
(12) United States Patent 
Fattah 

11111111111111111111111114!11111119p1111111111111111111111111111 

(10) Patent No.: US 8,996,920 B2 
(45) Date of Patent: Mar. 31, 2015 

(54) FINITE STATE MACHINE METHOD FOR 
TEST CASE GENERATION AND EXECUTION 
OF COMMUNICATION PROTOCOLS 

(71) Applicant: Spirent Communications, Sunnyvale, 
CA (US) 

(72) Inventor: Hossam Fattah, Eatontown, NJ (US) 

(73) Assignee: Spirent Communications, Inc., 
Sunnyvale, CA (US) 

( * ) Notice: Subject to any disclaimer, the term of this 
patent is extended or adjusted under 35 
U.S.C. 154(b) by 231 days. 

(21) Appl. No.: 13/656,397 

(22) Filed: Oct. 19, 2012 

(65) Prior Publication Data 

US 2014/0115394 Al Apr. 24, 2014 

(51) Int. Cl. 
G06F 11/00 (2006.01) 
G06F 11/26 (2006.01) 

(52) U.S. Cl. 
CPC G06F 11/26 (2013.01) 
USPC 714/38.1 

Start .11 

IWait Usti! c Nets Ni,iSagC-. 

Res aised. 

(58) Field of Classification Search 
CPC GO6F 11/3688; GO6F 11/3676; GO6F 

11/3684; GO6F 11/3664; GO6F 11/3636; 
GO6F 11/3672 

USPC 714/38.1, 32 
See application file for complete search history. 

(56) References Cited 

U.S. PATENT DOCUMENTS 

5,995,753 A * 11/1999 Walker 717/108 
7,647,219 B2 * 1/2010 Overturf et al. 703/16 

* cited by examiner 

Primary Examiner - Yair Leibovich 
(74) Attorney, Agent, or Firm - Haynes Beffel & Wolfeld 
LLP; Ernest J. Beffel, Jr.; Yiding Wu 

(57) ABSTRACT 

The technology disclosed relates to implementing a novel 
architecture of a finite state machine (abbreviated FSM) that 
can be used for testing. In particular, it can be used for testing 
communications devices and communication protocol 
behaviors. 

919 
.................. . 

Dequeoe. \ le, a, 11.-ont FSM: 

4ueue 

914 

Yes 

ae,111.1:. 
,01 . oor 

912 

25 Claims, 25 Drawing Sheets 

flow Chart of 
FSM Thread Operation 

r- 959 

y4 l 

Ca:11:09-, fanc!lor 

cha.net currea: 

Yes 

9:8 

958 

Rerto, valor of 
',Handier is "1/R1,111"1 

- 920 

attSes11st 

922 

Yes 
No 

9 

No 



U.S. Patent Mar. 31, 2015 Sheet 1 of 25 US 8,996,920 B2 

f--- 123 

Test Controller 

44-* 

100 

Traffic Generator 

115 

125 

Network Emulator 
127 

User Equipment 

Fig. 1 - High-Level Architecture 



U.S. Patent Mar. 31, 2015 Sheet 2 of 25 US 8,996,920 B2 

115 Traffic Generator 

125 

123 

Tracer 

Test Controller 

S-GW 

P-G-W 

MME 

223 

RRC 

215 

,- 

219 

(-- 225 

LTE-Uu 

MAC 

PHY 
255 

265 
Network Emulator User Equipment 

200 

127 

RRC 

PDCP 

RLC 

MAC 

PHY 

Fig. 2 - Threading Architecture 



U.S. Patent Mar. 31, 2015 Sheet 3 of 25 US 8,996,920 B2 

300 
225 

315 

Connection 
Establishment_ 

325 328 

Connection 
Reconfiguration 

Connection 
Re-Estabiishment 

Fig. 3 - Threading Architecture of LTE-Un Interface 



U.S. Patent Mar. 31, 2015 Sheet 4 of 25 US 8,996,920 B2 

400 

MSG INIT 

420 

mi 

15- 

410 

Dispatcher 

m4 

l,)71try tf er 

t 7 
tiagdicr Exit HandLr 

m3 

450 

Default Timer Dandier 

415 

Message Queue 

Fig. 4 - FSM Framework 

Exit Handler 



U.S. Patent Mar. 31, 2015 Sheet 5 of 25 US 8,996,920 B2 

610 

Entry 1 andle'r 
MSG INIT - 

SO 

510 Exit Handler 

Fig. 5 - State-Message Duple 

500- 

515 

Initial State 

625 

Default Entry Handier 

Dedicated Entry Handler X 
,eoo wen ee~ wen ee~ wen eee wen eeee, wen eeee, wen eeee, wen 

Dedicated Ently Handier Y 
7.74,17 vssys, 

SO 

600 

635 

645 

Dedicated Exit Handier 

Dedicated! Exit- Handler W' 
655 

Default Exit Handler 

Fig. 6 - State Handlers 

W 



U.S. Patent Mar. 31, 2015 Sheet 6 of 25 US 8,996,920 B2 

X 

Dedicated Entry Handier X / 

Dedicated Entry Handier Y 

Dedicated Entry Handier Z 

Dedicated 1.::11try. hander W 

Dedicated. Exit Handler X 

Dedicated. Exit Handler 

Dedicated Ex it Handler Z 

Dedicated Exit Handier 

z 

Fig. 7 - Self-Transition 

700- 



U.S. Patent Mar. 31, 2015 Sheet 7 of 25 US 8,996,920 B2 

X 800 

C 

Default Entry Handler 
mm, 

I 
t Dedicated Entry Handler X 

Dedicated Entry- I landler y 

t Dedicated Entry Handler A 

Dedicat,ed ntry liandier 

I 
Default Ex it Handler 

Dedicated &rX 

t Dedicated EidtHandier Y 

Dedicated Exit iandier 

I.- 
[ Dedicated Exit Handier W 

W 

Fig. 8 Various Implementations of State Handlers 



U.S. Patent Mar. 31, 2015 Sheet 8 of 25 US 8,996,920 B2 

Star 

Wait Until a New Message is 
1 eceiwd. 

Dequeue Message from ESM 
Message Queue 

'Dedicated Ext 
Handier exists? 

914 
Yes 

No 

Call Dedicated Exit Handler 

900A 

910 Fig. 9A - Flow Chart of 
FSM Thread Operation 

912 

956 

918 

Change Current state to Next State 

916 

Delltitit Exit 
--4.1andler ex:ists? 

Yes 

Cal : Default Exit Handler 

Yes 

Return vaitte of 
--,Handler is -TRUE"? 

bedieated Lntry-N, 
-Handler exists? 

922 

920 

No 
Yes 

No 

No 



U.S. Patent Mar. 31, 2015 Sheet 9 of 25 US 8,996,920 B2 

Fig. 9A 

Yes 

900B 

No 

ill Dedicated Entry Handler 

Yes Return vaue of 
Hati.d.ler 

No 

926 

924 --,... 
-... 

De la i 1 h Entry 
*---..Tiandier exists? ..-/-' 

--,...- 
-.... 

.,.. 

964 

Yes 

No 

966 
Call Default Entry Handler 

Timer Expiry Message and 
Timer Handler exists? 

Call Timer- Handier 

V. 

Return value of "N 
\--..pandler is "TRUE 

928 

Algorithrn a I id F.STs,I Thread 
Completed 
execution 

930 

932 

End 

Fig. 9B - Flow Chart of 
M Thread Operation 

934 



U.S. Patent Mar. 31, 2015 Sheet 10 of 25 US 8,996,920 B2 

Dispatcher 

Message 
Queue 

FTtiT 
-1/4... Handle' 

MSG:INT 

m2 

Fig. 10 - FSM with Self-Transition 



U.S. Patent Mar. 31, 2015 Sheet 11 of 25 US 8,996,920 B2 

1120 

FSM I Wm:v.40 Message Queue 

1100: 

Message Queue 

nil 

m2 

FSM 3 (Chit0): 

1110 

1125 

Message Queue 

m3 

Fig. 11 - Parent with Two Child FSMs 



U.S. Patent Mar. 31, 2015 Sheet 12 of 25 US 8,996,920 B2 

1200 

315 

125 

1223 

Network Emulator 

IDLE 

User Equipmen 

RRC Connection Request 

CONNECTING 

T300 

RRC Connection Setup 

RRC. Connection Setup Complete 

CONNECTED 

1215 

1225 

1235 

127 

Fig. 12 Message Sequence Chart for 
Connection Establishment in RRC Protocol 



U.S. Patent Mar. 31, 2015 Sheet 13 of 25 US 8,996,920 B2 

MSG IN 

1300 

Message Queue 

RRCConneetionRequesti RRCConnectionSetup 
RRCCormecitonSetup, StartT300 Cornplete,Stop T300 

1323 

Dedi cited 

ExitHaridler 

1 

y1330 
IDI E. state 

Dedicatec 
Exit Handier 

/ Dedicated 
Ex it H an d1 er, 

1325 

MSGJIMEREXP1RED, 
T300 Expired 

r CONNECTING state, 

1335 1339 

CONNECTED state 

Fig. 13 - Multi-State FSM Describing 
Connection Establishment Test Case 



U.S. Patent Mar. 31, 2015 Sheet 14 of 25 US 8,996,920 B2 

char szStateNarnerMAA.NAIVIE..1.1£AGT141 

State Handler StateDefavitEntryliandier 
StateHandier StateDefaultbritHandler 
StateKandier 54;teDefagItTirnerHarp:lie; 

Stateliandier StateMessageDedicatedEntry3tandlerfMAX..M5G..NUMI 
Stateliandier Staterv/essageDedicatedExitHancflerf MAX MSG N 

Base Class 
CFSMO 
CFSIVI(CFSIVi ptsarentFsrri) 
-CFSMO 

Run() 
Stepp'. 
SeniriMessage(Msg), 
NextState(Statatilarne) 
isFSMCompleted() 
WattPriF5MCorripletioa() 
OetcumntState() 

StartTimer(TirnerNarrie, TirneOut) 
ReStarffirneriTirnerName) 
StopTitner(TlinerName) 
IsTimerExpirecl(TimerName) 

SetVerdict() 
etVerdit-t() 

GetiVleasagelcia 
GetMessage Data() 
GetiViessagelength0 

virtual GetFSMIntoTable() 

User Class 
........ ............... . 

