
111111111111111111111111111M111111)6111111111111111111111111111111

(12) United States Patent
Schneider et al.

(54) LOW LATENCY ARCHITECTURE WITH
DIRECTORY SERVICE FOR INTEGRATION
OF TRANSACTIONAL DATA SYSTEM WITH
ANALYTICAL DATA STRUCTURES

(71) Applicant: salesforce.com, inc., San Francisco, CA
(US)

(72) Inventors: Donovan Schneider, San Francisco, CA
(US); Fred Im, San Carlos, CA (US);
Daniel C. Silver, Los Altos, CA (US);
Vijayasarathy Chakravarthy,
Mountain View, CA (US)

(73) Assignee: salesforce.com, inc., San Francisco, CA
(US)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.

(21) Appl. No.: 14/512,240

(22) Filed: Oct. 10, 2014

(65) Prior Publication Data

US 2016/0103702 Al Apr. 14, 2016

(51) Int. Cl.
GO6F 9/46 (2006.01)
GO6F 9/48 (2006.01)

(52) U.S. Cl.
CPC GO6F 9/466 (2013.01); GO6F 9/4881

(2013.01)
(58) Field of Classification Search

CPC GO6F 9/466; GO6F 7/20; GO6F 9/4881
USPC 718/1, 100-108
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

6,105,051 A * 8/2000 Borkenhagen G06F 9/3009
712/E9.032

6,212,544 B1 * 4/2001 Borkenhagen G06F 9/3009
712/E9.032

(10) Patent No.:
(45) Date of Patent:

US 9,396,018 B2
Jul. 19, 2016

6,480,876 B2 * 11/2002 Rehg GO6F 9/5066
709/231

6,697,935 B1 * 2/2004 Borkenhagen GO6F 9/3851
712/228

6,757,689 B2 * 6/2004 Battas GO6Q 10/06
6,995,768 B2 * 2/2006 Jou GO6F 9/542

345/440
7,380,213 B2 * 5/2008 Pokorny B23Q 35/12

345/440
7,571,191 B2* 8/2009 Dill G06F 17/30539
7,836,178 B1 * 11/2010 Bedell GO6F 9/505

709/223
8,041,670 B2 * 10/2011 Bakalash GO6F 17/30489

707/603
8,271,992 B2 * 9/2012 Chatley GO6F 3/0613

718/105

(Continued)

OTHER PUBLICATIONS

Pedersen et al, "Query Optimization for OLAP-XML Federations"
ACM, pp. 57-64, 2002.*

(Continued)

Primary Examiner - Anil Khatri
(74) Attorney, Agent, or Firm - Haynes Beffel & Wolfeld
LLP; Ernest J. Beffel, Jr.

(57) ABSTRACT

Low latency communication between a transactional system
and analytic data store resources can be accomplished
through a low latency key-value store with purpose-designed
queues and status reporting channels Posting by the transac-
tional system to input queues and complementary posting by
analytic system workers to output queues is described. On-
demand production and splitting of analytic data stores
requires significant elapsed processing time, so a separate
process status reporting channel is described to which work-
ers can periodically post their progress, thereby avoiding
progress inquiries and interruptions of processing to generate
report status. This arrangement produces low latency and
reduced overhead for interactions between the transactional
system and the analytic data store system.

workcrrn

Low Latency TeskIng and Task Monitoring

20 Claims, 8 Drawing Sheets

US 9,396,018 B2
Page 2

(56) References Cited

U.S. PATENT DOCUMENTS

8,285,709 B2 * 10/2012 Candea GO6F 17/30442
707/706

8,321,865 B2 * 11/2012 Amini G06F 9/542
700/224

8,448,170 B2 * 5/2013 Wipfel HO4L 9/3213
718/1

8,521,758 B2 * 8/2013 Nachnani GO6F 17/30303
707/758

8,555,286 B2 * 10/2013 Flores GO6F 8/67
718/104

8,805,971 B1 * 8/2014 Roth GO6F 9/5072
709/203

8,976,955 B2 * 3/2015 Liberman
Ben-Ami HO4M 3/5191

379/265.01

OTHER PUBLICATIONS

Rao et al, "Spatial Hierarchy and OLAP-Favored Search in Spatial
Data Warehouse ", AC< pp. 48-55, 2003.*
Wang et al, "Efficient Task Replication for Fast Response Time in
Parallel Computation", ACM, pp. 599-600, 2014.*
Papadakis et al, "A System to Measure, Control and Minimize End-
To-End Head Tracking Latency in Immersive Simulations", ACM,
pp. 581-584, 2011.*
Shimada et al, "Proposing a New Task Model towards Many-Core
Architecture", ACM, pp. 45-48, 2013.*
Pu, "Modeling, Querying and Reasoning about OLAP Databases: A
Functional Approach", ACM, pp. 1-8, 2005.*
U.S. Appl. No. 14/512,230-"Row-Level Security Integration of
Analytical Data Store with Cloud Architecture", inventors Donovan
Schneider et al., filed Oct. 10, 2014, 39 pages.
U.S. Appl. No. 14 /512,249 "Integration User for Analytical Access
to Read Only Data Stores Generated from Transactional Systems",
inventors Donovan Schneider, et al., filed Oct. 10, 2014, 35 pages.
Davis, Chris, Graphite Documentation Release 0.10.0, Sep. 16, 2014,
135 pgs.
GitHub exbz Description of Graphite UI, 2014, 13 pgs. [Retrieved
Sep. 16, 2014 3:06:56 PM], Retrieved from Internet: <https://github.
com/ezbz/graphitus>.

ExactTarget, "The Future of Marketing Starts Here", Mar. 1, 2013,
[retreived Mar. 1, 2013], Retreived from Internet <http://www.exact-
target.com>, http ://web.archive. org/web/20130301133331/http: //
www.exacttarget.com/.
Agrawala, Maneesh, "Animated Transitions in Statistical Data
Graphics", 3 pgs, Sep. 22, 2009, [Retrieved Sep. 12, 2014 9:00:30
AM] Retrieved from Internet <https: / /www.youtube.com/
watch ?v= vLk7mlAtEXI &feature= youtu.be >.

Segel, Edward et al. "Narrative Visualization: Telling Stories with
Data", Mar. 31, 2010, http: / /vis.stanford.edu/papers /narrative, 10

pgs.
Heer, Jeffrey, et al., "Animated Transitions in Statisical Data Graph-
ics", Mar. 31, 2007, 10 pgs.
Demiralp, C., et al., "Visual Embedding, A Model for Visualization",
Visualization Viewpoints, IEEE Computer Graphics and Applica-
tions, Jan./Feb. 2014, p. 6-11.
Stanford Vis group / Papers, "Visualization Papers, 2014-2001",
retrieved from http: / /vis.stanford.edu/papers on Sep. 12, 2014, 8

pages.
U.S. Appl. No . 14/512,258-U.S. Non-provisional Application titled
"Visual Data Analysis with Animated Informaiton al Morphing
Replay", inventors: Didier Prophete and Vijay Chakravarthy, filed
Oct. 10, 2014, 56 pages.
"Salesforce Analytics Cloud Implementation and Data Integration
Guide", Summer '14 Pilot-API version 31.0, last updated: Sep. 8,

2014, 87 pages.
U.S. Appl. No. 14/512,263-"Declarative Specification ofVi sualiza-
tion Queries, Display Formats and Bindings", inventors Didier
Prophete et al., filed Oct. 10, 2014, 58 pages.
U.S. Appl. No. 14/512,267-"Dashboard Builder with Live Data
Updating Without Exiting an Edit Mode", Inventors: Didier Prophete
et al., filed Oct. 10, 2014, 55 pages.
"Occasionally Connected Applications (Local Database Caching)",
downloaded on Sep. 11, 2014, from http://msdn.microsoft.com/en-
us/library/vstudio/bb384436(v=vs.100).aspx, 3 pages.
U.S. Appl. No. 14/512,274 "Offloading Search Processing Against
Analytic Data Stores", Inventors Fred Im et al., filed Oct. 10, 2014, 40
pages.
EgdeSpring Legacy Content, (approx. 2012), 97 pages.
"Stuff I've Seen: A System for Personal Information Retrieval and
Re-Use," by Dumais et al. IN: SIGIR '03 (2003). Available at: ACM.

