning tree connecting all the I-points and 
R -points, with other means implemented to ensure that appro­
priate R-points are removed. 

Note that after the R-points are connected in step 612, the 
resulting Spanning tree is still a minimum spanning tree 
(given the above constraint). The reason is because the con­
structed partition tree suggests polygon partitioning cut lines. 
Hence as one of the partition's basic requirements, any edge 
with an R-point as one end point can only have the other end 
point be that R -point's parent I -point. Therefore, R -points can 
only be connected to the spanning tree on I -points by directly 
connecting to their parent I-points respectively. Conse­
quently, the resulting tree completely connects all the I -points 
and R-points, and is minimal. The separable quality of the 
Minimum Spanning Tree after step 610, though, is not nec­
essarily maintained after the R-points are connected in step 
612. This can cause the preferred algorithm used to convert 
the Spanning tree to a Steiner tree, described hereinafter, to 
generate undesirable redundant edges. As explained below, 

10 
an additional step of removing redundant edges is performed 
after the conversion in order to correct for this issue. 

FIG. lC illustrates a Separable Minimal Spanning Tree on 
only the I -points of polygon 100, after step 610. As mentioned 
previously, FI G. ID illustrates the tree after the R -points have 
been connected in step 612. 

FIG. 7 is a flow chart of a preferred algorithm for step 610 
of building a separable minimal spanning tree connecting the 
I-points. The algorithm roughly follows L. J. Guibas and J. 

10 Stolfi, "On computing all northeast nearest neighbors in the 
Ll metric." Information Processing Letters, 17:219-223 
(1983), incorporated herein by reference. As shown in FIG. 7, 
the algorithm begins in step 710 by looping through all of the 

15 I-points. In step 712, for the current I-point, the nearest neigh­
boring I-point is found in each of the 8 octants centered at the 
current I-point. Nearness is measured here by Ll distance. A 
cost function could be applied here if desired, but in the 
present embodiment it is not. In step 714 it is determined 

20 whether all the I -points have been processed, and if not, the 
flow returns to step 71 0 to consider the next I-point. 

Ifin step 714 there are no more I-points to consider, then in 
step 716, all the I-points are entered on a graph G, with 
connections drawn to only the nearest neighbors in each 

25 octant. FIG. IB illustrates such a graph for polygon 100, but 
for clarity of illustration, only the connections from I -points a 
and b are shown. Specifically, from I-point a, and using com­
pass directions to identify octants, it can be seen that point b 
is the nearest neighbor in the ESE octant, point f is the nearest 

30 neighbor in the SSE octant. Since inFIG.IB an octant bound­
ary is considered part of the clockwise-adjacent octant, point 
e is the nearest neighbor in the SSW octant. (Anotherembodi­
ment could consider instead an octant boundary to be part of 
the counter-clockwise-adjacent octant.) Similarly, from point 

35 b, point h is the nearest neighbor in the SSW octant and point 
g is the nearest neighbor in the WSW octant. Point a is the 
nearest neighbor in the WNW octant. 

Once connections are made to the nearest neighbors in 
each I-point's octant, then in step 718 the minimal spanning 

40 tree is found using a conventional spanning tree optimization 
algorithm and limited to the search space defined by the 
connections drawn in step 716. The preferred algorithm 
roughly follows the PRIM or Kruskal algorithms described in 
Thomas Cormen, Charles Leiserson and Ronald Rivest, 

45 "Introduction to Algorithms", Chapter 24, pp. 498-511 
(McGraw-Hill, 1990), incorporated herein by reference. The 
preferred algorithm operates by first initializing a spanning 
tree structure to a set with an arbitrary node (I-point). Next, 
find the smallest-cost edge from graph G that has one end-

50 point already in the tree structure and one not, and add to the 
tree structure both that edge and the endpoint not previously 
in the tree. Repeat the latter step iteratively until all the edges 
and points from Graph G have been entered into the tree. The 
resulting tree structure is then a minimal spanning tree span-

55 ning all the I -points of the starting polygon. As mentioned, 
FIG. lC shows the result of this step on the polygon 100. By 
carefully formulating the edge cost, the constructed minimal 
spanning tree can be separable as well. For example, one way 
preferably adopted is the cost suggested in "New Algorithms 

60 for Rectilinear Tree Problem" (by J. M. Ho, G. Vijayan, and 
C. K. Wong, in IEEE Transaction on Computer-Aided 
Design, Vol 9 , No.2, 1990), incorporated by reference herein, 
in which the cost between node i and j is given by cost 
(i,j)={L1(i,j), -ly(i)-yG)l, -max(x(i),xG))}. That is, the dif-

65 ference of the cost is first judged by their L1 distance, and if 
equal then by the distance in the Y direction, and if still equal 
then by the X-coordinates of the two end points. 