BOOt SO JVISGRRCCONNECTiON_REQUEST_Exita 
BOOt SliVISG_FIRC_CONNECTION_SETUPCOMPLETE..E3kita 
00 .5 O_Exit() 

BOOL 52Entry() 
BOOL TimerHandler() 

Fig. 14 - Class Diagram of an 
FSM Frame Work 

1425 

1435 

1445 

1400 



U.S. Patent Mar. 31, 2015 Sheet 15 of 25 US 8,996,920 B2 

1500 

//Define the FSM Class 

#define FSM(FSMCIass) 

class FSMClassl public CFSM 

//Declare a pair of default Exit and Entry Handlers for a State 

#define DECLARE_STATE_HANDLER(State) 

boo]. State#4_Entry(vccid); 

boo]. State##_Exit(void); 

//Declare a default Exit Handler for a State 

#define DECLARE_STATE_EXIT_HANDLER(State) 

boo]. State##_Exit(void); 

//Declare a default Entry Handler for a State 

#define DECLARESTATEENTRY_HANDLER(State) 
boo]. State##Entry(void); 

//Declare a pair of dedicated Exit and Entry Handlers for a specific 

//message for a State 

#define DECLARE_STATE_MESSAGE_HANDLER(State, MsgID) 

boo]. State##_##MsgID##_Entry(void); 

boo]. State##_##MsgIDO_Exit(void); 

//Declare a dedicated Exit Handler for a specific message for a State 

#define DECLARE_STATE MESSAGE_EXIT_HANDLER(State, MsgID) 

boo]. StatesgID4#_Exit(void); 

//Declare a dedicated Entry Handler for a specific message for a State 

#define DECLARE_STATE_MESSAGEENTRY_HANDLER(State, MsgID) \ 

boo]. State##_##MsgIDO_Entry(void); 

//Declare a default Timer Handler for the FSM 

*define DECIARE_DEFAULT_TIMER_HANDLERO 

boo] TimerHandler(void); 

Fig. 15 - Declaration of the Handlers in a User Class 



U.S. Patent Mar. 31, 2015 Sheet 16 of 25 US 8,996,920 B2 

1600 

/The Function header of a default Entry Handler for a State 

define ONSTATEENTRY(FSMClass, State) 
bool FSMCIass:State#4Entry(void) 

/The Function header of a default Exit Handler for 
define ON_STATEEXIT(FSMClass, State) 

bool FSMClass::StateltifExit(void) 

a State 

/The Function header of a dedicated Entry Handler for a message for a 

/State 
define ON_STATE_MESSAGE_ENTRY(FSMCiass, State, MsgIO) 

bool FSMClass::State#4##MsgINIkyntry(void) 

/The Function header of a dedicated Exit Handler for a message for a 

/State 
define ON STATE MESSAGE_EXIT(FSMClass, State, 1sgID) \ 

bool FSMCIassz:State##_##MsgID##_Exit(vOid) 

/The Function header of the default Timer Handler 

efine ON_TIMER(FSMC1ass) 

bool FSMCiass;:TimerHandler(void) 

Fig. 16 Implementation of the Handlers in a User Class 



U.S. Patent Mar. 31, 2015 Sheet 17 of 25 US 8,996,920 B2 

1700 

BEGN_RECASTER(FSMCIess) 

CFSM::ESM_INFO_ENTRY 41:SMCiassiiCietFSMirifoTabie0 

1 

FSMCiass ThisCiass; 

PSIVLINEO_ENTRYFsminfoTablen 

{FSM_NAME, ;#F5MCiass, 0, 0, 0, NISG_NONE}, 

'J REG1STER_STATE_HANDLER(State) i. 

{STATE J-1.41IDLEE, #State, &ThisCia5s::State44_Entry, &ThisCiass::5tate4#_Exit, 0, MSG_NONE}, 

io REGISTER_STATE_ENTRY_HA.NDLER(State) 

{STATE_ENTRY _HANDLER, #State, WilisCiassi:Statettft_Estry, 0, 0, MSG_NONE}, 

5' R_GISTER_STATE_EXIIIHANDLER(State) 
{STATE_EX.IT_HANDLER, ttState, 0, &ThisCiass::Stateilit_Exit, 0, MSG_NONE}; 

REGISTER_STATE_MESSAGE_HANDLER(State, Msgid) 
{STATE_ME.SSAGE_HANDLER, tt5tate, &ThisClaE,s::Stategg_Misgidllil_Entry, 
&ThisClass::State4#__#,IMsgici#SLExit 0 Msgid), 

REGISTER_STATE_MESSAGE_ENTRY_HANDLER(Snte, Msgid) 
{STA1E_MESSAGE__ENTRY_1-1ANDLER,,;I(41State), &ThisC;ass;;State##_,###Msgldttfi.Entry; 0, 0, Msgld }, 

REGISTER_STATE JvIESSAC-E_EXIT_HAN DLER(State, Msgid) 
;STATE__MESSAGE_EXIT_HANDLER, __T(#State), 0, &ThisClass;;State4#__##Msgid#A_Exit, 0, Msgld), 

d.?Fime REGISTER_DEFAULT_TIMER__HANDLERO 

{DEFALIET_TIMER_HANDLER, 0, 0. 0, 8,ThsCiass::"IirnerHandier, NISG_NONE}, 

REGISTER__MESSAGE(Msg)d) 

{141E5SAGE _ALPHABET, 0, 0, 0, 0, Msg.:ell, 

;eGns END_REGISTERO 

{NONE_TYPE, 0, 0, 0, 0, MS(i_,NONE} 

eturrs &FsrnInfoTabie[0]; 

Fig. 17 - Implementation of the Overridden Method, 
GetFSMInfoTable(), in an FSM User Class 



U.S. Patent Mar. 31, 2015 Sheet 18 of 25 US 8,996,920 B2 

1#U0 

FSM(CConnectionEst) 

CConnectionEst(vid); 
-CConnectionEst(voi0; 

;3:-ivate: 

DECLARESTATEMESSAGE_EXIT_HANDLER(SO, MSGJIRC_CONNECTION_REQUEST); 
DECLARE_STATE_MESSAGE_EXIT_HANDLERM, MSG_RRC_CONNECTION_SETUP_COMPLETE); 
DECLARE_STATE_MESSAGE_EXIT_HANDLER(51, MSG_TIMER_EXPIRED); 

DECLARE_STATE_ENTRY_HANDLER(52); 

DECLARE_REGISTERO 

} ; 

Fig. 18 - C++ Header File for the User Class of 
Connection Establishment Procedure Test Case 



U.S. Patent Mar. 31, 2015 Sheet 19 of 25 US 8,996,920 B2 

1900 

BEGINREGISTER(CConnectionEst) 

REGISTERSTATE_MESSAGEEXITJANDLER(SO, MSGRRCCONNECTION_REQUEST) 
REGISTER_STATE_MESSAGE_EXILHANDLER(Si, MSG_RRC_CONNECTIONSETUP_COMPLETE) 
REGISTERSTATEMESSAGEEXIT3ANDLER(S1, MSGJIMER EXPIRED) 

REGISTER_STATE_ENTRY_HANDLER(52) 

END_REGISTERO 

CConnectionEst::CConnectionEst Fig. 19 C Source File for th 
User Class of the Connection 

Establishment Procedure 
CConnect onEst::-CConnectionEst(q.c) 

} 
Test Case 

ON_STATE_MESSAGE_EXIT(CConnectionEst, SO, MSG_RRC_CONNECTION_REQUEST) 
{ 

Send(MSG_RRC_CONNECTION_SETUP, "Rr. ectfi.4-Jue."); 

SI 

NextState(S1); 

nMer 
StartTimeT300, 10 *300); 

yet 

rturn. feTi$e; 

ON_STATE_MESSAGE_EXIT(CConnectionEst, Si, MSG_RRCCONNECTION_SETUP_COMPLETE) 

{ 

//CieAnge 

NextState(S2); 

return -False; 

ON_STATE_MESSAGE_EXIT(CConnectionEst, Si, MSG_TIMER_EXPIRED) 

//ange Stete .itute. Se. 

NextState(SO); 

.//st 
SetVerdict(VERDICT_FAIL); 

.topT4ner(1-300); 

return true; 

} 

ON_STATE_ENTRY(CConnectionEst, 52) 

{ 

:;uccetully 
SetVerdif-WERDICT_PASS); 
5toptim(T300); 

return true; 



U.S. Patent Mar. 31, 2015 Sheet 20 of 25 US 8,996,920 B2 

2000 

#incli;dc: "Corinct.RmE" 

_main(ict argc, char- argv[i) 

{ 

} 

CConnectionEst *pCConnectionEst = CConnectionEst(); 
pCConnectionEst->Run(); 

pCConnectionEst->WaitOnFSMCompletion(); 

if (pCConnectionEst->GetVerdict() == VERDICT_PASS) 

printf("\nTet. r.:3:;sf.?d succes:;fully_.,"); 

printf("\-Te5t 

pCConnectionEst; 

rE)tiwn 0; 

Fig. 20 - C++ Code for Connection Establishment 
Procedure Test Case Execution 



U.S. Patent Mar. 31, 2015 Sheet 21 of 25 US 8,996,920 B2 

Inherit I3a.se- Class. in 
tiwr Class 

Register 
Message Alphabet 

Register 
State-Message Duple 

First State 
........... ........ ..... .............. - . ......... 

Define. 
Exit Handler 

Define: 
Timer Methoa 

Define 
Verdict Method. 