* cited by examiner

U.S. Patent Jul. 19, 2016 Sheet 1 of 8 US 9,396,018 B2

7102

Explorer Engine

7108

Live Dashboard Engine

7122

Query Engine

A

Edge Mart
Databases

A

7.142

EdgeMart Engine
152

100

118

Display Engine

7128

Tweening Engine

138

Tweening Stepper

z7148

User Computing Device

Application

FIG. 1- Analyties Environment

158

U.S. Patent Jul. 19, 2016 Sheet 2 of 8 US 9,396,018 B2

Load
- Balancers

Pod
Engines

Transaction
Data

202

142

222

Superpod Engines

EdgeMarts

232

Edge Mart
Engines

L",.. 152

Network(s)

225

Web Based Users

204

200

208
Queuing
Engine

Er:17216

Shards

245

FIG. 2 - Integration Environment

30
0

71
52

E

dg
e M

ar
t

E
ng

in
es

 --
-.

.,"
 23

2
30

4

30
6

,-
--

.-

-,

C
SV

 o
r

B
in

ar
y

...
.,,

--

d

T
ra

ns
ac

tio
na

l
D

at
a

E
xt

ra
ct

30

3

or
 J

SO
N

Fo

rm
at

L

oa
d

30
5

E
dg

e M
ar

t
T

ra
ns

fo
rm

30

7

,..
v,

T
ra

ns
ac

tio
na

l
D

at
a

23
2

E
xt

ra
ct

 a
nd

 L
oa

d
31

3

E
dg

e M
ar

t

31
6

T
ra

ns
fo

rm

31
7

FI
G

.
3
- E

L
T

 W
or

kf
lo

w

40
0

FI
G

. 4
 -

In
te

gr
at

io
n

C
om

po
ne

nt
s

50
0

FI
G

.
5
- P

od
 a

nd
 S

up
er

po
d

C
om

po
ne

nt
s

U.S. Patent Jul. 19, 2016 Sheet 6 of 8 US 9,396,018 B2

N
kr)

cat

P4 'n

-.1- 4)
Z

up 1.4
cd =
H C''

14

0 4)
0 0 o o

a a
I

021

j)
Ct

H

k < M L)
CD 1..)

7jD
.7 0 CD CD

E. c, a CY

N

1.)

N

N

H
-4

C)

O - kr)

N

C)

-PJ

cd

by

O

O

E.'

U.S. Patent Jul. 19, 2016 Sheet 7 of 8 US 9,396,018 B2

702

712

722

732

742

752

762

a transaction processing system generating an analytic data store creation task
request that specifies creation of an analytic data store based on data set stored

by at least one transactional data management system

V

insights module submits request to edgemart engine

a worker thread picking up the task request from the named key-value task start
queue

V

the worker thread reporting progress on the task request to a monitoring data
structure independent of the task start queue

the worker thread registering a completed analytic data store with the
transaction processing system

upon completion of creating the analytic data store specified by the task
request, the worker thread queuing a task complete report to a named key-value

task complete queue complementary to the named key-value start queue

using a directory service to select a named key-value task start queues based at
least in part on affinity to an entity that owns the data set stored on the

transactional data management system

FIG. 7 - Low Latency Tasking and Task Monitoring

700

z
81

0
80

0

St
or

ag
e

Su
bs

ys
te

m

82
4

C
om

pu
te

r
Sy

st
em

82
2

Fi
le

 S
to

ra
ge

Su

bs
ys

te
m

U

se
r

In
te

rf
ac

e
In

pu
t

D
ev

ic
es

81
2

81
4

81
6

Pr
oc

es
so

r(
s)

N

et
w

or
k

In
te

rf
ac

e

z
81

8
82

0

U
se

r
In

te
rf

ac
e

O
ut

pu
t

D
ev

ic
es

A

pp
lic

at
io

n
Se

rv
er

FI
G

.
8
- C

om
pu

te
r

Sy
st

em

US 9,396,018 B2
1

LOW LATENCY ARCHITECTURE WITH
DIRECTORY SERVICE FOR INTEGRATION
OF TRANSACTIONAL DATA SYSTEM WITH

ANALYTICAL DATA STRUCTURES

RELATED APPLICATIONS

This application is one of several U.S. Nonprovisional
patent applications filed contemporaneously. The related
applications are ROW-LEVEL SECURITY INTEGRATION
OF ANALYTICAL DATA STORE WITH CLOUD ARCHI-
TECTURE Ser. No. 14/512,230, INTEGRATION USER
FOR ANALYTICAL ACCESS TO READ ONLY DATA
STORES GENERATED FROM TRANSACTIONAL SYS-
TEMS Ser. No. 14/512,249, VISUAL DATA ANALYSIS
WITH ANIMATED INFORMATION MORPHING
REPLAY Ser. No. 14/512,258, DECLARATIVE SPECIFI-
CATION OF VISUALIZATION QUERIES DISPLAY FOR-
MATS AND BINDINGS Ser. No. 415512263, DASH- 20

BOARD BUILDER WITH LIVE DATA UPDATING
WITHOUT EXITING AN EDIT MODE Ser. No. 14/512,267
and OFFLOADING SEARCH PROCESSING AGAINST
ANALYTIC DATA STORES Ser. No. 14/512,274. The
related applications are hereby incorporated by reference for
all purposes.

5

10

15

BACKGROUND

The subject matter discussed in the background section
should not be assumed to be prior art merely as a result of its
mention in the background section. Similarly, a problem
mentioned in the background section or associated with the
subject matter of the background section should not be
assumed to have been previously recognized in the prior art.
The subject matter in the background section merely repre-
sents different approaches, which in and of themselves may
also correspond to implementations of the claimed technol-
ogy.

The advent of powerful servers, large-scale data storage
and other information infrastructure has spurred the develop-
ment of advance data warehousing and data analytics appli-
cations. Structured query language (SQL) engines, on-line
analytical processing (OLAP) databases and inexpensive 45

large disk arrays have for instance been harnessed to capture
and analyze vast streams of data. The analysis of that data can
reveal valuable trends and patterns not evident from more
limited or smaller-scale analysis.

In the case of transactional data management, the task of 50

inspecting, cleaning, transforming and modeling data with
the goal of discovering useful information is particularly
challenging due to the complex relationships between differ-
ent fields of the transaction data. Consequently, performance
of conventional analytical tools with large transaction data 55

sets has been inefficient. That is also in part because the time
between requesting a particular permutation of data and that
permutation's availability for review is directly impacted by
the extensive compute resources required to process standard
data structures. This heavy back-end processing is time-con- 60

suming and particularly burdensome to the server and net-
work infrastructure.

The problem is worsened when an event occurs that ren-
ders the processing interrupted or stopped. In such an event,
latency is incurred while waiting for the processing to re- 65

initiate so that the appropriate action takes place. This latency
is unacceptable for analytics applications that deliver real-

25

30

35

40

2
time or near real-time reports. Accordingly, systems and
methods that can alleviate the strain on the overall infrastruc-
ture are desired.

An opportunity arises to provide business users full ad hoc
access for querying large-scale database management sys-
tems and rapidly building analytic applications by using effi-
cient queueing protocols for faster creation and processing of
massively compressed datasets. Improved customer experi-
ence and engagement, higher customer satisfaction and reten-
tion, and greater sales may result.

BRIEF DESCRIPTION OF THE DRAWINGS

In the drawings, like reference characters generally refer to
like parts throughout the different views. Also, the drawings
are not necessarily to scale, with an emphasis instead gener-
ally being placed upon illustrating the principles of the tech-
nology disclosed. In the following description, various imple-
mentations of the technology disclosed are described with
reference to the following drawings, in which:

FIG. 1 illustrates an example analytics environment in
which the technology disclosed can be used.

FIG. 2 is a high-level system diagram of an integration
environment that can be used to implement the technology
disclosed.

FIG. 3 depicts a high-level process of an extract-load-
transform ELT workflow.

FIG. 4 illustrates one implementation of integration com-
ponents of a data center used to implement aspects of the
technology disclosed.

FIG. 5 shows one implementation of so-called pod and
superpod components that can be used to implement the
technology disclosed.

FIG. 6 illustrates one implementation of low latency queu-
ing in the integration environment illustrated in FIG. 2.

FIG. 7 is a representative method of low latency tasking
and task monitoring between a transaction processing system
and an analytics processing system.

FIG. 8 shows a high-level block diagram of a computer
system that can be used to implement some features of the
technology disclosed.

DETAILED DESCRIPTION

Introduction

The technology disclosed relates to integration between
large-scale transactional systems and temporary analytic data
stores suitable for use by a single analyst. In other implemen-
tations, the technology disclosed relates to integration
between large-scale transactional systems, non-structured
data stores (e.g., log files), analytical systems (corporate data
warehouse, department data marts), and personal data
sources (spreadsheets, csv files).

