
(12) United States Patent
Kothari et al.

11111111111111111111111111q1,911161111111111111111111 11110111111

(10) Patent No.: US 8,768,963 B2
(45) Date of Patent: Jul. 1, 2014

(54)

(75)

(73)

(*)

(21)

(22)

(65)

(60)

(51)

METHODS AND SYSTEMS FOR DETECTING
SKEWED DATA IN A MULTITENANT
DATABASE ENVIRONMENT

Inventors: Pallav Kothari, San Francisco, CA
(US); Scott Hansma, San Francisco, CA
(US); Scott Yancey, San Francisco, CA
(US); Kevin Oliver, San Francisco, CA
(US); Jiahan Jiang, San Francisco, CA
(US)

Assignee: salesforce.com, inc., San Francisco, CA
(US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 23 days.

Appl. No.: 12/976,100

Filed: Dec. 22, 2010

Prior Publication Data

US 2011/0295814 Al Dec. 1, 2011

Related U.S. Application Data

Provisional application No. 61/350,169, filed on Jun.
1, 2010.

Int. Cl.
GO6F 17/30 (2006.01)

(52) U.S. Cl.
USPC 707/783; 707/713; 707/716

(58) Field of Classification Search
CPC GO6F 17/30306; GO6F 17/30536;

GO6F 17/30592
USPC 707/687, 812, 714, 783, 716
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

2005/0065925 Al * 3/2005 Weissman et al. 707/4
2008/0172421 Al * 7/2008 Birnbaum et al. 707/202

* cited by examiner

Primary Examiner - Ann Chempakaseril
(74) Attorney, Agent, or Firm - Haynes Beffel & Wolfeld
LLP; Ernest J. Beffel, Jr.

(57) ABSTRACT

Detection of skew in an on-demand database services envi-
ronment is provided. A request is generated to scan a multi-
tenant database for skew indicated by relationship depth
exceeding an expected limit. A database crawler calculates
skew for tenant identifier for a particular table in the database.
Any skew that is detected is identified for later resolution.

RECEIVE CRAWL TRIGGER 602

INITIATE DATABASE CRAWLER 604

GENERATE CRAWL JOBS 606

IDENTIFY DATA MODEL FOR 'TAB /OBJECT 608

CALCULATE RELATIONSHIP DEPTH 610

COMPARE DEPTH AGAINST THRESHOLD FOR
TABLE/TENANT ID 612

THRESHOLD EXCEEDED?
614

YES

NC

20 Claims, 7 Drawing Sheets

CONTINUE SCAN 616

IDENTIFY TENANT, TABLE, OBJECT 618

U.S. Patent Jul. 1, 2014 Sheet 1 of 7 US 8,768,963 B2

100

TABLE 120-0 TABLE 120-1 TABLE 120-N

ELEMENT 122 I ID

ELEMENT 124 I ID

ELEMENT 128 I ID

MULTITENANT DATABASE 102

MTS LOGIC 104

CRAWLER
112

SCHEDULER
114

FIG.

U.S. Patent Jul. 1, 2014 Sheet 2 of 7 US 8,768,963 B2

200

RELATIONSHIPS
214

TABLE 220

OBJECT 222

HELD A

RELATIONSHIPS
224

HELD C HELD D

METADATA 226

HELD E

OBJECT 228

FIG. 2

30
0

S
C

H
E

D
U

LE
R

 3
10

T
R

IG
G

E
R

 D
E

T
E

C
T

IO
N

31

2

T
IM

E
R

31

4

D
B

 I
D

E
N

T
IF

IE
R

31

6

T
A

S
K

 G
E

N
E

R
A

T
O

R

(I
N

V
O

K
E

 C
R

A
W

LE
R

)
31

8

T
A

S
K

 G
E

N
E

R
A

T
O

R

(I
N

V
O

K
E

 I
N

S
P

E
C

T
O

R
)