Fig. 21 - Method Flowchart 

2105 
2100 

2110 

2120 

2130 

2140 

2150 

2160 

2170 



U.S. Patent Mar. 31, 2015 Sheet 22 of 25 US 8,996,920 B2 

2200 

2210 

Storage Subsystem 
2226 

Memory Subsystem 

2232 -----, 
2230 

ROM RAM 

2228 -Th 

File Storage 
Subsystem 

Processor(s) 

2214 
2216 

Network 
Interface 

Computer System 

/- 2224 

2222 

2212 

User Interface 
Input Devices 

User Interface 
Output Devices 

2220 

Fig. 22 - Computer System 



U.S. Patent Mar. 31, 2015 Sheet 23 of 25 US 8,996,920 B2 

Timer T1 Expires 

Dedicated Entry Handier 
for MSG TIMFR EXPIP ED 

SO 

Dedicated Exit. Handler 
' for MSG TIMER EXPIRED 

Timer T1 Expires 

Fig. 23 - State Representation with Dedicated Handler for 
MSG:11 MER_EXPIRED message 



U.S. Patent Mar. 31, 2015 Sheet 24 of 25 

MSG JNYF 

1-a 

US 8,996,920 B2 

Tsilent=3s Ttalk=2s 

1-b 

Fig. 24A - FSM for Voice Activity Model 

MSG_T1MEREXPIRED(Ttalk) 

Exit 1 landier 

Tsitent=3s 
MSG_ I-AMER EXPIRED(Tsilent) 

Ttalk=2s 

Fig. 24B - FSM for Voice Activity Model 



U.S. Patent Mar. 31, 2015 Sheet 25 of 25 US 8,996,920 B2 

3: Hoodler -fc)r 

ON_STATE_ENTRY(VoiceCodei", SILENT) 

{ 

e T_feflnn.i: Timnr for GaeonP 
StartTimer(T_silent, 3*1000); 

ril"turn ele; 
} 

f/Ded exit Hane:J.er stAte 

ON_STATE_MESSAGE_EXIT(VoiceCodr, SILENT., MSG_TIMER_EXPIRED) 

{ 

tht the T___sileot Tier has expired 
1/..an if i;:), Oe tr.,:e%odo to Vie nex "TAL:C 

if (IsTimerEkpired(L5ilent)) 
NextState(TALK)..; 

return false; 

I 

//i')edietd entry Hendinr fon ;:S.:3_,TiMXPIRD in stete TALK 

ON.STATEJIESSAGE_ENTY(VoiceCoder, TALK, MSG_TIMER_EXPIRED) 

{ 
7/SteH: e T t.alk Tiaer for 2 

StartTimer(T talk, 21000); 

//Stt. 
GenerateVoiceTraffic(); 

net)no false; 

Hodlift for MSG...TIk...fX.PT.RD ::ThUe io TAi_X 

ON_STATE_MESSAGE_EXIT(Voicetodar, TALK, MSGLTIMEREXPIRED) 

{ 

/Ci:lenk thut tne ft:dk fiwt. tnt expired 
ti,eP treoshion to the nnn :ntn -SILM- 

//eon step the traffic generator 

if (IsTimerExpired(T_talk)) 

NextState(SILENT); 

/Stop Gentiog Vice Ttfic 
Sto0Voit0Traffic(). 

rat)ro false; 

Fig. 25 - C++ Code for Voice Activity Model 



US 8,996,920 B2 
1 

FINITE STATE MACHINE METHOD FOR 
TEST CASE GENERATION AND EXECUTION 

OF COMMUNICATION PROTOCOLS 

BACKGROUND 5 

The technology disclosed relates to implementing a novel 
architecture of a finite state machine (abbreviated FSM) that 
can be used for testing. In particular, it can be used for testing 
communications devices and communication protocol 
behaviors. 

Several approaches have been proposed to implement 
finite state machines. Some focus on minimizing memory 
consumption, combining or embedding finite state machine 
classes written in different programming languages, and 
exchanging inputs, triggers, or state values between finite 
state machines. Others implement look-up tables for actions 
to be performed in each state. Some of these architectures are 
optimized for hardware rather than software implementation. 

Existing FSM architectures are cumbersome for test case 
modeling and generation, especially architectures that 
require a user to provide a large number of tables to represent 
states, inputs, triggers, actions, conditions, and events and 
that require the user to manage these tables. These architec- 
tures do not provide intrinsic support for test related opera- 
tions. 

An opportunity arises to provide users with a novel FSM 
architecture to create test cases or protocol behavior models. 
Fast and rapid deployment, configurability, maintenance, 
scalability, and ability to support multiple communicating 
finite state machines may result. 

SUMMARY 

The technology disclosed relates to implementation of a 
finite state machine. In some implementations, a novel archi- 
tecture of a finite state machine can alleviate the complexity 
of modeling, generating, and executing industry-accepted 
testing for network communication protocol behaviors. Fur- 
ther details and alternative implementations appear in the 
accompanying figures, claims, and description. 

BRIEF DESCRIPTION OF THE DRAWINGS 

10 

15 

20 

25 

30 

35 

40 

FIG. 1 illustrates a high level architecture of an example- 45 

testing environment in which the finite state machine archi- 
tecture technology disclosed herein can be used. 

FIG. 2 is a block diagram of an example threading archi- 
tecture used in the example-testing environment. 

FIG. 3 illustrates a high level architecture of the LTE-Uu so 

interface comprising the radio resource control (abbreviated 
RRC) protocol with connection establishment procedure. 

FIG. 4 illustrates a general framework of an example FSM. 
FIG. 5 illustrates a state-message duple of an FSM. 
FIG. 6 illustrates default and dedicated handlers of an 55 

FSM. 
FIG. 7 illustrates a state with self-transition of an FSM. 
FIG. 8 illustrates a state with default and dedicated han- 

dlers along with inter-state transitions and self-transitions. 
FIG. 9A and FIG. 9B are high-level flow charts of an 60 

example FSM thread operation. 
FIG. 10 is an example of an FSM with self-transition state. 
FIG. 11 illustrates a parent FSM that instantiates two other 

child FSMs. 
FIG. 12 illustrates a message sequence chart of the con- 65 

nection establishment procedure in RRC protocol with FSM 
annotations that. 

2 
FIG. 13 is a multi-state finite state machine used to imple- 

ment test the message sequence chart behavior illustrated in 
FIG. 12. 

FIG. 14 is a class diagram illustrating the inheritance of 
base class by the user class and division of code between 
classes. 

FIG. 15 illustrates declaration of the handlers in a user class 
using MACROs. 

FIG. 16 illustrates implementation of the handlers in a user 
class using MACROs. 

FIG. 17 illustrates implementation of the GetFSMIn- 
foTable(.) in an FSM user class. 

FIG. 18 is the C++ header file of an example user class of 
the connection establishment procedure test case. 

FIG. 19 is the C++ source file of the example user class of 
the connection establishment procedure test case. 

FIG. 20 is an example of C++ code for the execution of the 
connection establishment procedure test case. 

FIG. 21 is a high level flow chart of an implementation of 
a method. 

FIG. 22 is a block diagram of an example computer system. 
FIG. 23 shows the state representation of an FSM when a 

dedicated exit and entry handler is defined for the timer expiry 
message. 

FIG. 24A and FIG. 24B show the FSM model used to 
describe the voice activity model in FIG. 23. 

FIG. 25 shows the C++ code for the voice activity model 
showed in FIG. 23. 

DETAILED DESCRIPTION 

The following detailed description is made with reference 
to the figures. Sample implementations are described to illus- 
trate the technology disclosed, not to limit its scope, which is 
defined by the claims. Those of ordinary skill in the art will 
recognize a variety of equivalent variations on the description 
that follows. 

The primary example in this disclosure of applying a novel 
finite state machine to testing is drawn from 3GPP standard 
TS 36.523-1 pp. 283-285, which describes test criteria for 
conformance of new LTE systems certain sections of the LTE 
standard. 3rd Generation Partnership Project, "Technical 
Specification Group Radio Access Network; Evolved Univer- 
sal Terrestrial Radio Access (E-UTRA) and Evolved Packet 
Core (EPC); User Equipment (UE) conformance specifica- 
tion; Part 1: Protocol conformance specification (Release 8)." 
668 pp. Valbonne, France (V8.1.0 Mar. 2009) accessible at 
www.3gpp.org (hereinafter 3GPP TS 36.523-1). Instead of 
using conventional test scripting in a procedural language to 
implement the specified test criteria, the technology disclosed 
provides a user modifiable FSM specification with reduced 
complexity, relative to FSMs designed for other special pur- 
poses. 

The conformance test example in FIGS. 12-22 uses FSMs 
instead of scripts. The test criteria specification, 3GPP TS 
36.523-1, section 8.1.2 pp. 283-285, describes criteria for 
testing establishment of a connection when the SUT initiates 
an outgoing call. There are hundreds of conformance tests in 
3GPP TS 36.523-1, to which the novel FSM architecture 
could be applied. The example of testing connection estab- 
lishment should not be taken as limiting or preferred. The 
conformance criteria in this test illustrate the technology dis- 
closed without being overly complicated. This example test is 
not intended to illustrate all of the technologies disclosed. For 
instance, it does not illustrate asynchronous operation of par- 
ent and child FSMs. 



US 8,996,920 B2 
3 

The technology disclosed includes an FSM architecture 
that separates supporting modules (or methods or objects) of 
an optionally hidden group, which can be delivered as an 
executable module, from user-modifiable code that specifies 
states, messages, and transition handlers. Test-related func- 
tions are intrinsic to the supporting modules. This architec- 
ture is well suited to system testing, as test states and behav- 
iors are readily modifiable and can be instrumented to observe 
behavior within communication protocols. Users also can 
devise test protocols from scratch, using the technology dis- 
closed and the intrinsic test-related features. 