Exploration of data without updating the underlying data
presents a different use case than processing transactions. A
data analyst may select, organize, aggregate and visualize
millions or even hundreds of millions of transactional or log
records without updating any of the records. So-called Edge -
MartTM analytic data store technology, developed by Edge-
Spring®, has been demonstrated to manipulate 123 million
Federal Aviation Administration (FAA) records, on a laptop
running a browser, with sub-one second response time for
processing a query, including grouping, aggregation and
result visualization. Storing the underlying records in a read
only purpose designed analytic data structure makes these

US 9,396,018 B2
3

results possible using modest hardware. Producing, manag-
ing and operating analytic data stores at scale remains chal-
lenging.

Analytic data structures, also referred to as "edgemarts,"
are compressed data forms produced from transactional data-
bases, which represent specific form functions of transac-
tional database objects. Sometimes analytic data structures
are produced by merging data from multiple database sys-
tems or platforms. For instance, prospect and opportunity
closing data may come from a Salesforce.com® system and
order fulfillment data from a SAP® system. An analytic data
structure may combine sales and fulfillment data for particu-
lar opportunities, merging data from systems that run on
different database platforms, in separate applications from
different vendors, applying divergent security models. Doz-
ens of analysts may work on subsets of an overall analytic
data structure, both for periodic and ad hoc investigations.
Their work is likely to be directed to a specific time period,
such as last month, last quarter or the last 30 days. Different
requirements of analysts can be accommodated using tech-
nology disclosed herein.

There are many aspects to addressing the challenge of
scaling an analytic system architecture that draws from large
scale transactional systems. First, the resources needed can be
reduced by using a purposed designed low-latency messaging
protocol between transactional system components and ana-
lytic data store components. Second, divergent security mod-
els of multiple transactional systems can be addressed by a
predicate-based row-level security scheme capable of trans-
lating various security settings for use in an analytic data
store. Security can be arranged in a manner that facilitates
building individual shards of an analytical data store for users
who either want or have access limited to a particular segment
of the overall data.

Third, operation of an analytic data store can be facilitated
by a separate accounting of analytic resource usage. The
technology disclosed keeps the analytic resource usage
accounting separate by associating a so-called integration
user for analytic services with a standard transactional user.
Transactional user credentials and processing of authentica-
tion and authorization can be leveraged to invoke the associ-
ated integration user. This associated user has different rights
and different accounting rules that the transactional user.

Fourth, migration of query processing from servers to cli-
ents can mitigate high peak loads followed by idle periods
observed when delivering extremely fast data exploration and
visualization. The technology disclosed further includes a
strategy for migration, during a particular investigation ses-
sion, of query processing from server based to client based.

Low latency communication between a transactional sys-
tem and analytic data store resources can be accomplished
through a low latency key-value store with purpose-designed
queues and status reporting channels Posting by the transac-
tional system to input queues and complementary posting by
analytic system workers to output queues is described. On-
demand production and splitting of analytic data stores
requires significant elapsed processing time, so a separate
process status reporting channel is described to which work-
ers can periodically post their progress, thereby avoiding
progress inquiries and interruptions of processing to generate
report status. This arrangement produces low latency and
reduced overhead for interactions between the transactional
system and the analytic data store system.

A directory service associated queuing and transactional
system to worker inter-process communications enables
restarting of worker processes running on analytic system
servers that fail. Workers running on separate servers and

4
even in separate server racks are redundantly assigned affini-
ties to certain queues and clients. When one of the redundant
workers fails and restarts, the directory service provides
information so that status and task information can be

5 obtained by the restarted worker from the redundant sister
workers. This keeps the workers from recreating edgemarts
that were created while the worker was off-line, according to
one implementation.

A predicate-based row level security system is used when
10 workers build or split an analytical data store. According to

one implementation, predicate-based means that security
requirements of source transactional systems can be used as
predicates to a rule base that generates one or more security
tokens, which are associated with each row as attributes of a

15 dimension. Similarly, when an analytic data store is to be
split, build job, user and session attributes can be used to
generate complementary security tokens that are compared to
security tokens of selected rows. Efficient indexing of a secu-
rity tokens dimension makes it efficient to qualify row

20 retrieval based on security criteria.
Building analytical data stores from transactional data sys-

tems that have divergent security models is facilitated by
predicate-based rules that translate transactional security
models and attributes into security tokens, according to one

25 implementation. For instance, Saleforce.com® allows a ten-
ant to select among about seven different security models.
Selecting any one of these models could make it difficult or
impossible to express security requirements expressed
according to a different model. Selecting one of the Sales-

30 force.com® models could complicate expressing security
requirements implemented under an SAP® security model.
Predicate-based rules facilitate extracting data objects con-
sistent with needs of analytical data structure users. A single
analytical data store can be built for sharing among multiple

35 users and for providing security consistent with underlying
security models and analytical data access rights of users.
Security tokens can be assigned to rows based on criteria such
as "CEOs can access all transactional records for the last five
years," which might not be implemented or expressed in the

40 underlying transactional systems. It is expected that analysts
will have access to records for analytical purposes that they
might not be allowed to or might find cumbersome to access
through the underlying transactional systems.

Splitting an analytical data store refers to creating a so-
45 called shard, which is a second analytical data store created

by selecting a proper subset of data objects or rows in a first
analytical data store. This can be regularly scheduled, along-
side refreshing of an analytical data store with updated data
from the transactional data system. Or, it can happen on

so demand or on an ad hoc basis. The technology disclosed can
be applied to create shards from larger analytical data stores.

Creating shards can be beneficial for regularly scheduled
creation of analytical data stores, especially when production
involves creation of multiple data stores with overlapping

55 data. It has been observed that creation of user-requested,
specific data stores can be brittle in the sense of easily break-
ing. People leave and join analytical groups. Jobs are created
and then forgotten. Underlying data changes. When dozens or
hundreds of analytical data stores derive from a single shared

60 set of data, process brittleness can be reduced by hierarchical
creation of analytical data stores. A predicate-based row level
security rule set facilitates hierarchical data store assembly.

An automated, hierarchical process of creating even two
hierarchical levels of analytical data stores can benefit from

65 predicate-based row level security rules. At a first hierarchical
level, security tokens can be created and associated at a row
level with data objects. The security tokens can encode secu-

US 9,396,018 B2
5

rity attributes that facilitate creation of the second or subse-
quent hierarchical levels of analytical data stores, given the
flexibility afforded by predicate-based rules. A three level
creation system can have additional benefits, related to struc-
turing of patterns of analytical data store creation. The rela-
tionship among analytical data store children created from a
single mother analytical data store can be more clearly
revealed by multiple generations of relationships that corre-
spond to three or more hierarchical levels.

After creation of analytical stores, use of a so-called inte-
gration user can control access rights and be used for account-
ing. By its nature, a temporary analytical data store involves
much more limited rights to modify or update data than typi-
cal in a transactional data system. A typical user may have
read/search rights to at least one analytical data store. Even if
the user has write/update writes to the transactional data
system(s) from which the analytical data stores are created,
the user may only have read/search rights. The user may
further have recreate-on-demand rights, but the read only
nature of the analytical data store makes it unnecessary for the
user to enjoy the write/update rights that the user has with the
corresponding transactional data system. Or, the user's ana-
lytical data store rights may be restricted to a first company
subdivision, even if the user occasionally contributes to
results in a second company subdivision. In some implemen-
tations, the integration user can be given rights under a predi-
cate-based set of security rules, but this is not necessary.

The transactional user also can facilitate accounting for
analytical data store usage. Use of analytical data stores for
high performance data exploration typically involves a frac-
tion of the user base size that generates transactions. As
mentioned above, their data exploration generates much
higher peak loads than individual transactions. These condi-
tions are likely to lead to different licensing conditions for
analytical data store system users than for transactional sys-
tem users.

Again, the so-called integration user keeps the analytic
resource usage accounting separate by associating an integra-
tion user for analytic services with a standard transactional
user. Transactional user credentials and processing of authen-
tication and authorization can be leveraged to invoke the
associated integration user. Then, the associated user's rights
and accounting rules can be applied to meet analytic security
and accounting needs with minimal burdens on the pre-exist-
ing transactional system.

Aggressive exploration can involve multiple, successive
queries and visualizations. This creates difficulty scaling the
resources needed to deliver fast responses. It is particularly
complicated by regular rebuilding of analytic data stores,
whether daily or on demand. Migrating queries using the
technology described involves migrating indexed fields,
known as dimensions, and quantity fields, known as mea-
sures, in the background during a query session. A session
that starts in server query processing mode may switch to
client query processing as enough data fields have been cop-
ied from the server to the client. When the client determines
that it has enough data fields to process an incoming query, it
can locally process the new query without passing it to the
server. Since both the server and client are working from
copies of the same read only analytic data structure, a user
receives the same results from either client or the server.

These features individually and collectively contribute to
integration of an analytic data store system with one or more
legacy transactional systems.

The described subject matter is implemented by a com-
puter-implemented system, such as a software-based system,
a database system, a multi-tenant environment, or the like.