32
0

T
A

S
K

 G
E

N
E

R
A

T
O

R

(R
E

C
A

LC
U

LA
T

IO
N

)
32

2

U
D

D

37
2

M
E

T
A

D
A

T
A

37

4

JO
B

S
 3

24

C
R

A
W

LE
R

 3
40

T
A

S
K

 E
X

E
C

U
T

IO
N

34

2

C
R

A
W

L
S

T
A

T
E

34

4

S
K

E
W

 T
A

G
G

E
R

34

6

IN
S

P
E

C
T

O
R

 3
50

S
K

E
W

 V
E

R
IF

IC
A

T
IO

N

35
2

E
X

E
C

U
T

IO
N

 R
E

S
O

U
R

C
E

S

33
0

H
A

R
D

W
A

R
E

R

E
S

O
U

R
C

E
S

33

2

D
A

T
A

B
A

S
E

IN

T
E

R
F

A
C

E

33
4

E
X

E
C

U
T

IO
N

 R
E

S
T

R
IC

T
IO

N
S

36

0

C
R

A
W

LE
R

 u
m

IT
S

36

2

IN
S

P
E

C
T

O
R

 L
IM

IT
S

36

4

R
E

C
A

LC
U

LA
T

IO
N

LI

M
IT

S
 3

66

F
IG

.
3

U.S. Patent Jul. 1, 2014 Sheet 4 of 7 US 8,768,963 B2

ORGANIZATION 410

USER DEVICE
412

DATA FILTER
414

USER DEVICE
416

NETWORK 430

ORGANIZATION 420

USER DEVICE
422

400

APPLICATION
PLATFORM

448

PROCESS
SPACE

449

NITS 440

NETWORK
INTERFACE 442

MTDB 450

TENANT [EH
DATA DATA

HARDWARE PLATFORM 460

PROCESSOR
462

MEMORY
464

SYSTEM
DATA
444

PROGRAM
CODE

446

FIG. 4

U.S. Patent Jul. 1, 2014 Sheet 5 of 7 US 8,768,963 B2

USER
DEVICE
510 PROCESSOR

512
MEMORY

514

CLIENT
520

UI 522

I/O 516

NETWORK
INTERFACE 518

NETWORK 530

500

APPLICATION SERVER 550 API 552

APPL PLATFORM 560

UI 554

PROCESS SPACE 570

APPL SETUP 562 TENANT MGT
PROCESS

SYS
PROCESS

572 574
SAVE ROUTINES

564

TENANT TENANT
PROCESS PROCESS

PL/SOQL 566 576-0 576-N

DB INSTANCE 580

TABLE 582-0

ID I STORAGE 584

TABLE
582-M

APPL
META-
DATA
586

SYS DB
542

MTS 540

FIG. 5

U.S. Patent Jul. 1, 2014 Sheet 6 of 7 US 8,768,963 B2

RECEIVE CRAWL TRIGGER 602

4,

INMATE DATABASE CRAWLER 604

GENERATE CRAWL JOBS 606

IDENTIFY DATA MODEL FOR TABLE /OBJECT 608

CALCULATE RELATIONSHIP DEPTH 610

COMPARE DEPTH AGAINST THRESHOLD FOR
TABLE/TENANT ID 612

THRESHOLD EXCEEDED?
614

YES

NO

CONTINUE SCAN 616

IDENTIFY TENANT, TABLE, OBJECT 618

FIG. 6

U.S. Patent Jul. 1, 2014 Sheet 7 of 7 US 8,768,963 B2

RECEIVE VALIDATION TRIGGER 702

INITIATE SKEW INSPECT OR 704

GENERATE VALIDATION JOBS 706

VALIDATE TENANT ID AND DATABASE FLAGGED
FOR SKEW 708

DETERMINE IF SKEW RESOLVED 710

SKEW RESOLVED?
712

NO

YES

REMOVE FLAG 714

MAINTAIN FLAG FOR FUTURE VALIDATION 716

FIG. 7

US 8,768,963 B2
1

METHODS AND SYSTEMS FOR DETECTING
SKEWED DATA IN A MULTITENANT

DATABASE ENVIRONMENT

RELATED CASES

This application claims the benefit of priority of U.S. Pro-
visional Patent Application No. 61/350,169, filed Jun. 1,

2010.

FIELD

Embodiments of the invention are related generally to data-
base management, and embodiments of the invention are
more particularly related to detecting skewed data in a data-
base network system.

COPYRIGHT NOTICE/PERMISSION

Portions of the disclosure of this patent document may
contain material that is subject to copyright protection. The
copyright owner has no objection to the reproduction by
anyone of the patent document or the patent disclosure as it
appears in the Patent and Trademark Office patent file or
records, but otherwise reserves all copyright rights whatso-
ever. The copyright notice applies to all data as described
below, and in the accompanying drawings hereto, as well as to
any software described below: Copyright® 2010, Salesforce-
.com Inc., All Rights Reserved.

BACKGROUND

In conventional database systems, users access their data
resources in one logical database. A user of such a conven-
tional system typically retrieves data from and stores data on
the database using the users own systems. The user system
may remotely access one of a plurality of server systems that
in turn accesses the database system. Data retrieval from the
system generally occurs via the user generating a query from
the user system to the database system. Traditional database
systems process the query for data requests and send infor-
mation relevant to the request back to the user system. In
implementations with one logical database, issues related to
storage and access of user data, as well as allocation of data-
base system resources are handled specific to the user pref-
erences. According to user preferences, there may be assump-
tions about access or resource use related to the user's access
to the database system.

If the assumptions do not match the actual implementation
of the database system for data access by the user, perfor-
mance degradation can easily occur. It is possible for asso-
ciations of data in the database to consume more system
resources than anticipated for the database, which can
degrade database access performance.

BRIEF DESCRIPTION OF THE DRAWINGS

5

10

15

20

25

30

35

40

45

50

55

The following description includes discussion of figures
having illustrations given by way of example of implementa-
tions of embodiments of the invention. The drawings should 60

be understood by way of example, and not by way of limita-
tion. As used herein, references to one or more "embodi-
ments" are to be understood as describing a particular feature,
structure, or characteristic included in at least one implemen-
tation of the invention. Thus, phrases such as "in one embodi- 65

ment" or "in an alternate embodiment" appearing herein
describe various embodiments and implementations of the

2
invention, and do not necessarily all refer to the same embodi-
ment. However, they are also not necessarily mutually exclu-
sive.