FIG. 1 illustrates a high level architecture of an example- 
testing environment 100 in which the FSM technology dis- 
closed can be used. The example testing environment 100 
tests the protocols that are used to implement an emerging 
wireless technology known as "long term evolution" (abbre- 
viated LTE), which is used for wireless voice, video and data 
communications. This is one of the technologies commonly 
referred to by cellular providers as 4G technology. The testing 
environment 100 illustrated includes a traffic generator 115, 
test controller 123, network emulator 125 and user equipment 
127. These components each include memory for storage of 
data and software applications, at least one processor for 
accessing data and executing applications, and components 
that facilitate communication over wired and/or wireless net- 
works. Other configurations of environment are possible hav- 
ing more or fewer components than depicted in FIG. 1, either 
dividing roles of equipment components into more boxes or 
consolidating roles of multiple components into fewer boxes. 
The processors can be general-purpose processor, a reduced 
instruction set circuits (RISC processors), field program- 
mable gate arrays (FPGAs), dedicated logic or other comput- 
ing circuits. Software or firmware that implements the finite 
state machines can run on appropriate hardware. 

The testing environment 100 emulates an evolved packet 
system, in a central LTE system network. The technology 
disclosed also can be applied to testing other packet systems, 
such as WiMax and other 802.11x networks, UTMS and 
CDMA networks and variations on these. The packet system 
illustrated transfers data packets between edge networks and 
user devices over a radio access network. The novel FSM 
architecture disclosed can be applied to other environments as 
well. 

The traffic generator 115 generates traffic carried by an 
internet protocol-based (abbreviated IP-based) evolved 
packet core network that handles, for example, voice call 
management, data call management, and billing. 

The test controller 123 is a computer-based system used to 
control, configure, debug, and trace test stimuli and 
responses. In one implementation, it uses a Windows XP or 
Windows 7 or 8 operating system (abbreviated OS). In other 
implementations, it uses a Linux, OS X or UNIX OS. It may 
be constructed as a real machine with dedicated hardware or 
as a virtual machine over a hypervisor. The test controller can 
be built on a personal computer (abbreviated PC), worksta- 
tion, tablet, blade server, computing cluster or other comput- 
ing device. 

In one implementation, the network emulator 125 emulates 
a so-called evolved universal terrestrial radio access network 
(abbreviated E-UTRAN), which comprises a so-called 
evolved node B (abbreviated eNodeB), consistent with LTE 
specifications. The eNodeB provides bridging between user 
equipment 127 and the traffic generator 115. The eNodeB is 
also a termination point for all the radio protocols towards the 
user equipment 127 and acts as data relay between the radio 
connection and the corresponding IP based connectivity 
towards the traffic generator 115. 

4 
The user equipment 127 is a system under test (abbreviated 

SUT), otherwise known as a device under test (abbreviated 
DUT). In the example illustrated, the SUT is a mobile phone. 
The same approach can be applied to test or emulate other 

5 parts of a network that interact with the SUT. 
In another example, the SUT could include a base station or 

a router. Those examples could substitute a different test 
harness for the network emulator 125. For instance, Spirent' s 

Test CenterTM hardware could be used to test an Internet core 
router. 

FIG. 2 is an example of threading architecture 200 that can 
be used in the example-testing environment 100. The thread- 
ing architecture 200 comprises multiple layers and proce- 

15 
dures with their own threads modeled and implemented as 
finite state machines. Numbering of high level blocks in FIG. 
2 matches numbering used in FIG. 1. 

FIG. 2 shows a traffic generator 115 which, in some imple- 
mentations, includes the components depicted and described 

20 herein. 
A serving gateway (abbreviated S-GW) 215 is the local 

mobility anchor for the data holders and responsible for ter- 
minating the traffic generator 115 interface towards the net- 
work emulator 125. It also retains the information about the 

25 data holders when the user equipment 127 is in idle state 530. 
A packet data network gateway (abbreviated PDN-GW) 

217 provides the connection between the S-GW and external 
data networks like Internet. It acts as the highest-level mobil- 
ity anchor in the testing environment 100 and assigns an IP 

30 address to the user equipment 127 to facilitate its communi- 
cation with external networks. 

A mobility management entity (abbreviated MME) 219 is 
responsible for managing security functions, mobility han- 
dling, roaming and handovers. 

35 A test controller 123 that comprises a tracer 223. This 
component handles logging and tracing. Components of the 
testing environment 100 can use this component to log and 
trace different activities and states. A test console application 
can be implemented as console or GUI to retrieve logs and 

40 traces captured by this component. 
The network emulator 125 in this example comprises a 

protocol stack of layers, including RRC, PDCP, RLC, MAC, 
and PHY layers. Some of these layers are common to a variety 
of cellular, mobile and LAN networks. 

45 The RRC layer 225 implements a signaling protocol used 
to configure and control radio resources between the network 
emulator 125 and user equipment 127. This layer is respon- 
sible for broadcasting system information, paging, and 
reporting of user equipment 127 along with control, manage- 

s() ment, establishment, modification, and release of connection. 
The RRC signaling message is carried by a signaling radio 
bearer (abbreviated SRB). 

The user equipment 127 has three RRC states including the 
idle state 1330, connecting state 1335 and connected state 

55 1339. In the idle state 1330, no SRB is registered and RRC 
connection is not established. While in this state, the user 
equipment 127 detects the incoming messages and acquires 
system information. The connecting state 1335 is an interme- 
diate state in which the timer 450 is initiated. In connected 

60 state 539, an SRB is registered and RRC connection is estab- 
lished. While in this state, the user equipment 127 establishes 
a radio resource context with the network emulator 125. 

The packet data convergence protocol layer (abbreviated 
PDCP) 235 manages RRC layer 225 messages in the control 

65 plane and IP packets in the user plane along with data streams 
in the interface between the network emulator 125 and user 
equipment 127. 



US 8,996,920 B2 
5 

The radio link control layer (abbreviated RLC) 245 
receives/delivers data packets from/to its peer entities. 

The medium access control layer (abbreviated MAC) 255 
provides coupling between the RLC layer 245 and physical 
layer (abbreviated PHY) 265 and also comprises a scheduler, 
which distributes the available bandwidth to the user equip- 
ment 127. 

The PHY layer 265 provides data transport services on 
physical channels to the RLC 245 and MAC 255. 

FIG. 3 illustrates a high level architecture of the LTE-Uu 
interface comprising the RRC protocol and its procedure. The 
RRC layer 225 can include several components, such as those 
described below. 

A connection establishment procedure 315 establishes an 
SRB for transmitting a message to the traffic generator 115. 
The user equipment 127 on request for connection initiates 
the procedure during the idle state 1330. Primarily, this pro- 
cedure is used to make the transition from the idle state 1330 
to connected state 1339. The user equipment 127 makes the 
transition to connected state 1339 before transferring any 
application data or completing any signaling procedures. 

A connection reconfiguration procedure 325 establishes, 
modifies, and releases an SRB on being initiated by the net- 
work. 

A connection re-establishment procedure 328 re-estab- 
lishes the connection by resumption and reactivation of an 
SRB used for transmitting a message to the traffic generator 
115. 

FIG. 4 illustrates one general framework of an FSM 400 as 
disclosed in this application. The FSM 400 has a number of 
states and behaviors that are modeled by exit, entry or/and 
timer handlers. In addition to the states, an FSM has a number 
of transitions that lets the FSM switch from a current state to 
a different state based on the input message. An FSM can use 
several components for message processing including a mes- 
sage queue 415 and dispatcher 410. The message queue 
enqueues incoming messages in a first in, first out (abbrevi- 
ated FIFO) order. The dispatcher 410 dequeues the messages 
from the message queue in a FIFO manner to the current state 
and invokes the respective handlers for each state. If the entry, 
exit, and/or timer handlers are invoked and completed, the 
dispatcher checks the return Boolean value of these handlers. 
If the value is "False", this means that the FSM is still running 
and the dispatcher continues to dequeue and dispatch mes- 
sages. However, if the return value is "True", the dispatcher 
stops dispatching any queued messages, and the FSM is con- 
sidered to be complete. 

In the FSM 400, the MSG_INIT 420 is received by the 
initial state SO that comprises of an exit handler and entry 
handler. The state Si is an intermediate state, also comprising 
an exit handler and entry handler. The state Sn represents any 
other states that the FSM 400 may have along with its exit 
handler and entry handler. If the message is a timer expiry 
message, the default timer handler 450 is invoked. 
FSM Transitions 

FIG. 5-8 and FIG. 10-11 are state diagrams that illustrate 
many configurations of the FSM technology disclosed. 
Among the diagrams, various combinations of messages, 
transitions and exit/entry handlers are illustrated. 

FIG. 5 is a representation of example state-message duple 
of an FSM 500. An FSM can include a special state called the 
initial state 515, which the FSM enters upon initialization or 
start-up. When the FSM is initialized, a message called 
MSG_INIT 510 is enqueued into a message queue 415 and 
sent to the FSM 500. Upon receipt of this message, the system 
calls exit handler of the initial state, which contains the 
instructions for exiting the initial state. 

6 
FIG. 6 illustrates example dedicated handlers of an FSM 

600. These state handlers are used to process an incoming 
message 610, received while in a state and when exiting or 
entering it. One or more exit handlers and entry handlers 

5 model the behaviors related to the states of a FSM. The 
so-called default exit handler 655 or default entry handler 625 
are methods, function-calls or similar blocks of code that 
contain instructions to describe and implement the state 
behaviors. Invoking these handlers serves invokes the state 

10 behaviors. A state can also be modeled to handle specific 
messages by invoking either the so-called dedicated exit han- 
dler 645 or dedicated entry handler 635 or both. Messages X 
and Y cause a transition to enter the state; hence they only 
have a dedicated entry handler. Messages Z and W cause a 

15 transition to exit the state; hence they only have a dedicated 
exit handler. 