US 8,151,236 B2 
11 

Returning to FIG. 5, after the minimal spanning tree span­
ning the I-points and R-points is found (step 512), a rectilin­
ear Steiner minimal tree is formed from the minimal sparming 
tree (step 514). FIGS. 8-10 set forth an algorithm for accom­
plishing step 514. The algorithm is based on enumerating all 
the "path type combinations" that are possible for connecting 
each node of the tree to its child nodes, and traversing the tree 
recursively to choose the least cost combination at each level 
of the hierarchy. The property of separability in the minimal 
spanning tree guarantees that the sequence in which paths are 10 

optimized will not affect the result. In addition, since the 
bonnding boxes of no two non-adjacent edges touch or inter­
sect each other, the processing of the spanning tree into a 
Steiner tree can be done level by level, from root node to leaf 
nodes, without any need to consider cross-level nodes. Hence 15 

the processing complexity can be linear to the number of 
spanning tree edges. The minimal spanning tree found in step 
512 is not necessarily completely separable, but as men­
tioned, the redundant edges that this deficiency can produce 
in the resulting Steiner minimal tree are removed later. 

Referring to FIG. 8, in step 810, the Steiner Minimal Tree 
(SMT) is initialized with the full minimal spanning tree found 
in step 512.All the I-nodes and all theR-nodes, are present, as 
well as all the connections between each R-node and its 

20 

parent I-node. Any I-point is chosen as the root node of the 25 

SMT. For example, in FIG. ID, I-point fmight be chosen as 
the root node. It can be seen from FIG. ID that node fhas child 
nodes b, e, g and u. Node e in tum has child nodes a, i and q, 
and so on. Also in step 810, each node of the tree is initialized 

12 
through all 16 combinations. Table I sets forth the 16 path 
type combinations from parent point fto its child nodes. 

Combo. # fb 

0 0 
0 

2 0 
0 

4 0 
0 
0 

7 0 

9 
10 
11 
12 
13 
14 
15 

TABLE I 

fb/fe/fg: 0 ~ upper-L, 1 ~ lower-L 
fu: 0 ~ absent, 1 ~ present 

fe 

o 
o 
o 
o 

o 
o 
o 
o 

fg 

o 
o 

o 
o 

o 
o 

o 
o 

fu 

o 

o 

o 

o 

o 

o 

o 

o 

Of the above 16 path type combinations, the search space 
can be substantially reduced by applying some constraints. 
The first two of these constraints are appropriate for making 
the resulting partition tree directly applicable for partitioning 
the starting polygon, and therefore are not generally found in 
most typical tree optimization algorithms. 

to have a null minimal cost. 
In step 812, a recursive routine GeCNode_Cost(current_ 

node, parenCpath_type) is called from the root node to the 
bottom leaf nodes. The tree is traversed depth-first. In step 
812 the root node is provided for the currenCnode, and null is 
provided for the parenCpath_type because the root node has 
no parent node. The Get_Node_Cost routine returns both the 
minimal cost of the current_node and the optimal path type 
combination for the current_node' s children edges, given that 
the parent edge of the currenCnode has the given path type. 
Once this routine returns at root node, an optimal tree has 
already been fonnd. 

30 First, each I -point must have exactly one cut-state tree edge 
unless it has two chords (connected to other I-points). Stated 
differently, if an I-point has two children that are R-points, 
exactly one of them must be connected in the SMT. All the 

35 path combinations in which the paths to both are absent can be 
eliminated from the search space, as can all the path type 
combinations in which the paths to both are present. Accord­
ing to this constraint, in Table I, among all the combinations 
for the path types of all of f s child edges in the example of 

40 FIG. ID, the combination 0, 2, 4, 6, 9, 11, 13, 15 can be 
eliminated. 

FIG. 9 is a flowchart of the GeCNode_Cost(currenCnode, 
parent_path_type) routine. It begins in step 910 by enumer­
ating all of the path type combinations from currenCnode to 
its child nodes. The path type combinations from current_ 45 

node to its children provide options for several different char­
acteristics. For a child edge that connects to an R-point, the 
two possible path types are "present" or "absent". If present, 
the R -point will be connected. If absent, then the R -point will 
not be connected and hence is eliminated. For a child edge 50 

that connects to another I-point, the two possible path types 
are "lower-L" and "upper-L". This is because the desired 
SMT is rectilinear, whereas the edges in the Minimal Span­
ning Tree can be diagonal. An upper-L path type proceeds 
horizontally from the upper node of the connected pair, to a 55 

comer, then vertically to the lower node of the pair, whereas 
a lower-L path type proceeds vertically from the upper node 
of the connected pair, to a comer, then horizontally to the 
lower node of the pair. Thus forI-point fin FIG. ID, there are 
four child nodes b, e, g and u. Among them, b, e, g are I -points, 60 

and u is an R-point. Each of the child edges from f, fb, fe, and 
fg can have path type "lower-L" or "upper-L". The child edge 
fu can have path type "present" or "absent". Hence the avail­
able path type combinations include combinations in which 
the paths to child nodes b, e, g and u respectively are: (upper- 65 

L, upper-L, upper-L, present), (upper-L, upper-L, upper-L, 
absent), (upper-L, upper-L, lower-L, present), and so on 

Second, no part of an SMT tree edge can lie outside the 
polygon. Thus path type combinations in which an edge 
crosses a notch in the outer boundary of the starting can be 
eliminated, as can path type combinations which cross a hole 
in the polygon. Also, if an edge in the spanning tree is not 
horizontal or vertical (i.e. it is a diagonal edge), the path type 
for it in the Steiner tree cannot lie entirely on boundaries of 
the starting polygon. Path type combinations that violate that 
rule can be eliminated from search space as well. 