6
Moreover, the described subject matter can be implemented
in connection with two or more separate and distinct com-
puter-implemented systems that cooperate and communicate
with one another. One or more implementations can be imple-

5 mented in numerous ways, including as a process, an appa-
ratus, a system, a device, a method, a computer readable
medium such as a computer readable storage medium con-
taining computer readable instructions or computer program
code, or as a computer program product comprising a com-
puter usable medium having a computer readable program
code embodied.

Examples of systems, apparatus, and methods according to
the disclosed implementations are described in a "transaction
data" context. The examples of transaction data are being
provided solely to add context and aid in the understanding of

15 the disclosed implementations. In other instances, other data
forms and types related to other industries like entertainment,
animation, docketing, education, agriculture, sports and min-
ing, medical services, etc. may be used. Other applications
are possible, such that the following examples should not be

20 taken as definitive or limiting either in scope, context, or
setting. It will thus be apparent to one skilled in the art that
implementations may be practiced in or outside the "transac-
tion data" context.
Analytic s Environment

25 FIG. 1 illustrates an example analytics environment 100 in
which the technology disclosed can be used. FIG. 1 includes
an explorer engine 102, live dashboard engine 108, query
engine 122, display engine 118, tweening engine 128 and
tweening stepper 138. FIG. 1 also shows edgemart engine

30 152, runtime framework 125, user computing device 148 and
application 158. In other implementations, environment 100
may not have the same elements or components as those listed
above and/or may have other/different elements or compo-
nents instead of, or in addition to, those listed above, such as

35 a web engine, user store and notification engine. The different
elements or components can be combined into single soft-
ware modules and multiple software modules can run on the
same hardware.

In analytics environment 100 a runtime framework with
40 event bus 125 manages the flow of requests and responses

between an explorer engine 102, a query engine 122 and a live
dashboard engine 108. Data acquired (extracted) from large
data repositories is used to create "raw" edgemarts 142
read-only data structures for analytics, which can be aug-

45 mented, transformed, flattened, etc. before being published as
customer-visible edgemarts for business entities. A query
engine 122 uses optimized data structures and algorithms to
operate on these highly-compressed edgemarts 142, deliver-
ing exploration views of this data. Accordingly, an opportu-

50 pity arises to analyze large data sets quickly and effectively.
Visualization queries are implemented using a declarative

language to encode query steps, widgets and bindings to
capture and display query results in the formats selected by a
user. An explorer engine 102 displays real-time query results.

55 When activated by an analyst developer, explorer engine 102
runs EQL queries against the data and includes the data in
lenses. A lens describes a single data visualization: a query
plus chart options to render the query. The EQL language is a
real-time query language that uses data flow as a means of

60 aligning results. It enables ad hoc analysis of data stored in
Edgemarts. A user can select filters to change query param-
eters and can choose different display options, such as a bar
chart, pie chart or scatter plot triggering a real-time change
to the display panel based on a live data query using the

65 updated filter options. An EQL script consists of a sequence
of statements that are made up of keywords (such as filter,
group, and order), identifiers, literals, or special characters.

US 9,396,018 B2
7

EQL is declarative: you describe what you want to get from
your query. Then, the query engine will decide how to effi-
ciently serve it.

A runtime framework with an event bus 125 handles com-
munication between a user application 158, a query engine
122 and an explorer engine 102, which generates lenses that
can be viewed via a display engine 118. A disclosed live
dashboard engine 108 designs dashboards, displaying mul-
tiple lenses from the explorer engine 102 as real-time data
query results. That is, an analyst can arrange display panels
for multiple sets of query results from the explorer engine 102
on a single dashboard. When a change to a global filter affects
any display panel on the dashboard, the remaining display
panels on the dashboard get updated to reflect the change.
Accurate live query results are produced and displayed across
all display panels on the dashboard.

Explorer engine 102 provides an interface for users to
choose filtering, grouping and visual organization options;
and displays results of a live query requested by a user of the
application 158 running on a user computing device 148. The
query engine 122 executes queries on read only pre-packaged
data sets the edgemart data structures 142. The explorer
engine 102 produces the visualization lens using the filter
controls specified by the user and the query results served by
the query engine 122.

Explorer engine 102, query engine 122 and live dashboard
engine 108 can be of varying types including a workstation,
server, computing cluster, blade server, server farm, or any
other data processing system or computing device. In some
implementations, explorer engine 102 can be communicably
coupled to a user computing device 148 via different network
connections, such as the Internet. In some implementations,
query engine 122 can be communicably coupled to a user
computing device 148 via different network connections,
such as a direct network link. In some implementations, live
dashboard engine 108 can be communicably coupled to user
computing device 148 via different network connections,
such as the Internet or a direct network link

Runtime framework with event bus 125 provides real time
panel display updates to the live dashboard engine 108, in
response to query results served by the query engine 122 in
response to requests entered by users of application 158. The
runtime framework with event bus 125 sets up the connec-
tions between the different steps of the workflow.

Display engine 118 receives a request from the event bus
125, and responds with a first chart or graph to be displayed on
the live dashboard engine 108. Segments of a first chart or
graph are filter controls that trigger generation of a second
query upon selection by a user. Subsequent query requests
trigger controls that allow filtering, regrouping, and selection
of a second chart or graph of a different visual organization
than the first chart or graph.

Display engine 118 includes tweening engine 128 and
tweening stepper 138 that work together to generate pixel-
level instructions intermediate frames between two images
that give the appearance that the first image evolves smoothly
into the second image. The drawings between the start and
destination frames help to create the illusion of motion that
gets displayed on the live dashboard engine 108 when a user
updates data choices.

Runtime framework with event bus 125 can be of varying
types including a workstation, server, computing cluster,
blade server, server farm, or any other data processing system
or computing device; and can be any network or combination
of networks of devices that communicate with one another.

8
For example, runtime framework with event bus 125 can be
implemented using one or any combination of a LAN (local
area network), WAN (wide area network), telephone network
(Public Switched Telephone Network (PSTN), Session Ini-

5 tiation Protocol (SIP), 3G, 4G LTE), wireless network, point-
to-point network, star network, token ring network, hub net-
work, WiMAX, WiFi, peer-to-peer connections like
Bluetooth, Near Field Communication (NFC), Z-Wave, Zig-
Bee, or other appropriate configuration of data networks,

10 including the Internet. In other implementations, other net-
works can be used such as an intranet, an extranet, a virtual
private network (VPN), a non-TCP/IP based network, any
LAN or WAN or the like.

Edgemart engine 152 uses an extract, load, transform
15 (ELT) process to manipulate data served by backend system

servers to populate the edgemart data structures 142. Edge-
mart data structures 142 can be implemented using a general-
purpose distributed memory caching system. In some imple-
mentations, data structures can store information from one or

20 more tenants into tables of a common database image to form
an on-demand database service (ODDS), which can be imple-
mented in many ways, such as a multi-tenant database system
(MTDS). A database image can include one or more database
objects. In other implementations, the databases can be rela-

25 tional database management systems (RDBMSs), object ori-
ented database management systems (OODBMSs), distrib-
uted file systems (DFS), no-schema database, or any other
data storing systems or computing devices.

In some implementations, user computing device 148 can
30 be a personal computer, a laptop computer, tablet computer,

smartphone or other mobile computing device, personal digi-
tal assistant (PDA), digital image capture devices, and the
like. Application 158 can take one of a number of forms,
including user interfaces, dashboard interfaces, engagement

35 consoles, and other interfaces, such as mobile interfaces,
tablet interfaces, summary interfaces, or wearable interfaces.
In some implementations, it can be hosted on a web-based or
cloud-based privacy management application running on a
computing device such as a personal computer, laptop com-

40 puter, mobile device, and/or any other hand-held computing
device. It can also be hosted on a non-social local application
running in an on premise environment. In one implementa-
tion, application 158 can be accessed from a browser running
on a computing device. The browser can be ChromeTM, Inter-

45 net ExplorerTM, FirefoxTM, SafariTM, and the like. In other
implementations, application 158 can run as an engagement
console on a computer desktop application.

In other implementations, environment 100 may not have
the same elements or components as those listed above and/or

so may have other/different elements or components instead of,
or in addition to, those listed above, such as a web server and
a template database. The different elements or components
can be combined into single software modules and multiple
software modules can run on the same hardware.

55 Integration Environment
FIG. 2 is a high-level system diagram of an integration

environment 200 that can be used to implement the technol-
ogy disclosed. FIG. 2 includes superpod engines 204, pod
engines 222, edgemart engines 152, queuing engine 208 and

60 security engines 245. FIG. 2 also shows load balancers 202,
edgemarts 142, shards 216, transaction data 232, network(s)
225 and web based users 245. In other implementations,
environment 200 may not have the same elements or compo-
nents as those listed above and/or may have other/different

65 elements or components instead of, or in addition to, those
listed above, such as a web engine, user store and notification
engine. The different elements or components can be com-

US 9,396,018 B2
9

bined into single software modules and multiple software
modules can run on the same hardware.