FIG. 7 illustrates a self-transition within a state. This illus- 
tration includes multiple self-transitions responsive to vari- 
ous messages. Messages X, Y, Z, and W have their own pairs 

20 of dedicated exit and entry handlers. No default handlers are 
illustrated for this state. 

FIG. 8 illustrates implementations of state handlers 
responsive to various transitions. Messages X and Y cause a 
self-transition. In this example, they have pairs of dedicated 

25 exit and entry handlers. Messages A and B cause a transition 
into the state SO, with dedicated entry handlers. Messages Z 
and W cause a transition that exits state SO; they have dedi- 
cated exit handlers. Message C causes a transition to enter the 
state; in this example, Message C does not have a dedicated 

30 handler. Thus, the default entry handler is invoked for this 
message. Message D causes a self-transition to the state, 
without dedicated handlers; thus, the default exit and default 
entry handlers are invoked for this message. Message E 
causes a transition to exit the state and does not have any 

35 dedicated handler, so the default exit handler is invoked. 
Thus, FIG. 8 provides examples of handler configurations for 
three transition types. 

FIG. 23 shows the state representation of an FSM when a 
dedicated exit and entry handler is defined for the timer expiry 

40 message. The technology disclosed herein can be used to 
define a dedicated exit or entry handler for the initialization 
message MSG_INIT or for a timer expiry message 
MSG_TIMER_EXPIRED. The latter can be sent to the FSM 
when a timer expires. If a timer expires, the timer expiry 

45 message "MSG_TIMER_EXPIRED" can be generated and 
enqueued. This message can be later dispatched to the current 
state. If a state possesses a dedicated exit or entry handlers for 
this timer expiration message, those handlers can be invoked. 

Applying FIG. 4 to FIG. 8, a default timer is set, which may 
so generate for a timer expiry message (abbreviated MSG_TIM- 

ER_EXPIRED). The default timer handler 450 is invoked 
where the timer expiry message is received by a state. The 
timer handler implementation can include retrieving the 
name of the current state and checking the status of a guard 

55 timer. 
FIGS. 9A and 9B are high-level flow charts 900A and 900B 

of an example FSM thread operation. Upon receiving a mes- 
sage 910, 912, the dedicated exit handler is invoked first 914, 
916, and if the message does not have a dedicated exit handler 

60 956, then the default exit handler is invoked 958. The exit 
handler specifies whether a state change takes place 918 to a 
next state or the same state remains. In either case, the dedi- 
cated entry handler of the next state is invoked 922, 924 and 
if the state does not have a dedicated entry handler 964, the 

65 default entry handler is invoked 966. If there is no dedicated 
or default entry handler, no entry handler is invoked 928. If 
the dequeued message is a timer expiry message 928, the 



US 8,996,920 B2 
7 

default timer handler is invoked 930 as well. If any of the 
handlers return a "True" value 920, 926, 932, then the FSM 
thread is completed 934. States possess at least one handler, 
whether it is a default or dedicated handler and whether it is an 
exit or entry handler. 

FIG. 10 is an example of an FSM 1000 with self-transition. 
In one implementation, the user can define a self-transition in 
the user class by defining an exit handler 1025 followed by an 
entry handler 1015 of the same state. If a state does not invoke 
a NextState(.) method that causes transition to a different 
state, then the message 1010 causes self-transition back to the 
same state SO. 

A parent FSM can instantiate one or more child FSMs, 
FIG. 11. The parent FSM and child FSM communicate by 
exchanging messages but are different and run independently. 
A child FSM can be instantiated in the exit, entry, and/or timer 
handlers of the parent FSM. A parent FSM can send a mes- 
sage to its child FSM or can await completion of actions 
delegated to the child FSM. A child FSM, upon completion, 
sends a notification message MSG_FSM_COMPLETED to 
its parent. This notification message alerts the parent FSM to 
the completion of its child FSM. The MSG_FSM_COM- 
PLETED is processed like any other message by default or 
dedicated exit/entry handlers. 

A child FSM can inherit attributes and behaviors from a 
pre-existing parent FSM. FIG. 11 illustrates a parent FSM 
1110 that instantiates two other child FSMs, namely FSM 
1120 and FSM 1125, from a handler of SO of the parent FSM. 
For instance, in the parent FSM1 , when the exit handler of the 
initial state SO is invoked, two other child FSMs, namely 
FSM2 and FSM3, are instantiated inside the exit handler. The 
exit handler returns after the child FSMs completed their 
operations. 

A parent FSM can use several procedures or methods to 
communicate with the child FSM, including an isFSMCom- 
pleted(.) method. The isFSMCompleted(.) method is a poll- 
ing method that checks the Boolean return value of the han- 
dlers. A "True" value of the Boolean return value indicates the 
completion of the child FSM. 

In another efficient implementation, which does not use 
polling, a WaitOnFSMCompletion(.) method waits indefi- 
nitely until the child FSM thread is completed. In yet another 
implementation, an asynchronous non-polling notification 
message MSG_FSM_COMPLETED can be used to notify 
the parent FSM of the child FSM completion. 

The base class of a child FSM can use routines or subrou- 
tines including a default constructor, another constructor, and 
a default destructor. The constructor of the base class of a 
child FM sets the current state to the initial state, following 
which a pointer to the parent FSM is stored. 

Test cases implemented using FSMs test certain behaviors 
through messages, states, or transitions. If the test criteria for 
behaviors are not satisfied, the test case fails; otherwise it 
passes. The outcome of a test case, whether passed or failed, 
is commonly known as a "verdict". The verdict can be applied 
through methods defined in the FSM framework. These meth- 
ods can set a verdict to "Pass" or "Fail" and also check it after 
FSM completion. 

FIGS. 12 and 13 illustrate a message sequence chart 1200 
with annotated state information and corresponding FSM 
diagram 1300 for an RRC connection establishment. FIG. 12 
depicts a message sequence chart of RRC connection estab- 
lishment procedure 315 at the network emulator 125, with 
state information added. FIG. 13 illustrates an FSM that mod- 
els behaviors described by the message sequence chart in 
FIG. 12 and supports test instrumentation. 

8 
When the user equipment 127 is powered-on, it sends an 

RRC connection request message 1215 to network emulator 
125. The network emulator 125 sends back an RRC connec- 
tion setup message 1225 and starts a timer 1223. If the RRC 

5 connection setup complete message 1235 is received, the 
timer 1223 is stopped and user equipment 127 is successfully 
connected to the network emulator 125. 

However, if the timer 1223 expires before the network 
emulator 125 receives the RRC connection setup complete 
message 1235, the user equipment 127 is not connected to the 
network emulator 125 and the test case fails. 

The RRC connection request message 1215 includes the 
identity of the user equipment 127 and the cause of the con- 

15 
nection establishment procedure 315. The network emulator 
125 starts the timer 1223 to define the waiting period for the 
response of the user equipment 127 to the RRC connection 
setup message 1225. The procedure fails if the timer 1223 
expires before the network emulator 125 receives the RRC 

20 connection setup complete message 1235 from the user 
equipment 127. 

The RRC connection setup message contains the configu- 
ration information for an SRB used for transmitting a mes- 
sage to the traffic generator 115. The user equipment 127 

25 sends an RRC connection setup complete message 1235 and 
completes the connection establishment procedure 315. 
FSM Testing Example 

FSMs with the disclosed user-modifiable entry and exit 
handlers can be used to conduct conformance testing accord- 

30 ing to criteria established in "RRC Connection Establish- 
ment: Success," TS 36.523-1, section 8.1.2.1, pp. 283-285. 
Satisfying these criteria is part of the battery of conformance 
tests applied to test conformance of new LTE systems tests. 
FSMs can be used to model and test hundreds of conformance 

35 testing criteria such as whether user equipment (an SUT) in 
RRC idle state is able to make an outgoing call and establish 
an RRC connection, whether an SUT in idle mode can ini- 
tialize an outgoing call, whether an SUT can transmit an RRC 
connection request message, whether an SUT can respond to 

40 a system simulator (abbreviated SS) or a network emulator 
transmitting an RRC connection setup message, and whether 
an SUT is in a RRC connected state. 

The test conformance with these criteria, a timer "T300" 
times these behaviors. Satisfaction of or failure to meet the 

45 criteria is reported by a verdict procedure. This timer is the 
guard timer in the "RRC Connection Establishment: Suc- 
cess" test case drawn from 3GPP standard TS 36.523-1, sec- 
tion 8.1.2.1, pp. 283-285. During conformance testing of new 
LTE systems, expiration of this guard time would result in a 

so failed test case. The messaging in this sequence chart can be 
tested using the novel FSM technology disclosed herein. In 
general test in this standard and elsewhere can be represented 
in the state diagrams that can, in turn, be implemented using 
the novel FSM technology disclosed. 

55 In FIG. 13, the incoming message, MSG_INIT 1320 of the 
test case is received by the initial state SO comprising a novel 
dedicated exit handler. The state 51 is an intermediate state 
comprising two dedicated exit handlers, whereas the state S2 
is the final state comprising only one default entry handler. 

60 After MSG_INIT 1320 is sent to state SO, state SO waits until 
it receives a connection request message. When a connection 
request message is received, state SO sends a connection setup 
message, starts a timer, and the current state changes to state 
51. If a connection setup complete message is received while 

65 in state 51, the current state changes to state S2. Upon enter- 
ing state S2, the FSM sets the verdict to "Pass" and stops the 
timer 



US 8,996,920 B2 
9 

This test case is implemented using the FSM 1300, in 
which the initial intermediate, and final states are represented 
by the idle state 1330, connecting state 1335, and connected 
state 1339, respectively. The FSM 1300 comprises handlers 
such as dedicated exit handler 1323 and dedicated entry han- 
dler 1328 and messages like MSG_INT, MSG_TIMER_EX- 
PIRED, RRC connection request message 1215, RRC con- 
nection setup message 1225, and RRC connection setup 
complete message 1235 for state initialization and transition. 
The FSM 1300 also includes a timer T300. 