Third, if two path combinations are identical then one can 
be eliminated from the search space. This may occur, for 
example, where a child node has either the same X -position or 
the same Y-position as its parent. In such a case the upper-L 
option to the child node and the lower-L option to that child 
node coincide. Where this occurs, all combinations which call 
for the lower-L option for the path to that child node can be 
eliminated from the search space. (In a different embodiment 
the upper-L options can be eliminated instead.) In the 
example of FIG. ID, child nodes b, e and u each share either 
an X-position or a Y-position with parent node f. In Table I, 
therefore, all of the combinations can be eliminated from the 
search space except for combinations 12, 13, 14 and 15. 

The search space for child path types for parent node f can 
therefore be reduced to only the combinations in Table II after 
the above three constraints are applied. This means that f is 
connected to e and b, but is not connected to u. We therefore 



US 8,151,236 B2 
13 

need only to choose between fg path type being "lower-L" 
and "upper-L" for the smaller total cost. 

TABLE II 

14 
nodes, top-down from the root node. For each node, step 814 
records to a graph grid both the current node and the optimal 
path type combination from the current node to each of its 
children. As mentioned, if the optimal path type combination 

Combo. # 

12 
14 

fb 

fb/fe/fg: 0 ~ upper-L, 1 ~ lower-L 
fu: 0 ~ absent, 1 ~ present 

fe fg 

o 

fu 

o 
o 

5 from any node dictates the absence of any connection to an 
R-point child of that node, the R-point is eliminated and not 
recorded to the graph grid. Additionally, for any L-shaped 
path, the comer of the L is recorded to the graph grid as a 
Steiner point (unless it coincides with another node written to 

10 the graph grid). The final rectilinear SMT then is made up of 
the MST nodes recorded on the graph plus the set of optimal 
path type combinations. After all of the path type combinations from current_node 

Step 816 then removes any rednndant edges in the SMT. to its child nodes have been enumerated, then in step 912 an 
outer loop is begun to iterate through all of them. In step 914, 
for the current selected path combination, all the child edges 
corresponding path types are obtained. In step 916 an inner 
loop is begun to iterate through all of current_node's child 
nodes. For each child edge, in step 918, the GeCNode_Cost 
(current_node, parent_path_type) routine of FIG. 9 is first 
called recursively to determine the minimum cost for the 
current child node using the current path type to the current 
child node that is given by the current path type combination. 
(Preferably this minimum cost value is cached so that it need 
not be recalculated repeatedly.) In step 920 the minimum cost 
so obtained is added to the current path type combination cost 
variable, and in step 922 the flow loops back to step 916 to 
determine the minimum cost for the next child node using the 
next child edge's current path type. After all the child nodes of 
currenCnode have been traversed, the cost variable for the 
current path type combination contains the minimum cost of 
the current child edge path type combination. 

15 FIG. 10 is a detail of step 816. First, in step 1010, any inter­
secting R-edges are identified and their crossing points are 
obtained. In the tree illustrated in FIG. 11, for example, 
R-edges 12-R1 and 13-R2 each cross R-edge 11-R3 atrespec­
tive crossing points C1 and C2. In step 1012, all the redundant 

20 edges are identified. These are "moveable", in the sense that 
they can be moved in a direction perpendicular to the orien­
tation of the edge, without changing the edge cost, thus the 
tree cost, until it hits the polygon bonndary. In the example of 
FIG. IE, both edges io and gk are moveable, and in FIG. 11, 

25 edge C1-C2 is moveable. Edge io is redundant because it can 
be moved all the way to the left nntil it coincides with a 
segment of the starting polygon boundary, or all the way to the 
right nntil it is in-line with cut-line ct. Edge gk is redundant 
because it can be moved all the way upward nntil it is in-line 

30 with cut-line bfor all the way downward nntil it is in-line with 
cut-line cn. 

In step 1014 the redundant edges are sorted by cost. The 
cost function used here is similar to the cost function used in 
step 920 and 924. In step 1016 the greater cost redundant 

35 edges are deleted from the SMT. Edges are removed in cost 
order, since removing one movable edge may cause another 
originally movable edge to no longer be movable. Movable 
edges are removed one by one in the sorted list from the 
greatest cost to the least. At this point the resulting SMT 

In step 924 the parent edge's cost (if any) is also added to 
the minimum cost of the current child edge path type combi­
nation. The parent edge type was provided as the second 
argument to the Get_Node_ Cost( currenCnode, parenCpath_ 
type) routine. If the parenCpath_type was null, as during the 
iteration of Get_Node_Cost(currenCnode, parenCpath_ 
type) called from the root node in step 812, this step 924 is 
skipped. Next, in step 926, all the overlaps among the cur­
renCnode's parent edge (if any) and all children edges in the 
current path type combination. The cost of these overlaps has 
been double-counted, so these are now subtracted once from 
the minimum cost of the current child edge path type combi­
nation. In step 928, if there are more child edge path type 45 

combinations to consider, flow returns to step 912 to calculate 
the minimum cost of the next child edge path type combina­
tion. In step 930, after the minimum costs of all the child edge 
path combinations have been calculated, the child edge path 
type combination with the least cost is chosen. The chosen 50 

path type combination is recorded as optimal, and the cost is 
returned from the GeCNode_Cost(current_node, parent_ 
path_type) routine as currenCnode's minimum cost. Due to 
the separability property of the Minimal Spanning Tree, the 
enumeration, cost evaluation, and edge overlaps for a given 55 

tree node need only consider a current tree node's parent edge 
and its children edges. It is not necessary to consider grand­
parents or higher generations, or uncles, or cousins. As men­
tioned, the Minimal Spanning Tree resulting from step 512 is 
not entirely separable, but to the extent it is not, the artifacts 60 

created in the rectilinear Steiner minimal tree are subse­
quently removed. 