Network(s) 225 is any network or combination of networks
of devices that communicate with one another. For example,
network(s) 225 can be any one or any combination of a LAN
(local area network), WAN (wide area network), telephone
network (Public Switched Telephone Network (PSTN), Ses-
sion Initiation Protocol (SIP), 3G, 4G LTE), wireless net-
work, point-to-point network, star network, token ring net-
work, hub network, WiMAX, WiFi, peer-to-peer connections
like Bluetooth, Near Field Communication (NFC), Z-Wave,
Zig Bee, or other appropriate configuration of data networks,
including the Internet. In other implementations, other net-
works can be used such as an intranet, an extranet, a virtual
private network (VPN), a non-TCP/IP based network, any
LAN or WAN or the like.

In some implementations, the various engines illustrated in
FIG. 2 can be of varying types including workstations, serv-
ers, computing clusters, blade servers, server farms, or any
other data processing systems or computing devices. The
engines can be communicably coupled to the databases via
different network connections. For example, superpod
engines 204 and queuing engine 208 can be coupled via the
network 115 (e.g., the Internet), edgemart engines 152 can be
coupled via a direct network link, and pod engines 222 can be
coupled by yet a different network connection.

In some implementations, a transaction data management
system 232 can store structured, semi-structured, unstruc-
tured information from one or more tenants into tables of a
common database image to form an on-demand database
service (ODDS), which can be implemented in many ways,
such as a multi-tenant database system (MTDS). A database
image can include one or more database objects. In other
implementations, the transaction data management system
232 can be a relational database management system
(RDBMSs), an object oriented database management sys-
tems (OODBMSs), a distributed file systems (DFS), a no-
schema database, or any other data storing system or com-
puting device.

Web based users 245 can communicate with various com-
ponents of the integration environment 200 using TCP/IP
and, at a higher network level, use other common Internet
protocols to communicate, such as HTTP, FTP, AFS, WAP,
etc. As an example, where HTTP is used, web based users 245
can employ an HTTP client commonly referred to as a
"browser" for sending and receiving HTTP messages from an
application server included in the pod engines 222. Such
application server can be implemented as the sole network
interface between pod engines 222 and superpod engines 204,
but other techniques can be used as well or instead. In some
implementations, the interface between pod engines 222 and
superpod engines 204 includes load sharing functionality
202, such as round-robin HTTP request distributors to bal-
ance loads and distribute incoming HTTP requests evenly
over a plurality of servers in the integration environment.

In one aspect, the environment shown in FIG. 2 implements
a web-based analytics application system, referred to as
"insights." For example, in one aspect, integration environ-
ment 200 can include application servers configured to imple-
ment and execute insights software applications as well as
provide related data, code, forms, web pages and other infor-
mation to and from web based users 245 and to store to, and
retrieve from, a transaction related data, objects and web page
content. With a multi-tenant implementation of transactional
database management system 232, tenant data is preferably
arranged so that data of one tenant is kept logically separate
from that of other tenants so that one tenant does not have
access to another's data, unless such data is expressly shared.

10
In aspects, integration environment 200 implements applica-
tions other than, or in addition to, an insights application and
transactional database management systems. For example,
integration environment 200 can provide tenant access to

5 multiple hosted (standard and custom) applications, includ-
ing a customer relationship management (CRM) application.

Queuing engine 208 defines a dispatching policy for the
integration environment 200 to facilitate interactions between
a transactional database system and an analytical database
system. The dispatching policy controls assignment of
requests to an appropriate resource in the integration environ-
ment 200. In one implementation of the dispatching policy, a
multiplicity of messaging queues is defined for the integra-
tion environment, including a "named key-value task start
queue" and a "named key-value task complete queue." The
"named key-value task start queue" dispatches user requests
for information. The "named key-value task complete queue"
dispatches information that reports completion of the user

20 requests. In other implementations, when either the process-
ing time exceeds the maximum response time or the size of
the data set exceeds the data threshold, a progress report can
be sent to the user. The progress reports refers to information
transmitted to advise an entity of an event, status, or condition

25 of one or more requests the entity initiated.
Application of the multiplicity of messaging queues solves

the technical problem of queue blockage in the integration
environment 200. Contention is created when multiple
worker threads use a single queue to perform their tasks.

30 Contention in multi-threaded applications of queues can slow
down processing in the integration environment 200 up to
three orders, thus resulting in high latency. The condition is
worsened when there are multiple writers adding to a queue

35
and readers consuming. As a result, every time a request is
written or added to a particular queue, there is contention
between multiple worker threads since a reader concurrently
attempts to read or remove from the same queue. In some
implementations, integration environment 200 uses a pool of

40 worker threads for reading or writing requests from or to
clients in the network(s) 225. Worker threads are hosted on
resources referred to as "workers." Once request is read into
the "named key-value task start queue," it is dispatched for
execution in the workers. The resulting data generated after

45 the request is executed by the workers is referred is stored as
edgemarts 142. In some implementations, the edgemarts 142
are portioned into multiple smaller edgemarts called shards
216. In one implementation, edgemarts 142 are partitioned
based on specified dimensions such as a range or a hash.

so ELT Workflow
Various types of on-demand transactional data manage-

ment systems can be integrated with analytic data stores to
provide data analysts ad hoc access to query the transaction
data management systems. This can facilitate rapid building

55 of analytic applications that use numerical values, metrics
and measurements to drive business intelligence from trans-
actional data stored in the transaction data management sys-
tems and support organizational decision making. Transac-
tion data refers data objects that support operations of an

60 organization and are included in application systems that
automate key business processes in different areas such as
sales, service, banking, order management, manufacturing,
aviation, purchasing, billing, etc. Some examples of transac-
tion data 232 include enterprise data (e.g. order-entry, supply-

65 chain, shipping, invoices), sales data (e.g. accounts, leads,
opportunities), aviation data (carriers, bookings, revenue),
and the like.

10

US 9,396,018 B2
11

Most often, the integration process includes accumulating
transaction data of a different format than what is ultimately
needed for analytic operations. The process of acquiring
transaction data and converting it into useful, compatible and
accurate data can include three, or more, phases such as 5

extract, load and transform. In some implementations, the
integration flow can include various integration flow styles.
One such style can be Extract-Transform-Load (ETL), where,
after extraction from a data source, data can be transformed
and then loaded into a data warehouse. In another implemen- io
tation, an Extract-Load-Transform (ELT) style can be
employed, where, after the extraction, data can be first loaded
to the data warehouse and then transformation operation can
be applied. In yet another implementation, the integration can
use an Extract-Transform-Load-Transform (ETLT) style,
where, after the extraction, several data optimization tech-
niques (e.g. clustering, normalization, denormalization) can
be applied, then the data can be loaded to the data warehouse
and then more heavy transformation operations can occur.

Extraction refers to the task of acquiring transaction data 2

from transactional data stores, according to one implementa-
tion. This can be as simple as downloading a flat file from a
database or a spreadsheet, or as sophisticated as setting up
relationships with external systems that then control the
transportation of data to the target system. Loading is the 2

phase in which the captured data is deposited into a new data
store such as a warehouse or a mart. In some implementa-
tions, loading can be accomplished by custom programming
commands such as IMPORT in structured query language
(SQL) and LOAD in Oracle Utilities. In some implementa- 3

tions, a plurality of application-programming interfaces
(APIs) can be used, to interface with a plurality of transac-
tional data sources, along with extraction connectors that load
the transaction data into dedicated data stores.

Transformation refers to the stage of applying a series of 3

rules or functions to the extracted or the loaded data, generally
so as to convert the extracted or the loaded data to a format
that is conducive for deriving analytics. Some examples of
transformation include selecting only certain columns to
load, translating coded values, encoding free-form values, 4

deriving new calculated values, sorting, joining data from
multiple sources, aggregation, de-normalization, transposing
or pivoting data, splitting a column into multiple columns and
data validation.