The dedicated exit handler 1323 or other handler handles 
the duple of idle state 1330 and RRC connection request 
message 1215. The connecting state 1335 has two dedicated 
exit handlers for RRC connection setup complete message 
1235 and a MSG_TIMER_EXPIRED message. The con- 
nected state 1339 uses a default entry handler 1328. 

When an RRC connection request message 1215 is 
received while the FSM is in idle state 1330, it sends back an 
RRC connection setup message 1225 to the user equipment 
127. Then, the idle state 1330 transits to connecting state 1335 
and starts the timer 1223. When RRC connection setup com- 
plete message 1235 is received, the connecting state 1335 
transits to the connected state 1339. Upon entering the con- 
nected state 1339, the FSM 1300 sets the verdict to "Pass" and 
stops the timer 1223. The entry handler of the connected state 
1339 returns a "True" value to signal the completion FSM 
1300 and subsequent execution of connection establishment 
test case. 

FIG. 14 is a class diagram 1400 illustrating the inheritance 
of a base class by a user class and division of code between 
them. The base class 1435 allows easy modeling, seamless 
implementation, and execution of test cases. It can be deliv- 
ered as executable code that is not user modified. The user 
class can be delivered as user editable source code or can be 
authored by users. 

The class diagram 1400 includes the base class 1435. In 
some implementations, it uses another class CState 1425 to 
create state objects. In other implementations, CState 1425 
may be combined with base class 1435. The base class 1435 
can have one or more instances of CState 1425 class where the 
base class represents the FSM and the CState class represents 
the FSM's states. Each class has its own attributes and meth- 
ods. The class CState 1425 can have several FSM elements 
including states, state names, and default or dedicated exit, 
entry, and/or timer handlers. 

The base class 1435 can have several procedures or func- 
tions including methods for starting the FSM 1300, sending 
the MSG_INIT 1320 to the message queue 1315, starting, 
restarting, or stopping the timer 1223. In addition, it can also 
possess methods for setting the verdict to either "Pass" or 
"Fail" or some other verdict value. In addition, to "Pass" or 
"Fail," the verdict can be accompanied by other parameters or 
information. 

The connection establishment procedure test case 315 can 
be implemented as FSM 1300. The FSM 1300 can inherit 
from the base class 1435 a "GetFSMlnfoTable(.)" method 
and a data structure "FSM_INFO_ENTRY. The user class 
1445 can override the GetFSMlnfoTable(.) method. This 
method when invoked by the base class 1435 retrieves the 
information of user class 1445 that can include state names, 
state handlers, and message alphabets. The GetFSMIn- 
foTable(.) method returns a pointer to the array that contains 
information important for the implementation of FSM 1300. 
Entries in this array are represented by the data structure 
"FSM_INFO_ENTRY". 

The base class 1435 can have several procedures or func- 
tions that facilitate the construction of the user class 1445 

10 
including use of MACROs that create several FSM elements 
including states, state handlers, timers, messages alphabets, 
and state transitions. In some implementations, the base 
classes delivered as executable code that is not user modifi- 

5 able. Delivery of the base class as executable effectively 
conceals from the user the details of base class implementa- 
tion and operation. 

The user class 1445 can implement several test cases such 
as the connection establishment procedure test case 315. The 
user classes user modifiable to implement tests, such as the 
example test. In one implementation, the procedure has three 
states SO, S , and S2 corresponding to the idle state 1330, 
connecting state 1335, and connected state 1339 in FSM 1300 

15 
respectively. In FSM 1300, default and dedicated exit and 
entry handlers may be defined for each state such as dedicated 
exit handler 1323 in state SO, dedicated exit handler 1324, 
dedicated exit handler 1325 in state S , and default entry 
handler 1328 in state S2. 

20 The base class 1435 performs several actions such as 
invoking the GetFSMlnfoTable(.) method to retrieve all the 
user class 1445 information, receiving the MSG_INIT 1320 
and enqueuing it in the message queue 1315 for further pro- 
cessing, invoking exit handler 1323 and entry handler 1328 of 

25 the current state, and invoking default timer handler 450 if the 
MSG_TIMER_EXPIRED is dispatched, and implementing 
methods for starting, restarting, and/or stopping the timer 
1223 and setting or getting a verdict. 

The user class 1445 performs several actions such as 
30 declaring message alphabets, idle state 1330, connecting state 

1335, and connected state 1339. Additionally, the user class 
1445 can declare and implement exit handler 1323 and entry 
handler 1328 for each state. Furthermore, the default timer 

35 
handler 450 can also be declared for timer expiry messages. 

The base class 1435 can possess several routines and sub- 
routines including a default constructor and a default destruc- 
tor. In the constructor, three messages alphabets MSG_INIT, 
MSG_TIMER_EXPIRED, and MSG_FSM_COMPLETED 

40 are added automatically to the message alphabets. The 
MSG_INIT allows the FSM 1300 to receive the initialization 
message, MSG_INIT 1320 when FSM is first instantiated or 
just after entering the idle state 1330. The MSG_ 
TIMER_EXPIRED allows the FSM 1300 to receive a timer 

45 expiry message whenever the timer 1223 expires. MSG_F- 
SM_COMPLETED is received by the parent FSM from a 
child FSM if the parent FSM instantiates a child FSM. 

In the destructor, an FSM thread exit event is signaled and 
FSM is completed. The destructor waits until the thread is 

so terminated before stopping, removing and flushing all other 
resources such as timer 1223 resources and message queue 
1315 contents. 

Since the FSM 1300 can be used for modeling a test case, 
the initial and default verdict for the test case is "Incomplete" 

55 until it is set otherwise by the user class 1445. The return 
values of exit handler 1323 and entry handler 1328 are set to 
be "False" by default indicating that the FSM 1300 is not 
completed. 

The FSM 1300 can be started or invoked in a variety of 
60 ways, including calling a Run(.) method. This method starts 

by creating two events an exit event and a queue event. The 
first is used for signaling to exit the FSM thread while the 
latter is used for signaling that the message queue 1315 has 
awaiting messages. Inside the Run(.) method, the GetFSMIn- 

65 foTable(.) method is invoked by the base class 1435. Depend- 
ing on the number of states that exists in the user class 1445, 
one or more state objects can be created. Each state object can 



US 8,996,920 B2 
11 

hold information such as state name and state handlers. All 
message alphabets retrieved from the user class 1445 are 
saved. 

The MSG_INIT 1320 can be sent to the message queue 
1315 by the base class. The base class further initializes the 
current state to the idle state 1330. The FSM thread is then 
created and started. The dispatcher dequeues the MSG_INIT 
1320 and dispatches it to the current state. 

In some implementations, the FSM 1300 can be stopped 
and re-run to start all over again by calling the Stop(.) method 
and Run(.) method respectively. In this implementation, the 
message queue 1315 is flushed and FSM 1300 starts from the 
idle state 1330. 

The SendMessage(.) method can be used to send the 
MSG_INIT 1320. This method first checks whether a mes- 
sage is among the FSM message alphabets and if so, the 
message is enqueued for further processing. However, if the 
message is not among the FSM message alphabets, it is dis- 
carded. Whenever a message is queued in the message queue 
1315, the queue event is signaled to indicate that there are 
messages waiting in the queue. Since the message queue 1315 
is a shared resource between this method and the FSM thread, 
it is locked before it is used for enqueuing and finally 
unlocked after the method is finished using it. 

The current state of the FSM can be changed to next state 
by using the NextState(.) method. The state change takes 
effect in the exit handler 1323 (whether default or dedicated 
handler). If a state change occurs in the entry handler 1328 or 
timer handler 450, can be considered void and not given 
effect. In yet another implementation, the current state of the 
FSM 1300 can be retrieved by using the GetCurrentState(.) 
method. 

The Run(.) method creates a thread, which is used to start 
the FSM 1300. This thread has an infinite loop, inside which 
several events such as the message queue 1315 receiving a 
new message, indication of termination of FSM 1300, and 
receiving WM_TIMER message from the OS as a result of an 
expiry of the timer 1223 can occur. 

If a new message is enqueued, then the thread dequeues this 
new message and forwards it to the exit handlers and entry 
handlers of the current state and the next state respectively. In 
addition, if the dequeued message is MSG_TIMER_EX- 
PIRED, which indicates that the timer 1223 has expired, the 
default timer handler 450 is invoked as well. If the completion 
of an event requires termination of the FSM, the thread exits 
the infinite loop and terminates itself. 

The timer 1223 can expire when a timeout value elapses. 
When this event occurs, OS sends a WM_TIMER message to 
the FSM thread, and the thread forwards this message to a 
callback static method called TimerExpired(.). In the latter 
method, the WM_TIMER message is replaced by 
MSG_TIMER_EXPIRED message and queued into the FSM 
message queue 1315 for further processing. 

If the event is message queue event, the thread dequeues the 
Head-Of-Line (abbreviated HOL) message from the message 
queue 1315 and starts dispatching it to the exit handlers and 
entry handlers of the current and next state. If the dequeued 
message is a MSG_TIMER_EXPIRED, the default timer 
handler 450 is invoked as well. 

The handler can return several variables including a Bool- 
ean return value, which signals whether the FSM 1300 is 
completed or not. If this Boolean value is "True", then this 
signals FSM 1300 completion and subsequent thread termi- 
nation. When the FSM thread terminates, all FSM messages 
are removed from the message queue 1315. 

The algorithm used for scheduling the invocation of default 
exit and entry handlers has an 0 (1) time complexity. The 

12 
dedicated exit and entry handlers are stored in a balanced 
binary tree data structure and hence the algorithm used for 
scheduling their invocation has an 0 (log N) time complexity, 
where N is the number of specified dedicated handlers. 

5 Intrinsic support in the base class for a verdict function is 
useful for test case modeling and execution. The base class 
1435 allows this through several methods including SetVer- 
dict(.) and GetVerdict(.). The verdict can be set to various 
values including "Pass", "Fail", or "Incomplete". 