40 constitutes the final Partition Tree for the starting polygon 
(step 414), and the edges of the SMT can be applied as 
cut-lines to optimally partition the starting polygon (step 
416). 

Thus, returning to FIG. 8, as previously set forth, step 812 
yields the optimal path type combination for the root node's 
children edges. Similarly, the optimal path type combination 65 

for all the nodes in the tree have also been recorded. To form 
the SMT, therefore, step 814 recursively traverses all the tree 

Data Structures 
In an embodiment, a tree node in the Minimal Spanning 

Tree resulting from step 512 (FIG. 5) is a data structure in 
memory having a type called MSTTreeNode, and which 
includes the following fields: 

vertex: the pointer that points to the vertex information of 
this tree node, such as x, y coordinates, the pointers to 
previous and next vertices on the polygon boundary 
along anti-clockwise direction, and so on. 

sons[ ]: array of pointers, each of which points to a child 
node (of MSTTreeNode type) of this tree node. The 
length of the array is the same as the number of child 
nodes of this node. 

sonNum: number of this node's children nodes in the span­
ning tree. 

parentPathStatus[2]: the path status for the parent edge 
being each of the 2 different path types. The 1 st field 
xxx[O] is the status for path type being "lower L" type. 
The 2nd field xxx[l] is the status for path type being 
"upper L" type. The status value of a particular path type 
can be one of the following: has portion outside the 
polygon, completely on polygon boundary, completely 
inside polygon, or part inside polygon, part on boundary, 
and so on. 



US 8,151,236 B2 
15 

costs[ ]: the array of the minimal costs for this node asso­
ciated with each of the parent path's different path type. 
The array length is same as the number of different path 
types of the node's parent edge. 

subRST[]: the array of pointers, each of which points to a 
sub-tree (in RSTNode type) rooted at this current node 
with this node's parent edge being one of the different 
path types. This array stores, for each different path type 
of current node's parent edge, the optimal combination 

16 
prohibited), then the disfavored value of the feature can be 
given a prohibitive weight (such as infinity). Alternatively, 
candidate solutions having the prohibited value for the con­
straint can be removed from the candidate set altogether 
without even considering the cost fnnction (as is done for 
some features in the present embodiment, but eliminating 
certain candidates from the search space). 

In the embodiments described herein, during the construc­
tion of the Steiner minimal tree, the cost function used in steps 
920 and 924 is based primarily on L1 length of an edge, 
because it has been proved that minimization of the sum of the 
cut-lines of a polygon corresponds to optimization of the 
shapes of the rectangular sub-polygons of the partition. That 
is, the aspect ratios of the rectangles are optimally close to 

of its children nodes' path types that gives minimal cost. 10 

For example, for current node's parent edge being path 
type (i), cost[i] stores the minimal cost, subRST[i] 
points to the sub-tree rooted at this code in which the 
children nodes' path types are in the optimal combina­
tion that gives minimal cost "cost[i]". 15 unity. But because a cost fnnction is used in the present 

embodiment rather than purely total edge length, the con­
struction of the Steiner minimal tree can also optimize for 
other considerations. In the present embodiment in particular 

Also in an embodiment, a tree node in the rectilinear 
Steiner Tree resulting from step 514 (FIG. 5) is a data struc­
ture in memory having a type called RSTNode, and which 
includes the following fields: 

vertex: the pointer that points to the vertex information of 20 

this tree node, such as x, y coordinates, the pointers to 
previous and next vertices on the polygon boundary 
along anti-clockwise direction, and so on. 

spanNode: a pointer that points to the spanning tree node 
(in MSTTreeNode type) that is associated with this rec- 25 

tilinear Steiner Tree tree node. 
thisLayout: the path type of the parent edge from current 

tree node to its spanning tree parent tree node. 
sonNum: the number of current node's children nodes. 
sons[ ]: array of slot IDs, each of which represents the 30 

direction from current tree node to one of its child nodes 
in the rectilinear Steiner tree. The length of the array is 
sonNum. The slot ID value, which means the direction, 
can be EAST, WEST, NORTH, or SOUTH. 

discourages slivers and critical dimension (CD) slicing edges. 
The critical dimension of a mask-making process is a line 

width, usually specified by the mask-making house, narrower 
than which the mask writing is deemed to be unreliable. In 
order to minimize the probability that narrower lines must be 
written, mask-making houses often discourage partitions that 
slice an already very narrow polygon along the lengthwise 
direction. More specifically, if the aspect ratio of a rectangle 
is very far from unity, and its length is greater than some 
maximum threshold, and its width is smaller than some mini­
mum threshold, then a partition which requires splitting the 
rectangle along the long dimension is considered to be CD 
slicing and is discouraged. 