FIG. 3 depicts a high-level process 300 of an extract-load- 4

transform ELT workflow. In one implementation, the edge-
mart engine 152 applies a reusable set of instructions referred
to an "ELT workflow." ELT workflow comprises of extract-
ing data from a transactional data source 232 at action 303,
loading the extracted data into an edgemart 306 at action 305, 5

transforming the loaded data into the edgemart 306 at actions
307 and 317 and making the resulting data available in an
analytic application (described in FIG. 7). In some implemen-
tations of the ELT workflow, transaction data 232 is first
converted into a comma-separated value (CSV) or binary 55

format or JSON format 304 and then loaded into an edgemart
306, as show in FIG. 3. In other implementations, transaction
data 232 is extracted and loaded directly into edgemart 316 at
action 313. In one implementation, ELT workflow runs on a
daily schedule to capture incremental changes to transaction 60

data and changes in the ELT workflow logic. Each ELT work-
flow run that executes a task is considered an ELT workflow
job. During the initial ELT workflow job, the ELT workflow
extracts all data from the specified transaction data objects
and fields. After the first run, the ELT workflow extracts
incremental changes that occurred since the previous job run,
according to one implementation.

12
In some implementations, ELT workflow generates a so-

called precursor edgemart by performing lightweight trans-
formations on the transaction data. One example of a light-
weight transformation is denormalization transformation. A
denormalization transformation reintroduces some number
of redundancies that existed prior to normalization of the
transaction data 232, according to one implementation. For
instance, a denormalization transformation can remove cer-
tain joins between two tables. The resulting so-called precur-
sor edgemart has lesser degrees of normal norms relative to
the transaction data, and thus is more optimum for analytics
operations such as faster retrieval access, multidimensional
indexing and caching and automated computation of higher

15
level aggregates of the transaction data.

In other implementations, the loaded data can undergo a
plurality of heavy-weight transformations, including joining
data from two related edgemarts, flattening the transaction
role hierarchy to enable role-based security, increasing query

0 performance on specific data and registering an edgemart to
make it available for queries. Depending on the type of trans-
formation, the data in an existing edgemart is updated or a
new edgemart is generated.

In one implementation of the heavy-weight transforma-
5 tions, an augment transformation joins data from two edge-

marts to enable queries across both of them. For instance,
augmenting a "User EdgeMart" with an "Account EdgeMart"
can enable a data analyst to generate query that displays all
account details, including the names of the account owner and

0 creator. Augmentation transformation creates a new edgemart
based on data from two input edgemarts. Each input edgemart
can be identified as the left or right edgemart. The new edge-
mart includes all the columns of the left edgemart and

5
appends only the specified columns from the right edgemart.
Augmentation transformation performs a left, outer join,
where the new edgemart includes all rows from the left edge-
mart and only matched rows from the right edgemart. In
another implementation, queries can be enabled that span

0 more than two edgemarts. This can be achieved by augment-
ing two edgemarts at a time. For example, to augment three
edgemarts, a first two edgemarts can be augmented before
augmenting the resulting edgemart with a third edgemart.

In some implementations, a join condition in the augment
5 transformation can be specified to determine how to match

rows in the right edgemart to those in the left edgemart. The
following example illustrates a single-column join condition.
To augment the following edgemarts based on single-column
key, an "Opportunity" is assigned as the left edgemart and an

0 "Account" is assigned as the right edgemart. Also, "Oppty-
Acct" is specified as the relationship between them.

Opportunity EdgeMart Account EdgeMart

ID
Opportunity Name
Amount
Stage
Closed Date
*Account ID

*ID
Account Name
Annual Revenue
Billing Address

Upon running an ELT workflow job, an "OpptyAcct" pre-
fix is added to all account columns and the edgemarts are
joined based on a key defined as

65 " Opportunity .Account_ID = Account.ID." After running the
ELT workflow job to augment the two input edgemarts, the
resulting edgemart includes the following columns:

US 9,396,018 B2
13

Opportunity-Account Edge Mart

ID
Opportunity Name
Amount
Stage
Closed Date
Account ID
OpptyAcct.Account Name
OpptyAcct.Annual Revenue
OpptyAcct.Billing Address

In other implementations, different heavy-weight transfor-
mations can be applied, including flatten transformation to
create role-based access on accounts, index transformation to
index one dimension column in an edgemart, Ngram trans-
formation to generate case-sensitive, full-text index based on
data in an edgemart, register transformation to register an
edgemart to make it available for queries and extract trans-
formation to extract data from fields of a data object.
Integration Components

FIG. 4 illustrates one implementation of integration com-
ponents 400 of a data center 402 used to implement aspects of
the technology disclosed. In this implementation, the pod
engines 222 comprise of application servers 514 and database
servers 524. The superpod engines 204 comprise of a queuing
engine 208 and edgemart engines 152 that are hosted on one
or more worker servers 528 within each superpod engine. A
cluster of VIP servers 202 is used for load balancing to del-
egate ELT workflow initiated within the pod engines 222 to
the worker servers 528 within the superpod engines 204. In
the implementation depicted in FIG. 4, the pod engines 222,
VIP servers 202 and superpod engines 204 are all within the
same data center 402. Also, the example shown in FIG. 4 has
are twelve pod engines 222, two VIP servers 202 and five
superpod engines 204.

FIG. 5 shows one implementation of so-called pod and
superpod components 500 that can be used to implement the
technology disclosed. According to one implementation,
each pod engine can support forty servers (thirty six applica-
tion servers 514 and four database servers 524). Each super-
pod engine can support eighteen servers, according to another
implementation. The application servers 514, upon receiving
a request from a browser serving the web based users 245,
accesses the database servers 524 to obtain information for
responding to the user requests. In one implementation, appli-
cation servers 514 generate an HTML document having
media content and control tags for execution of the user
requested operations based on the information obtained from
the database servers 524. In another implementation, appli-
cation servers 514 are configured to provide web pages,
forms, applications, data and media content to web based
users 245 to support the access by the web based users 245 as
tenants of the transactional database management system
232. In aspects, each application server 514 is configured to
handle requests for any user/organization.

In one implementation, an interface system 202 imple-
menting a load balancing function (e.g., an F5 Big-IP load
balancer) is communicably coupled between the servers 514
and the superpod engine 204 to distribute requests to the
worker servers 528. In one aspect, the load balancer uses at
least virtual IP (VIP) templates and connections algorithm to
route user requests to the worker servers 528. A VIP template
contains load balancer-related configuration settings for a
specific type of network traffic. Other examples of load bal-
ancing algorithms, such as round robin and observed
response time, also can be used. For example, in certain

14
aspects, three consecutive requests from the same user could
hit three different worker servers, and three requests from
different users could hit the same worker server. In this man-
ner, transactional database management system 232 is multi-

5 tenant, wherein integration environment handles storage of,
and access to, different objects, data and applications across
disparate users and organizations.

Superpod engines 204 also host the queuing engine 208,
which in turn implements a key-value server 518 that is in

10 communication with a key-value store. Key-value store is a
type of storage that enables users to store and read data
(values) with a unique key. In some implementations, a key-
value store stores a schema-less data. This data can consist of
a string that represents the key and the actual data is the value

15 in the "key-value" relationship. According to one implemen-
tation, the data itself can be any type of primitive of the
programming langue such as a string, an integer, or an array.
In another implementation, it can be an object that binds to the
key-value store. Using a key-value store replaces the need of

20 fixed data model and makes the requirement for properly
formatted data less strict. Some popular examples of different
key-value stores include Redis, CouchDB, Tokyo Cabinet
and Cassandra. The example shown in FIG. 5 uses a Redis
based key-value store. Redis is a database implementing a

25 dictionary where keys are associated with values. For
instance, a key "topname_2014" can be set to the string
"John." Redis supports the storage of relatively large value
types, including string (string), list (list), set (collection), zset
(set-ordered collection of sorted) and hashs (hash type) and so

30 on.
In some implementations, queuing engine 208 sets server

affinity for a user and/or organization to a specific work server
528 or to a cluster of worker servers 528. Server affinity refers
to the set up that a server or servers in a same cluster are

35 dedicated to service requests from the same client, according
to one implementation. In another implementation, server
affinity within a cluster of servers refers to the set up that
when a server in the cluster fails to process a request, then the
request can only be picked by another server in the cluster.

40 Server affinity can be achieved by configuring the load bal-
ancers 202 such that they are forced to send requests from a
particular client only to corresponding servers dedicated to
the particular client Affinity relationships between clients
and servers or server clusters are mapped in a directory ser-

45 vice. Directory service defines a client name and sets it to an
IP address of a server. When a client name is affinitized to
multiple servers, client affinity is established once a request's
destination IP address matches the cluster's global IP address.
Low Latency Queuing

so Analytics environment 100 includes a display engine 118
that comprises a user interface and other programming inter-
faces allowing users and systems to interact with the transac-
tional database management system 232. An integration envi-
ronment 200 enables users to explore the transaction data

55 stored in the analytics environment 100 by creating analytics
data structures i.e. edgemarts. For instance, a user can issue a
request to generate reports, derive measures, or compute sets
from the transaction data 232 using the analytics environment
100. This request is managed and processed in the integration

60 environment 200. Based on the parameters of the request,
integration environment 200 creates edgemarts using the ELT
workflow described above. The resulting edgemarts are then
made available in a low latency format for the user to consume
and interactively explore.