10 The base class 1435 also provides several procedures or 
methods to start, restart, and/or stop the timer 1223. These 
methods use underlying OS timer methods to identify the 
timer by its Id. To match the requirements of different proto- 
col stack behaviors where timers are commonly identified 

15 using their names, the base class 1435 can use several unique 
identifications including "timer name" for modeling the timer 
1123. 

A StartTimer(.) method can be used by the base class 1435 
to start the timer 1223. This method starts by stopping the 

20 timer 1223 if it is running and then calls the OS timer method 
to start a new timer. The OS timer method returns a timer Id. 
Once the timer is started, timer information such as timer 
name, timer Id, and timeout values are stored and saved. 

A ReStartTimer(.) method can be used by the base class 
25 1435 to restart the timer 1223 while it is active. It first 

retrieves the timer Id for the corresponding timer name, stops 
the timer and then finally starts it again. 

A StopTimer(.) method can be used by the base class 1435 
to stop the timer 1223 while it is active. It first retrieves the 

30 timer Id for the corresponding timer name and then stops it. 
Upon receiving a timer expiry message, an FSM can use 

several procedures or methods such as calling a method called 
CallbackMethod(.) to initiate its timer expiry thread. This 
method is invoked by the OS and passes the timer Id as a 

35 parameter. Furthermore, this method first retrieves the timer 
name corresponding to the timer Id and then creates a new 
message called MSG_TIMER_EXPIRED containing the 
timer name. This new message is then sent to the message 
queue 1315 for further processing. 

40 The user class 1445 can use several procedures or methods 
for declaring and implementing dedicated or default exit/ 
entry handler, timer handler, or message alphabets. FIG. 15 
illustrates declaration of handlers in a user class 1445 using 
MACROs. In one implementation, MACROs are used inside 

45 the definition of user class 1445 to define and declare the 
different handlers. The use of MACROs is to provide ease of 
use and less effort in writing the code for these handlers. 

FIG. 16 illustrates implementation of handlers in a user 
class 1600 using MACROs. The MACROs are used to imple- 

50 ment the handler header. The user can continue to implement 
the body of these handlers. In each handler, the user can write 
the exact behavior or instructions that are to be executed 
through code when this handler is invoked by the base class 
1435. 

55 FIG. 17 illustrates implementation of the overridden 
method, GetFSMInfoTable(.), in an FSM user class 1700. 
The user class 1445 can use several procedures or methods to 
register state-message duples and handlers including, imple- 
menting the GetFSMInfoTable(.) method using MACROs in 

60 the registration section 2120. Depending on the user design of 
the FSM and state handlers, the user can use one or more of 
these MACROs to declare states names, state handlers, and 
message alphabets. 

The Connection Establishment procedure test case is 
65 implemented when user class 1445 is executed by instantiat- 

ing an object of the user class 1445 using the default construc- 
tor. Following the instantiation, the Run(.) method is called. 



US 8,996,920 B2 
13 

Then the program waits until the FSM is completed and 
checks whether the verdict is "Pass" or "Fail". Finally, object 
of the user class 1445 is destructed. An FSM can be stopped 
after it has started running by calling the Stop(.) method. If a 
running FSM is stopped, its verdict is set to "Incomplete". 

FIG. 18 is the C++ header file of an example user class of 
the connection establishment procedure test case. FIG. 19 is 
the C++ source file of the example user class of the connection 
establishment procedure test case. FIG. 20 is the C++ code 
2000 for the execution of the Connection Establishment pro- 
cedure test case. This C++ code 2000 is the main application. 
Some modules or codes within the main application can 
handle instantiating the user class 1445 object, calling the 
Run(.) method to run the user class 1445 object, waiting until 
the FSM completes by calling the WaitOnFSMCompletion(.) 
method, checking whether the verdict is "Pass" or "Fail" by 
calling the GetVerdict(.) method, and destructing the user 
class 1445 object. 

FIG. 24A and FIG. 24B show the FSM model used to 
describe the voice activity model in FIG. 23. It has the same 
number of states and its timer expiry events are set to the same 
steady-state equilibrium values of 3 seconds and 2 seconds to 
obtain a VAF of 40%. Voice, video, data coders or traffic 
generators or sinkers can be represented using a continuous- 
time finite state machine where the main characteristics of the 
traffic can be described by probabilistic transitions or the time 
elapsed while being in each state. The finite state machine can 
be flexibly and efficiently used to describe and model con- 
tinuous-time finite state machine such as voice, video, data 
coders or traffic generators. A voice coder can be modeled 
using a two-state voice activity model as shown in FIG. 24A 
and FIG. 24B where a human voice speech coder can be 
characterized by a transition from "SILENT" to "TALK" 
states and vice-versa also called ON/OFF model. The transi- 
tion between the two states is not triggered by messages but 
instead by a probability. As shown in FIG. 24A and FIG. 24B, 
the transitions between the two states "SILENT" and 
"TALK" can be in the form of the probabilities a, b, 1-a, and 
1-b. For such a voice activity model, the voice activity factor 
(abbreviated VAF) can be defined to be the steady-state equi- 
librium of the voice model being in the "TALK" state. VAF is 
the percentage of time where the voice model is in "TALK" 
state. Given the probabilistic transitions a and b, the steady- 
state equilibrium of the voice model can be mathematically 
computed using the formula VAF of 2/(2+3) or 40% as shown 
in FIG. 24A and FIG. 24B. FIG. 25 shows the C++ code for 
the voice activity model showed in FIG. 23. 

In other examples, the technology disclosed can also be 
used to implement other test cases based on the compliance 
criteria in 3GPP standard TS 36.523-1 and similar standards 
documents. For example, the novel FSM architecture can be 
used to implement a test case corresponding to section 6.1.1, 
p. 13 that tests the idle mode operations in a pure E-UTRAN 
environment public land mobile network (PLMN). When an 
SUT is switched on, it attempts to make contact with a 
PLMN. The SUT looks for a suitable cell of the chosen 
PLMN and chooses that cell to provide available services, and 
tunes to its control channel The SUT registers its presence in 
the registration area by means of a location registration (ab- 
breviated LR). If the SUT is unable to find a suitable cell to 
camp on, or the SIM is not inserted, or if it receives certain 
responses to an LR request (e.g., "illegal SUT"), it attempts to 
camp on a cell irrespective of the PLMN identity, and enters 
a "limited service" state in which it can only attempt to make 
emergency calls. The user equipment has several states in the 
PLMN selection process such as the trying registered PLMN 
state, the not on PLMN state, the trying PLMN state, and the 

14 
no SIM state. Message-sate duples and entry/exit handlers 
can be used to implement behaviors of the states or to test or 
record system conditions in various states. 

The states and transitions of this test can be implemented 
5 using the FSM technology disclosed herein. The behaviors of 

these states can be modeled using FSM state handlers. The 
communication between the SUT and PLMN can be estab- 
lished through message alphabets, message queue, and dis- 
patcher of the FSM. The FSM timer can time all the test case 

10 operations and the operation results can be reported using 
FSM verdict. 

Other examples of test implementation using the FSM 
technology disclosed include: medium access control map- 
ping between logical and transport channels by the SUT 

15 (3GPP standard TS 36.523-1, section 7.1.1, p. 50), random 
access channel (RACH) selection by the SUT drawn from 
3GPP standard TS 36.523-1, section 7.1.2, p. 54, and down- 
link-shared channel (abbreviated DL-SCH) processing by the 
SUT drawn from 3GPP standard TS 36.523-1, section 7.1.3, 

20 p. 85. Some complex tests implementations can benefit from 
parent FSMs invoking child FSMs, as described next. 

FIG. 21 is a high level flow chart 2100 of one implemen- 
tation of the technology disclosed herein. Other implementa- 
tions may perform the steps in different orders and/or with 

25 different or additional steps than the ones illustrated in FIG. 
21. For convenience, this flowchart is described with refer- 
ence to the system that carries out a method. The system is not 
necessarily part of the method. 

At step 2105, the system initializes a test case application. 
30 Upon execution, the test case creates a user class object that 

inherits the public methods defined in the base class at step 
2110. 

Upon running the FSM, the system registers the message 
alphabets and state-message duple using the MACROs 

35 defined in the user class. This step 2120 is referred to as the 
registration section. 

The handlers registered in the user class are invoked by the 
base class at step 2130 to implement the instructions outlined 
in the handler. In this implementation, the handler invoked by 

40 the base class is an exit handler and contains the instructions 
for next state transition. 

The timer handler implementation includes retrieving the 
name of the current state. At step 2140, a timer method using 
a guard timer, times the state transition executed by the exit 

45 handler at step 2150 which represents state transition from 
state to another. Step 2160 constitutes a verdict method that is 
used to report results of the FSM operations. If the guard timer 
expires, it results in a verdict method declaring a "Fail" value 
at step 2160. 

so FIG. 22 is a block diagram of an example computer system, 
according to one implementation. Computer system 2210 
typically includes at least one processor 2214 that communi- 
cates with a number of peripheral devices via bus subsystem 
2212. These peripheral devices may include a storage sub- 

55 system 2224 including, for example, memory devices and a 
file storage subsystem, user interface input devices 2222, user 
interface output devices 2220, and a network interface sub- 
system 2216. The input and output devices allow user inter- 
action with computer system 2210. Network interface sub- 

60 system 2216 provides an interface to outside networks, 
including an interface to network emulator 125, and is 
coupled via network emulator 125 to corresponding interface 
devices in other computer systems. 

User interface input devices 2222 may include a keyboard; 
65 pointing devices such as a mouse, trackball, touchpad, or 

graphics tablet; a scanner; a touch screen incorporated into 
the display; audio input devices such as voice recognition 



US 8,996,920 B2 
15 

systems and microphones; and other types of input devices. In 
general, use of the term "input device" is intended to include 
all possible types of devices and ways to input information 
into computer system 2210 or onto network emulator 125. 