A sliver, as previously mentioned and as used herein, is a 
small dimension figure that is difficult to print on a mask 
because of its narrowness relative to the resolution of the 

slots[ ]: array of real child node pointers (pointing to 
objects of type RSTNode) that is in each of the direc­
tions. Ifin direction "i" (which means slot ID=i, 0 means 
EAST, 1 means SOUTH, ... etc) there is a child node of 
this current node directly connected to this node, then 
slot[i] stores the pointer to that child node. If in that 
direction there is no child node connected, it stores 
NULL, an empty pointer. 

35 mask writing equipment. Not all slivers are problematical. 
Embedded slivers, which are slivers both of whose long sides 
are interior to the polygon, are acceptable whereas an edge 
sliver, at least one long side of which is on the polygon 
boundary, is problematical. If an edge sliver is unavoidable, 

40 then it is desirable to minimize the cumulative length of edges 
which create edge sliver regions. 

Cost Functions 
The cost of an edge, as used for the Steiner minimal tree 

construction in FIG. 9 is of an edge is given by the L1 length 
of the edge plus a sliveccost plus a CD_cost. The CD_cost is 

45 given by a CD_slicing flag multiplied by a CD_slicing 
weight. The CD_slicing_flag is 1 if the edge splits the critical 
dimension (according to the mask maker's definition), or 0 if 
it does not. The sliveccost is the overlap_length multiplied 
by a sliver weight factor. The overlap_length is the length of 

In the above-described algorithm, cost functions are used 
during the conversion of the minimal spanning tree to the 
Steiner minimal tree, in steps 920 and 924 (FIG. 9), and again 
when sorting rednndant edges in step 1014 (FIG. 10) for 
removal. A cost function, as the term is used herein, is a 
measure of how "good" any particular solution is consid­
ered-the lower the value of this function, the better the 
solution. A cost fnnction is typically defined as the weighted 
sum of a plurality of factors which depend on the particular 
solution candidate. Any feature of the solution can be 
included in the cost function, and given whatever weight is 
desired for the particular application. For example, a feature 55 

that is considered more important can be given a greater 
weight in the cost function than a feature that is considered 
less important. If a feature can have a continuous range of 
values (such as total length of a particular candidate solution), 
then the value can be scaled, shifted and/or negated to give it 
appropriate influence in the cost function. If a feature has a 
binary value, indicating whether or not the feature is present 
in a particular candidate solution, the favored value can be 
given a zero or negative weight while the disfavored value can 
be given a positive weight so that its presence in a particular 
solution increases the cost of that solution. If the feature is a 
constraint (that is, a feature whose presence or absence is to be 

50 the portion of the edge that has distance from a polygon 
boundary that is smaller than a predetermined slivec width 
value. If an edge has several segments of intervals with dis­
tance from boundary smaller than slivec width, then the over-
lap_length is the sum of all such these segment lengths. 

In other embodiments, some of the considerations used in 
step 910 (FIG. 9) of the present embodiment for reducing the 
search space, can instead be incorporated into the cost fnnc­
tion. These include such factors as a penalty for a completely 
on-boundary path; a penalty for an L-shaped path (i.e. a 

60 rectilinear path that creates a Steiner point of degree 2 rather 
than 3); and a penalty for solutions having two cuts from a 
single I-node. As mentioned, by using cost minimization 
rather than simply total tree edge length minimization, vari­
ous optimization objectives can be incorporated directly into 

65 the optimization problem by including them in the cost fnnc­
tion. Changing optimization objectives then becomes an easy 
task and does not imply changing algorithms. 



US 8,151,236 B2 
17 

It will be appreciated that it is possible to design an opti­
mization function in which favored features increase rather 
than decrease its value, and for which the solution to be 
chosen is one with the maximum, rather than the minimum 
value. A duality exists between such maximized optimization 
functions and cost functions as described herein, such that for 
every such maximized optimization function, there is a cor­
responding cost function that accomplishes the same objec­
tive and will achieve the same result. For this reason, an 
embodiment which maximizes such an optimization func­
tion, also can be said to minimize a corresponding cost func­
tion (even though the cost function may not be explicitly set 
out in the embodiment). 
Hardware Implementation 

FIG. 12 is a simplified block diagram of a computer system 
1210 that can be used to implement software for performing 
aspects of the present invention. While the flow chart figures 
set forth herein specifY particular operations to be performed, 
it will be appreciated that in a computer and software imple­
mentation each flow chart step actually causes the computer 
system 1210 to operate in the specified manner. 

18 
Storage subsystem 1224 stores the basic programming and 

data constructs that provide the functionality of certain 
embodiments of the present invention. For example, the vari­
ous modules implementing the functionality of certain 
embodiments of the invention may be stored in storage sub­
system 1224. These software modules are generally executed 
by processor subsystem 1214. 