65 FIG. 6 illustrates one implementation of low latency queu-
ing 600 in the integration environment 200. When a request,
that requires edgemart creation from transaction data, is made

US 9,396,018 B2
15

by the web based users 245 via the insights analytics appli-
cation 158, the request first reaches the application server 514
at action 612 after authentication and authorization by the
security engine 245 at action 602. In response, the application
server 514 initiates a task request for an ELT workflow job 5

624. The task request is then dispatched to a Redis task queue
518 by the VIP server 202. Redis task queue 518 names data
in the task queue by a task name, a queue name or a queue
number. This allows for acquisition of the queue data by a
pre-defined naming convention such as fuzzy query key- 10

words, which automates write and read operations in the
integration environment 200. For instance, the naming con-
vention can define a unified prefix. In one example, the task
name is prefixed with "Read" and the queue name is prefixed
with "Output" and entity in the integration environment 200
can access the edgemarts using a query such as "ReadD-
ata.OutputQueue."

In the example shown in FIG. 6, queue 1 is the "named
key-value task start queue" that forwards the task request to
one of the worker servers 528 at actions 625 and 627. Further, 2

a separate and complimentary queue 2 is the "named key-
value task complete queue," which is used by the workers 528
to notify the application server 514 of the status of the task
request at actions 626 and 628. Such a multifaceted configu-
ration of queue management implemented by the Redis task 2

queue 518 diminishes queue contention and thus reduces
latency in the integration environment 200.

Once the edgemarts 142 or shards 216 are created by the
workers 528 through the ELT workflow described above, they
are forwarded to the database server 524 at action 645. At the 3

database server 524, the newly created edgemarts 142 or
shards 216 are stored in a monitoring data structure 632,
which is independent of the named key-value task start queue
1 and the named key-value task complete queue 2. In some
implementations, large edgemarts 142 are partitioned into 3

smaller shards 216 so as to boost their transportation to the
database server 524. Independent configuration of the moni-
toring data structure 632 at action 622 allows for isolation of
the queue management without any interruptions from the
web based users 245 that seek progress reports about their 4

request.
As a result, having separate task start queue and task com-

plete queue fosters higher data transfer between the transac-
tion processing system and the analytics processing system
by boosting traffic and minimizing queue blockage. Further, 4

an independent monitoring data structure keeps any interrup-
tions from the client or its representative resources or devices
from undesirably impacting the low latency queue manage-
ment.

In a further implementation, the named key-value task start 5

queue 1 is selected based on its affinity to the web based user
245. This is achieved by defining affinity relationships
between the web based user 245 and workers 528 in a direc-
tory service Affinity definition identifies which workers are
clustered into an affinity group. In case of a queuing failure, 55

affinitized workers queue task requests that repeat the task
requests that their affinity counterparts failed to complete. For
instance, FIG. 6 shows an affinity worker group 528 that
includes worker A, worker B and Worker C affinitized to the
same web based user 245 by the directory service definition. 60

Consider that worker A picks up a task request from the
named key-value task start queue 1 but over time worker A is
not able to complete this task request. This results in the
worker A entering into an error state. In response, the queuing
engine 208 generates another task request that repeats the
earlier task request not completed by worker A. Following
this, the new generated task request can only be picked by one

16
the affinity counterparts of worker A, i.e. worker B or worker
C, based on the directory service definition.
Low Latency Tasking and Task Monitoring

FIG. 7 is a representative method 700 of low latency task-
ing and task monitoring between a transaction processing
system and an analytics processing system. Flowchart 700
can be implemented at least partially with a database system,
e.g., by one or more processors configured to receive or
retrieve information, process the information, store results,
and transmit the results. For convenience, this flowchart is
described with reference to the system that carries out a
method. The system is not necessarily part of the method.
Other implementations may perform the steps in different

15
orders and/or with different, fewer or additional steps than the
ones illustrated in FIG. 7. The actions described below can be
subdivided into more steps or combined into fewer steps to
carry out the method described using a different number or
arrangement of steps.

0 At action 702, a transaction processing system generates an
analytic data store creation task request that specifies creation
of an analytic data store based on data set stored by at least one
transactional data management system. In one implementa-
tion, the transaction processing system selects one of more

5 than a hundred named key-value task start queues to which to
queue the task request.

At action 712, the task request is queued to a named key-
value task start queue. In one implementation, the transaction
processing system selects one of a multiplicity of named

0 key-value task start queues to which to queue the task request.
At action 722, a worker thread picks up the task request

from the named key-value task start queue. In some imple-
mentations, the task start queues are between 5 and 50 times
as numerous as worker threads.

5 At action 732, the worker thread reports progress on the
task request to a monitoring data structure independent of the
task start queue. The independent monitoring data structure is
accessible to the web based users via the application server
such that the application server periodically notifies the web

0 based users of the progress on the task request irrespective of
receiving a notification request from the web based users.

At action 742, the worker thread registers a completed
analytic data store with the transaction processing system.
Registering the analytic data store with the transaction pro-

5 cessing system makes it available for queries. In one imple-
mentation, a register operation reference, such as "sfdcReg-
ister," can be added to the ELT workflow to apply a register
transformation to the analytic data store. The following JSON
syntax depicts a register operation reference with its name-

s value pairs:

"108 RegisterEdgeMart": {

"action": "sfdcRegister",
"parameters": {

"SFDCtoken": "SFDCtoken",
"alias": "User",
"name": "User",
"source": "107 Ngram UserAndFlatRoles"

11

In the code depicted above, "action" is the operation name
for the register transformation, which is set to "sfdcRegister."
Also, "parameters" is an array of parameters for the opera-
tion. "SFDCtoken" is the token received by the analysts as a

65 result of the ELT workflow. Further, "alias" is the display
name of the registered edgemart. In addition, "name" refers to
the internal name of the registered edgemart, which can be

US 9,396,018 B2
17

unique among all edgemarts in the organization. Moreover,
"source" is the node that identifies the edgemart to be regis-
tered.

At action 752, upon completion of creating the analytic
data store specified by the task request, the worker thread
queues a task complete report to a named key-value task
complete queue complementary to the named key-value start
queue. In one implementation, failure of the worker to com-
plete the task request within a predetermined time causes
generating and queuing a second analytic data store creation
task request that repeats the task request that the worker did
not complete.

In another implementation, the worker thread sets the
named key-value task start queue to blocked status while
processing the task request. In yet another implementation,
the worker thread, after picking up the task request, enters an
error state. In this implementation, a queue processing system
detects a time out condition following passage of a predeter-
mined period following the worker thread picking up the task
request, the queue processing system clears the blocked status
from the named key-value task start queue; and responsive to
the detection of the time out condition, generates and queues
a second analytic data store creation task request that repeats
the task request that the worker did not complete.

In yet another implementation, a queuing process is run
that manages the task start queue and the task complete queue
and stores data for both the task start queue and the task
complete queue in a volatile memory instead of rotating or
non-volatile memory. In a further implementation, a queuing
process is run in a volatile memory that manages the task start
queue and the task complete queue and data is stored for both
the task start queue and the task complete queue in volatile
memory without redundant storage in persistent memory.

At action 762, the transaction processing system uses a
directory service to select a named key-value task start queue
based at least in part on affinity to an entity that owns the data
set stored on the transactional data management system. In
one implementation, the worker, prior to picking up the task
request, resumes operation from an error state by querying the
directory service to determine one or more additional workers
in an affinity group with the worker that possess current data
for the affinity group and obtaining from the additional work-
ers the current data for the affinity group.

This method and other implementations of the technology
disclosed can include one or more of the following features
and/or features described in connection with additional meth-
ods disclosed. In the interest of conciseness, the combinations
of features disclosed in this application are not individually
enumerated and are not repeated with each base set of fea-
tures. The reader will understand how features identified in
this section can readily be combined with sets of base features
identified as implementations in sections of this application
such as analytics environment, integration environment, ELT
workflow, integration components, low latency queuing, etc.

Other implementations may include a non-transitory com-
puter readable storage medium storing instructions execut-
able by a processor to perform any of the methods described
above. Yet another implementation may include a system
including memory and one or more processors operable to
execute instructions, stored in the memory, to perform any of
the methods described above.
Computer System

FIG. 8 shows a high-level block diagram 800 of a computer
system that can used to implement some features of the tech-
nology disclosed. Computer system 810 typically includes at
least one processor 814 that communicates with a number of
peripheral devices via bus subsystem 812. These peripheral

18
devices can include a storage subsystem 824 including, for
example, memory devices and a file storage subsystem, user
interface input devices 822, user interface output devices 818,
and a network interface subsystem 816. The input and output

5 devices allow user interaction with computer system 810.
Network interface subsystem 816 provides an interface to
outside networks, including an interface to corresponding
interface devices in other computer systems.