User interface output devices 2220 may include a display 
subsystem, a printer, a fax machine, or non-visual displays 
such as audio output devices. The display subsystem may 
include a cathode ray tube (CRT), a flat-panel device such as 
a liquid crystal display (LCD), a projection device, or some 
other mechanism for creating a visible image. The display 
subsystem may also provide a non-visual display such as 
audio output devices. In general, use of the term "output 
device" is intended to include all possible types of devices and 
ways to output information from computer system 2210 to the 
user or to another machine or computer system. 

Storage subsystem 2224 stores programming and data con- 
structs that provide the functionality of some or all of the 
modules and methods described herein. These software mod- 
ules are generally executed by processor 2214 alone or in 
combination with other processors. 

Memory 2226 used in the storage subsystem can include a 
number of memories including a main random access 
memory (RAM) 2230 for storage of instructions and data 
during program execution and a read only memory (ROM) 
2232 in which fixed instructions are stored. A file storage 
subsystem 2228 can provide persistent storage for program 
and data files, and may include a hard disk drive, a floppy disk 
drive along with associated removable media, a CD-ROM 
drive, an optical drive, or removable media cartridges. The 
modules implementing the functionality of certain imple- 
mentations may be stored by file storage subsystem 2228 in 
the storage subsystem 2224, or in other machines accessible 
by the processor. 

Bus subsystem 2212 provides a mechanism for letting the 
various components and subsystems of computer system 
2210 communicate with each other as intended. Although bus 
subsystem 2212 is shown schematically as a single bus, alter- 
native implementations of the bus subsystem may use mul- 
tiple busses. 

Computer system 2210 can be of varying types including a 
workstation, server, computing cluster, blade server, server 
farm, or any other data processing system or computing 
device. Due to the ever-changing nature of computers and 
networks, the description of computer system 2210 depicted 
in FIG. 22 is intended only as one example. Many other 
configurations of computer system 2210 are possible having 
more or fewer components than the computer system 
depicted in FIG. 22. 
Some Particular Implementations 

In one implementation, a method is described that includes 
implementing a novel architecture of a finite state machine 
(abbreviated FSM) using code including a built-in base class 
and a user-modifiable user class. The method can include 
running the code on a processor. When running, the user- 
modifiable class inherits from the base class and registers a 
message alphabet and state-message duples. The method fur- 
ther includes defining exit and/or entry handlers for state- 
message duples including at least one exit handler that has a 
next-state specification connecting a first state that is exited in 
response to particular message in the message alphabet and a 
second state that is entered from the first state. The method 
can further include inheriting a test timer method used to set 
time limits on execution of operations during a test and a 
verdict method used to record test results. 

This method and other implementations of the technology 
disclosed can each optionally include one or more of the 
following features and/or features described in connection 

16 
with additional methods disclosed. In the interest of concise- 
ness, the combinations of features disclosed in this applica- 
tion are not individually enumerated and are not repeated with 
each base set of features. The reader will understand how 

5 features identified in this section can readily be combined 
with sets of base features identified as implementations. 

The method can include storing in computer readable 
memory as executable code the base class that is not user- 
modifiable and the user class as user-modifiable source code. 

1() It can further include the base class concealing operating 
details of the FSM, invoking the entry and exit handlers and 
the user class registering the state-message pair specifica- 
tions. 

The method can include the entry and exit handlers speci- 
15 Eying behavior of the FSM. It can include the user class 

defining one or more default entry or exit handlers that apply 
to multiple state-message duples when dedicated handlers are 
not defined for particular state-message duples. It can further 
include the base class comprising a virtual method table that 

2() instantiates objects corresponding to the entry and exit han- 
dlers defined in the user class and being overridden by the user 
class to retrieve the user class information. 

The method can further include the base class comprising 
the test timer method that instantiates objects corresponding 

25 to particular test timer methods invoked by the user class and 
a verdict method that instantiates objects corresponding to the 
verdict methods invoked by the user class. It can further 
include the verdict method recording a result specified in any 
of the entry and exit handlers and automatically recording the 

30 state of the FSM and a time at which the result is generated. 
The method can include providing a user-modifiable test 

case that tests compliance with an industry standard for its 
enhancement. It can further include the test case implement- 
ing one or more actors that exercise the industry standard, 

35 interacting with one or more systems under test (abbreviated 
SUT) to be tested against the industry standard, and invoking 
the FSM after transmitting the communications channel 
parameters to the channel emulator by its program. 

The method can include the test case program that invokes 
40 the FSM specifying communications channel parameters of a 

channel emulator that is coupled to the SUT, the base class 
transmitting the communications channel parameters to the 
channel emulator, and the entry or exit handler setting com- 
munications channel parameters of a channel emulator that is 

45 coupled to the SUT. It can further include executing the 
processor executable code in any programming language and 
the base class implementing a state tracker that keeps track of 
a current state of one or more FSMs during a test. 

Other implementations may include a non-transitory corn- 
s() puter readable storage medium storing instructions execut- 

able by a processor to perform any of the methods described 
above. Yet another implementation may include a system 
including memory and one or more processors operable to 
execute instructions, stored in the memory, to perform any of 

55 the methods described above. 
We claim as follows: 
1. A method of computer-implemented method of imple- 

menting an architecture of a finite state machine (abbreviated 
FSM) using code including a built-in base class and a user- 

60 modifiable user class, the method comprising: 
the user class, executing on a processor: 

inheriting from the base class; 
registering a message alphabet and state-message 

duples; 
65 defining exit or entry handlers for state-message duples, 

including at least one exit handler that has a next-state 
transition specification, and connecting: 



US 8,996,920 B2 
17 

a first state that is exited in response to particular 
message in the message alphabet and 

a second state that is entered from the first state; 
inheriting a test timer method used to set time limits on 

execution of operations during a test; and 
inheriting a verdict method used to record test results. 

2. The method of claim 1, further including defining the 
one or more exit handlers to a self-transition, in which the first 
state and the second state are the same. 

3. The method of claim 1, wherein the base class is stored 
in computer readable memory as executable code that is not 
user-modifiable. 

4. The method of claim 1, wherein the user class is stored in 
computer readable memory as user-modifiable source code. 

5. The method of claim 1, wherein the base class conceals 
operating details of the FSM. 

6. The method of claim 1, wherein the base class processes 
registrations of the state-message pair specifications by the 
user class. 

7. The method of claim 1, further including the base class 
invoking the entry and exit handlers. 

8. The method of claim 1, wherein the entry and exit 
handlers specify behavior of the FSM. 

9. The method of claim 1, further including the user class 
further defining one or more default entry or exit handlers that 
apply to multiple state-message duples when dedicated han- 
dlers are not defined for particular state-message duples. 

10. The method of claim 1, further including the base class 
comprising: 

a virtual method table that instantiates objects correspond- 
ing to the entry and exit handlers defined in the user 
class, and, 

for methods overridden by the user class, retrieves the user 
class information. 

11. The method of claim 1, further including the test timer 
method of the base class instantiating objects corresponding 
to particular test timer methods invoked by the user class. 

12. The method of claim 1, further including the verdict 
method of the base class instantiating objects corresponding 
to particular verdict methods invoked by the user class. 

13. The method of claim 12, wherein the verdict method 
records a result specified in any of the entry and exit handlers. 

14. The method of claim 12, wherein the verdict method 
automatically records the state of the FSM and a time at which 
the result is generated. 

15. The method of claim 1, further including implementing 
a user-modifiable test case at least in part using the FSM and 
the entry and exit handlers, wherein said test case tests com- 
pliance with an industry standard. 

16. The method of claim 15, wherein the test case imple- 
ments one or more actors that exercise the industry standard. 

17. The method of claim 15, wherein the test case interacts 
with one or more systems under test (abbreviated SUT) to be 
tested against the industry standard. 

18 
18. The method of claim 1, further including a test case 

program invoking the FSM after transmitting the communi- 
cations channel parameters to a channel emulator. 

19. The method of claim 18, further including the test case 
5 program specifying to the FSM the communications channel 

parameters transmitted to the channel emulator that is 
coupled to the SUT. 

20. The method of claim 15, wherein the base class trans- 
mits communications channel parameters to a channel emu- 
lator. 

21. The method of claim 1, wherein the entry or exit han- 
dler sets communications channel parameters of a channel 
emulator that is coupled to the SUT. 

22. The method of claim 18, wherein the test case program 
includes at least one FSM that instantiates at least one child 

15 FSM. 
23. The method of claim 20, the base class implements a 

state tracker that keeps track of a current state of one or more 
FSMs during a test. 

24. An article of manufacture that includes non-transitory 
20 computer readable storage medium storing instructions 

executable by a processor for testing a system under test 
(abbreviated SUT), comprising: 

a finite state machine (abbreviated FSM) that includes a 
built-in base class and a user-modifiable user class; 

25 wherein the user class: 
inherits from the base class; 
registers a message alphabet and state-message duples; 
defines exit or entry handlers for the state-message 

duples, including at least one exit handler that has a 

30 next-state transition specification that connects: 
a first state that is exited in response to a particular 

message in the message alphabet and 
a second state that is entered from the first state; 

inherits a test timer method used to set time limits on 

35 execution of operations during a test; and 
inherits a verdict method used to record test results. 

25. A system with an architecture of a finite state machine 
(abbreviated FSM), the system comprising: 

a hardware processor; 
40 code stored in memory coupled to the processor that 

includes a built-in base class and a user-modifiable user 
class; 

the user class: 
inherits from the base class; 

45 registers a message alphabet and state-message duples; 
defines exit or entry handlers for the state-message 

duples, including at least one exit handler that has a 
next-state transition specification that connects: 
a first state that is exited in response to a particular 

50 message in the message alphabet and 
a second state that is entered from the first state; 

inherits a test timer method used to set time limits on 
execution of operations during a test; and 

inherits a verdict method used to record test results. 

10 