Memory subsystem 1226 typically includes a number of 
memories including a main random access memory (RAM) 

10 1230 for storage of instructions and data during program 
execution and a read only memory (ROM) 1232 in which 
fixed instructions are stored. File storage subsystem 1228 
provides persistent storage for program and data files, and 

15 may include a hard disk drive, a floppy disk drive along with 
associated removable media, a CD ROM drive, an optical 
drive, or removable media cartridges. The databases and 
modules implementing the functionality of certain embodi­
ments of the invention may have been provided on a computer 

20 readable medium such as one or more CD-ROMs, and may be 
stored by file storage subsystem 1228. The host memory 1226 
contains, among other things, computer instructions which, 
when executed by the processor subsystem 1214, cause the 
computer system to operate or perform functions as described 

Computer system 1210 typically includes a processor sub­
system 1214 which communicates with a number of periph­
eral devices via bus subsystem 1212. These peripheral 
devices may include a storage subsystem 1224, comprising a 
memory subsystem 1226 and a file storage subsystem 1228, 
user interface input devices 1222, user interface output 
devices 1220, and a network interface subsystem 1216. The 
input and output devices allow user interaction with computer 
system 1210. Network interface subsystem 1216 provides an 
interface to outside networks, including an interface to com­
munication network 1218, and is coupled via communication 
network 1218 to corresponding interface devices in other 
computer systems. Communication network 1218 may com­
prise many intercounected computer systems and communi- 35 

cation links. These communication links may be wireline 
links, optical links, wireless links, or any other mechanisms 
for communication of information. While in one embodi­
ment, communication network 1218 is the Internet, in other 
embodiments, communication network 1218 may be any 
suitable computer network. 

25 herein. As used herein, processes and software that are said to 
run in or on "the host" or "the computer", execute on the 
processor subsystem 1214 in response to computer instruc­
tions and data in the host memory subsystem 1226 including 
any other local or remote storage for such instructions and 

30 data. 
Bus subsystem 1212 provides a mechanism for letting the 

various components and subsystems of computer system 
1210 communicate with each other as intended. Although bus 
subsystem 1212 is shown schematically as a single bus, alter­
native embodiments of the bus subsystem may use multiple 
busses. 

Computer system 1210 itself can be of varying types 
including a personal computer, a portable computer, a work­
station, a computer terminal, a network computer, a televi-

40 sion, a mainframe, or any other data processing system or user 
device. Due to the ever changing nature of computers and 
networks, the description of computer system 1210 depicted 
in FIG. 12 is intended only as a specific example for purposes 
of illustrating the preferred embodiments of the present 

The physical hardware component of network interfaces 
are sometimes referred to as network interface cards (NICs), 
although they need not be in the form of cards: for instance 
they could be in the form of integrated circuits (ICs) and 
connectors fitted directly onto a motherboard, or in the form 
of macrocells fabricated on a single integrated circuit chip 
with other components of the computer system. 

User interface input devices 1222 may include a keyboard, 
pointing devices such as a mouse, trackball, touchpad, or 
graphics tablet, a scanner, a touch screen incorporated into the 
display, audio input devices such as voice recognition sys­
tems, microphones, and other types of input devices. In gen­
eral, use of the term "input device" is intended to include all 
possible types of devices and ways to input information into 
computer system 1210 or onto computer network 1218. 

User interface output devices 1220 may include a display 
subsystem, a printer, a fax machine, or non visual displays 
such as audio output devices. The display subsystem may 
include a cathode ray tube (CRT), a flat panel device such as 
a liquid crystal display (LCD), a projection device, or some 
other mechanism for creating a visible image. The display 
subsystem may also provide non visual display such as via 
audio output devices. In general, use of the term "output 
device" is intended to include all possible types of devices and 
ways to output information from computer system 1210 to the 
user or to another machine or computer system. 

45 invention. Many other configurations of computer system 
1210 are possible having more or less components than the 
computer system depicted in FIG. 12. 

The present invention may be practiced as a method or 
device adapted to practice the method. The invention may be 

50 an article of manufacture such as media impressed with logic 
to carry out the steps of the polygon partitioning method when 
executed by a computer. 

While the present invention has been described by refer­
ence to preferred embodiments and examples detailed above, 

55 it is understood that these examples are intended in an illus­
trative rather than in a limiting sense. Computer-assisted pro­
cessing may be used to implement the described embodi­
ments. Accordingly, the present invention may be embodied 
in methods for performing the specified steps, systems 

60 including logic and resources to carry out the specified steps, 
media impressed with logic to carry out the specified steps, 
data streams impressed with logic to carry out the specified 
steps, or computer-accessible services that carry out the 
specified steps. It is contemplated that modifications and 

65 combinations will readily occur to those skilled in the art, 
which modifications and combinations will be within the 
spirit of the invention and the scope of the following claims. 



US 8,151,236 B2 
19 

We claim as follows: 
1. A method for mask data preparation, for use with a 

preliminary mask layout that includes a starting polygon, the 
starting polygon consisting of a plurality of boundary seg­
ments connecting pairs of starting polygon vertices, the start­
ing polygon having an interior, 

20 
R-points, the partItIOn tree has the mlmmum cost 
according to the cost function. 

11. The method according to claim 10, wherein each given 
one of the R-points in the tree is connected in the tree directly 
to an I-point disposed rectilinearly across the starting polygon 
interior from the given R-point. 

wherein the vertices of the starting polygon include at least 
one I-point each having an interior angle strictly greater 
than 90 degrees, the method comprising: 

by a computer system, constructing a spanning tree con­
necting all the I-points of the starting polygon as well as 
all the R-points of the starting polygon, the R-points 
being all boundary of the starting polygon which do not 
coincide with a vertex, and which are disposed rectilin­
early across the starting polygon interior from one of the 
I-points; 

12. The method according to claim 10, wherein the cost 
function is positively dependent upon the sum of the Ll edge 
lengths of the partition tree. 