User interface input devices 822 can include a keyboard;
10 pointing devices such as a mouse, trackball, touchpad, or

graphics tablet; a scanner; a touch screen incorporated into
the display; audio input devices such as voice recognition
systems and microphones; and other types of input devices. In
general, use of the term "input device" is intended to include

15 all possible types of devices and ways to input information
into computer system 810.

User interface output devices 818 can include a display
subsystem, a printer, a fax machine, or non-visual displays
such as audio output devices. The display subsystem can

20 include a cathode ray tube (CRT), a flat-panel device such as
a liquid crystal display (LCD), a projection device, or some
other mechanism for creating a visible image. The display
subsystem can also provide a non-visual display such as audio
output devices. In general, use of the term "output device" is

25 intended to include all possible types of devices and ways to
output information from computer system 810 to the user or
to another machine or computer system.

Storage subsystem 824 stores programming and data con-
structs that provide the functionality of some or all of the

30 modules and methods described herein. These software mod-
ules are generally executed by processor 814 alone or in
combination with other processors.

Memory 826 used in the storage subsystem can include a
number of memories including a main random access

35 memory (RAM) 830 for storage of instructions and data
during program execution and a read only memory (ROM)
832 in which fixed instructions are stored. A file storage
subsystem 828 can provide persistent storage for program
and data files, and can include a hard disk drive, a floppy disk

40 drive along with associated removable media, a CD-ROM
drive, an optical drive, or removable media cartridges. The
modules implementing the functionality of certain imple-
mentations can be stored by file storage subsystem 828 in the
storage subsystem 824, or in other machines accessible by the

45 processor.
Bus subsystem 812 provides a mechanism for letting the

various components and subsystems of computer system 810
communicate with each other as intended. Although bus sub-
system 812 is shown schematically as a single bus, alternative

so implementations of the bus subsystem can use multiple bus-
ses. Application server 820 can be a framework that allows the
applications of computer system 810 to run, such as the
hardware and/or software, e.g., the operating system.

Computer system 810 can be of varying types including a
55 workstation, server, computing cluster, blade server, server

farm, or any other data processing system or computing
device. Due to the ever-changing nature of computers and
networks, the description of computer system 810 depicted in
FIG. 8 is intended only as one example. Many other configu-

60 rations of computer system 810 are possible having more or
fewer components than the computer system depicted in FIG.
8.

The terms and expressions employed herein are used as
terms and expressions of description and not of limitation,

65 and there is no intention, in the use of such terms and expres-
sions, of excluding any equivalents of the features shown and
described or portions thereof. In addition, having described

US 9,396,018 B2
19

certain implementations of the technology disclosed, it will
be apparent to those of ordinary skill in the art that other
implementations incorporating the concepts disclosed herein
can be used without departing from the spirit and scope of the
technology disclosed. Accordingly, the described implemen-
tations are to be considered in all respects as only illustrative
and not restrictive.

What is claimed is:
1. A method of low latency tasking and task monitoring

between a transaction processing system and an analytics
processing system, the method including:

a transaction processing system generating an analytic data
store creation task request that specifies creation of an
analytic data store based on at least one data set stored by
at least one transactional data management system;

queuing the task request to a named key-value task start
queue;

a worker thread picking up the task request from the named
key-value task start queue;

the worker thread reporting progress on the task request to
a monitoring data structure independent of the task start
queue;

the worker thread registering a completed analytic data
store with the transaction processing system; and

upon completion of creating the analytic data store speci-
fied by the task request, the worker thread queuing a task
complete report to a named key-value task complete
queue complementary to the named key-value start
queue.

2. The method of claim 1, further including the transaction
processing system selecting one of more than a hundred
named key-value task start queues to which to queue the task
request.

3. The method of claim 1, further including the transaction
processing system selecting one of a multiplicity of named
key-value task start queues to which to queue the task request,
wherein the task start queues are between 5 and 50 times as
numerous as worker threads.

4. The method of claim 1, further including the transaction
processing system selecting a named key-value task start
queue based at least in part on affinity to an entity that owns
the data set stored on the transactional data management
system.

5. The method of claim 1, wherein failure of the worker
thread to complete the task request within a predetermined
time causes generating and queuing a second analytic data
store creation task request that repeats the task request that the
worker thread did not complete.

6. The method of claim 1, wherein the worker thread, prior
to picking up the task request, resumes operation from an
error state, further including:

the worker thread querying a directory service to determine
one or more additional worker threads in an affinity
group with the worker thread that possess current data
for the affinity group; and

the worker thread obtaining from the additional worker
threads the current data for the affinity group.

7. The method of claim 1, further including the worker
thread setting the named key-value task start queue to blocked
status for pulling additional task requests from the named
key-value task start queue while processing the task request.

8. The method of claim 7, wherein the worker thread, after
picking up the task request, enters an error state, further
including:

a queue processing system detecting a time out condition
following passage of a predetermined period following
the worker thread picking up the task request;

20
the queue processing system clearing the blocked status

from the named key-value task start queue; and
responsive to the detection of the time out condition, gen-

erating and queuing a second analytic data store creation
5 task request that repeats the task request that the worker

thread did not complete.
9. The method of claim 1, further including running a

queuing process that manages the task start queue and the task
complete queue and storing data for both the task start queue

io and the task complete queue in a volatile memory instead of
rotating or non-volatile memory.

10. The method of claim 1, further including:
running in a volatile memory a queuing process that man-

ages the task start queue and the task complete queue;
15 and

storing data for both the task start queue and the task
complete queue in volatile memory without redundant
storage in persistent memory.

11. A method of low latency tasking and task monitoring
20 system, the method including:

an analytic data store creation task request maker running
on hardware that generates creation task requests and
specifies creation of an analytic data store based on at
least one data set stored by at least one transactional data

25 management system;
queuing the task request to a named key-value task start

queue;
a worker thread picking up the task request from the named

key-value task start queue;
30 the worker thread reporting progress on the task request to

a monitoring data structure independent of the task start
queue;

the worker thread registering a completed analytic data
store with the transaction processing system; and

35 upon completion of creating the analytic data store speci-
fied by the task request, the worker thread queuing a task
complete report to a named key-value task complete
queue complementary to the named key-value start
queue.

40 12. A method of low latency query tasking and query
processing monitoring between a transaction processing sys-
tem and an analytics processing system, the method includ-
ing:

a transaction processing system generating a query task
45 request that specifies querying a read-only analytic data

store that stores a data set retrieved from at least one
transactional data management system;

queuing the task request to a named key-value task start
queue;

so a worker thread picking up the task request from the named
key-value task start queue; and

upon completion of assembling query results specified by
the task request, the worker thread queuing a task com-
plete report to a named key-value task complete queue

55 complementary to the named key-value start queue and
reporting the assembled query results.

13. The method of claim 12, further including the transac-
tion processing system selecting a named key-value task start
queues based at least in part on affinity to an entity that owns

60 the data set stored on the transactional data management
system.

14. The method of claim 12, further including the transac-
tion processing system selecting one of more than a hundred
named key-value task start queues to which to queue the task

65 request.
15. The method of claim 12, further including the transac-

tion processing system selecting one of a multiplicity of

US 9,396,018 B2
21

named key-value task start queues to which to queue the task
request, wherein the task start queues are between 5 and 50
times as numerous as worker threads.

16. The method of claim 12, wherein failure of the worker
thread to complete the task request within a predetermined
time causes generating and queuing a second analytic data
store creation task request that repeats the task request that the
worker thread did not complete.

17. The method of claim 12, wherein the worker thread,
prior to picking up the task request, resumes operation from
an error state, further including:

the worker thread querying a directory service to determine
one or more additional worker threads in an affinity
group with the worker thread that possess current data
for the affinity group; and

the worker thread obtaining from the additional worker
threads the current data for the affinity group.

18. The method of claim 12, further including the worker
thread setting the named key-value task start queue to blocked
status while processing the task request.

22
19. The method of claim 18, wherein the worker thread,

after picking up the task request, enters an error state, further
including:

a queue processing system detecting a time out condition
5 following passage of a predetermined period following

the worker thread picking up the task request;

the queue processing system clearing the blocked status
from the named key-value task start queue; and

10 responsive to the detection of the time out condition, gen-
erating and queuing a second analytic data store creation
task request that repeats the task request that the worker
thread did not complete.

20. The method of claim 12, further including running a
15 queuing process that manages the task start queue and the task

complete queue and storing data for both the task start queue
and the task complete queue in a volatile memory instead of
rotating or non-volatile memory.