10 13. The method according to claim 10, wherein the cost 
function is positively dependent upon the total length of any 
non-embedded slivers produced by the partition tree. 

14. The method according to claim 10, wherein the cost 
15 function disfavors those partition trees having edges that slice 

a critical dimension of the starting polygon. 

traversing the spanning tree recursively according to the 
tree structure; 

in dependence upon the step of traversing, developing a 20 

rectilinear partition tree having a plurality of nodes and 

15. The method according to claim 10, wherein the cost 
function disfavors those partition trees having edges that lie at 
least in part exterior to the starting polygon. 

16. The method according to claim 10, wherein the cost 
function disfavors those partition trees having any Steiner 
points of degree 2 over those in which all Steiner points are of 
degree 3. 

a plurality of edges connecting pairs of the nodes, the 
plurality of nodes including all I-points of the starting 
polygon, the plurality of edges including at least one 
connected to each of the I-points; and 

outputting a plurality of sub-polygons which collectively 
partition the starting polygon, all the sides of all of the 
sub-polygons lying on either a boundary of the starting 
polygon or an edge of the partition tree or both. 

17. The method according to claim 10, wherein the cost 
25 function disfavors those partition trees which include two 

cuts from any single I-node. 

2. The method according to claim 1, wherein the plurality 30 

of nodes in the partition tree further includes at least one 
R-point. 

3. The method according to claim 2, wherein at least one 
point on a boundary of the starting polygon which does not 
coincide with a vertex, and which is disposed rectilinearly 35 

across the starting polygon interior from one of the I -points, is 
not included in the partition tree. 

4. The method according to claim 2, wherein for each given 
I -point of the starting polygon, if the given I -point has two 
R-points being points on the boundary of the starting polygon 40 

which do not coincide with a vertex or with each other, and 
which are disposed rectilinearly across the starting polygon 
interior from the given I-points, one of the R-points is 
included in the partition tree and the other is not. 

5. The method according to claim 4, wherein the included 45 

R-point for each given I-point is connected directly in the 
partition tree to the given I-point. 

6. The method according to claim 2, wherein no edge of the 
partition tree includes any portion exterior to the starting 
polygon. 

7. The method according to claim 1, wherein the plurality 
of nodes in the partition tree further includes at least one 
Steiner point, the plurality of nodes not including any Steiner 
points of degree 2. 

50 

8. The method according to claim 1, wherein all of the 55 

sub-polygons are trapezoids. 
9. The method according to claim 8, wherein all the sides of 

all of the sub-polygons, which sides lie in any part on one of 
the partition tree edges, are rectilinear. 

10. The method according to claim 1, 
further comprising providing a predetennined cost func­

tion, 
wherein the plurality of nodes in the partition tree further 

includes at least one R-point, 
wherein the partition tree is a rectilinear Steiner tree, 
and wherein of all possible rectilinear Steiner trees that can 

be constructed connecting all of the I-points and 

60 

65 

18. The method according to claim 1, wherein constructing 
a spanning tree comprises constructing a separable minimal 
spanning tree connecting all the I-points; and 

connecting all the R-points to the separable minimal span­
ning tree. 

19. The method according to claim 18, wherein construct-
ing a separable minimal spanning tree comprises constructing 
a particular tree for which, of all possible separable trees that 
can be constructed connecting all of the I-points, the edges of 
the particular tree have the minimum total Ll length. 

20. The method according to claim 1, wherein developing 
the partition tree comprises: 

fonning a rectilinear Steiner tree wherein of all possible 
rectilinear Steiner trees that can be constructed using the 
I-points, R-points and edges of the spanning tree, the 
partition tree has the minimum cost according to a pre­
determined cost function; and 

removing redundant edges from the rectilinear Steiner tree. 
21. The method according to claim 20, wherein construct­

ing a spanning tree comprises constructing a separable mini­
mal spanning tree connecting all the I-points; and 

connecting all the R-points to the separable minimal span­
ning tree. 

22. The method according to claim 1, wherein developing 
a partition tree comprises: 

constructing a Steiner tree connecting all the I-points of the 
starting polygon as well as fewer than all the R -points of 
the starting polygon, the R-points being all points on a 
boundary of the starting polygon which do not coincide 
with a vertex, and which are disposed rectilinearly 
across the starting polygon interior from one of the 
I-points; and 

fonning the partition tree in dependence upon the Steiner 
tree. 

23. The method according to claim 1, wherein 
the spanning tree has a plurality of nodes and a plurality of 

edges connecting pairs of the nodes, the plurality of 
nodes including all I-points of the starting polygon, the 
plurality of edges including only edges that directly 
connect an I-point with either an R-point or another 
I-point. 



US 8,151,236 B2 
21 

24. The method according to claim 23, wherein developing 
the partition tree comprises: 

constructing a minimal spanning tree in dependence upon 
the spanning tree; and 

constructing the partition tree in dependence upon the 
minimal spanning tree. 

22 
wherein each given one of the R-points in the tree is con­

nected in the tree directly to an I -point disposed rectilin­
early across the starting polygon interior from the given 
R-point, 

and wherein of all possible rectilinear Steiner trees that can 
be constructed connecting all of the I-points and 
R-points, the partition tree has the minimum cost 
according to the cost function. 

25. The method according to claim 24, wherein the mini­
mal spanning tree is one which minimizes the sum of the Ll 
lengths of all its edges. 

26. A system for mask data preparation, for use with a 
preliminary mask layout that includes a starting polygon, the 
starting polygon consisting of a plurality of bonndary seg­
ments connecting pairs of starting polygon vertices, the start­
ing polygon having an interior, 

32. The system according to claim 31, wherein the cost 
10 function is positively dependent upon the sum of the Ll edge 

lengths of the partition tree. 

wherein the vertices of the starting polygon include at least 
one I-point each having an interior angle strictly greater 
than 90 degrees, the system comprising: 

33. The system according to claim 32, wherein the cost 
function is positively dependent upon the total length of any 

15 non-embedded slivers produced by the partition tree, and 
disfavors those partition trees having edges that slice a critical 
dimension of the starting polygon. 

means for constructing a spanning tree connecting all the 
I-points of the starting polygon as well as all the R -points 
of the starting polygon, the R-points being all points on 
a boundary of the starting polygon which do not coin­
cide with a vertex, and which are disposed rectilinearly 
across the starting polygon interior from one of the 
I-points; 

34. The system according to claim 26, wherein the means 
for constructing a sparming tree comprises means for con-

20 structing a separable minimal sparming tree connecting all the 
I-points and for connecting all the R-points to the separable 
minimal spanning tree, 

means for traversing the spanning tree recursively accord- 25 

ing to the tree structure; 
means for developing, in dependence upon the means for 

traversing, a rectilinear partition tree having a plurality 
of nodes and a plurality of edges connecting pairs of the 
nodes, the plurality of nodes including all I -points of the 30 

starting polygon, the plurality of edges including at least 
one connected to each of the I-points; and 

means for outputting a plurality of sub-polygons which 
collectively partition the starting polygon, all the sides 
of all of the sub-polygons lying on either a boundary of 35 

the starting polygon or an edge of the partition tree or 
both. 

27. The system according to claim 26, wherein the plurality 
of nodes in the partition tree further includes at least one 
R-point. 

28. The system according to claim 27, wherein for each 40 

given I-point of the starting polygon, if the given I-point has 
two R-points being points on the boundary of the starting 
polygon which do not coincide with a vertex or with each 
other, and which are disposed rectilinearly across the starting 
polygon interior from the given I-points, one of the R-points 45 

is included in the partition tree and the other is not, 
and wherein the included R-point for each given I-point is 

connected directly in the partition tree to the given 
I-point. 

29. The system according to claim 27, wherein no edge of 50 

the partition tree includes any portion exterior to the starting 
polygon, 

wherein the plurality of nodes in the partition tree further 
includes at least one Steiner point, the plurality of nodes 
not including any Steiner points of degree 2. 55 

30. The system according to claim 26, wherein all of the 
sub-polygons are trapezoids, 

and wherein all the sides of all of the sub-polygons, which 
sides lie in any part on one of the partition tree edges, are 
rectilinear. 

31. The system according to claim 26, for use further with 60 

a predetermined cost fnnction, 
wherein the plurality of nodes in the partition tree further 

includes at least one R-point, 
wherein the partition tree is a rectilinear Steiner tree, 

and wherein the means for developing the partition tree 
comprises: 

means for forming a rectilinear Steiner tree wherein of all 
possible rectilinear Steiner trees that can be constructed 
using the I-points, R-points and edges of the spanning 
tree, the partition tree has the minimum cost according to 
a predetermined cost function; and 

means for removing redundant edges from the rectilinear 
Steiner tree. 

35. The system according to claim 26, wherein the means 
for developing a partition tree comprises: 

means for constructing a Steiner tree connecting all the 
I-points of the starting polygon as well as fewer than all 
the R-points of the starting polygon, the R-points being 
all points on a boundary of the starting polygon which do 
not coincide with a vertex, and which are disposed rec­
tilinearly across the starting polygon interior from one of 
the I-points; and 

means for forming the partition tree in dependence upon 
the Steiner tree. 

36. The system according to claim 26, wherein the 
sparming tree has a plurality of nodes and a plurality of 

edges connecting pairs of the nodes, the plurality of 
nodes including all I-points of the starting polygon, the 
edges of the spanning tree including only edges that 
directly connect an I-point with either an R-point or 
another I -point. 

37. The system according to claim 36, wherein the means 
for developing the partition tree comprises: 

means for constructing a minimal spanning tree in depen­
dence upon the spanning tree; and 

means for constructing the partition tree in dependence 
upon the minimal spanning tree. 

38. The system according to claim 37, wherein the minimal 
spanning tree is one which minimizes the sum of the L1 
lengths of all its edges. 

* * * * * 



PATENT NO. 

APPLICATION NO. 

DATED 

INVENTOR(S) 

UNITED STATES PATENT AND TRADEMARK OFFICE 

CERTIFICATE OF CORRECTION 

: 8,151,236 B2 

: 12/017025 
: Apri13, 2012 

: Su et al. 

Page 1 of 1 

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below: 

At column 19, claim number 1, line number 14, add the phrase "points on a" as follows: 

being all --points on a-- boundary ofthe starting polygon which do not 

Signed and Sealed this 
Fifteenth Day of May, 2012 

f)w:J J:.k~ 
David J. Kappos 

Director of the United States Patent and Trademark Office 