FIG. 1 is a block diagram of an embodiment of a system
having a database crawler to detect data skew in an on-de-
mand database services environment.

FIG. 2 is a block diagram of an embodiment of a multi-
tenant database table architecture with data relationships that
are checked for skew.

FIG. 3 is a block diagram of an embodiment of a system
having a scheduler, a crawler, and an inspector to detect skew
in a multitenant database environment.

FIG. 4 is a block diagram of an embodiment of an environ-
ment for on-demand database services.

FIG. 5 is a block diagram of an embodiment of an environ-
ment for on-demand database services with a multitenant
database having multiple data tables.

FIG. 6 represents a flow diagram of an embodiment of
detecting skew in an on-demand database services environ-
ment.

FIG. 7 represents a flow diagram of an embodiment of
determining if skew is resolved in anon-demand database
services environment.

Descriptions of certain details and implementations follow,
including a description of the figures, which may depict some
or all of the embodiments described below, as well as discuss-
ing other potential embodiments or implementations of the
inventive concepts presented herein. An overview of embodi-
ments of the invention is provided below, followed by a more
detailed description with reference to the drawings.

DETAILED DESCRIPTION

White the assumptions about access and resource alloca-
tion may be controlled for a single logical database system for
a user, the assumptions about access, database setup, and
resource allocation can easily be different than reality for a
user of a multitenant database system (MTS). An MTS pro-
vides storage for multiple tenants in the same logical database
system. If a user assumes all database resources are available
to the user, the system performance may degrade both for the
particular user, and for other tenants of the database as MTS
resources are strained due to use by a particular tenant.

An MTS may be configured to have certain storage archi-
tecture standards in the database, to allow it to service mul-
tiple tenants from the same database. It is possible for a
particular tenant to establish data relationships among its
stored data elements that puts a strain on MTS resources. As
used herein, "data skew" indicates a relationship depth for
data elements of a multitenant database greater than a thresh-
old. In one embodiment, data skew is calculated for each
tenant and separate database tables. More specifically, related
lists, sharing/owner changes, and performance in other parts
of the multitenant database environment may suffer when the
MTS has to deal with skew in data element relationships (e.g.,
dealing with parent, child relationship data).

As described herein, soft limits may be introduced on data
relationships in the MTS. With the establishing of soft limits
or thresholds on relationship depth, detection of skew in an
on-demand database services environment is provided. A
request is generated to scan a multitenant database for skew
indicated by relationship depth exceeding an expected limit.
A database crawler calculates skew for a tenant identifier in
the database. In one embodiment, skew is calculated for a
particular tenant identifier for a particular table in the data-
base. Any skew detected is identified for later handling and/or
resolution.

US 8,768,963 B2
3

Identified skew can be handled, for example, by providing
surface warning messages on the user interface to a tenant, or
by emailing organization administrators to bring the skew to
the attention of the administrator at the user end. Additionally,
other operations on the skewed relationships can be blocked,
or data access may be otherwise restricted for a particular
tenant based on detected data skew for the tenant.

FIG. 1 is a block diagram of an embodiment of a system
having a database crawler to detect data skew in an on-de-
mand database services environment. System 100 illustrates
elements of an MTS, and could be referred to as "MTS 100",
but will be referred to as "system 100". Multitenant database
102 includes data stored in multiple tables, 120-0 through
120-N, where N is some integer number of tables. The num-
ber of tables may be chosen for any configuration consider-
ation of the MTS. For example, system 100 may have a
certain number of object types, each stored in different tables
(whether tables could be distinguished physical and/or logi-
cally). Other uses of tables could be for purposes of managing
the amount of data stored in any given table.

As referred to herein, a multitenant database stores data for
multiple client organizations, which are each identified by a
tenant ID. One or more users can be associated with each
tenant ID. The one or more users of each client organization
access data identified by the tenant ID associated with the
respective client organization. The multitenant database is
typically a database stored and hosted remote from the client
organization. Typically, the multitenant database is hosted by
an entity (e.g., company) separate from the client organiza-
tion.

Each table 120-0 through 120-N includes any number of
data elements. In an implementation where tables correspond
to object types, elements 122 and 124 of table 120-0 can be
considered object instances of the type of table 120-0. Data
elements of one table may be related to data elements of other
tables. For example, element 128 of table 120-1 could be
related to elements 122 and 124 (for example, element 128
may related to elements 122 and 124 with parent-child rela-
tionships).

As suggested above, system 100 may have standard logic
in its system applications that assumes a certain relationship
depth maximum. The "assumption" can exist in the way the
logic is implemented within the MTS, and a relationship
depth above the maximum causes performance degradation
because of the design of the logic. Rather than having to
redevelop the logic for the entire system, soft limits (thresh-
olds) can be placed on relationship depths that prevent the
performance degradation. Each system configuration may be
different, and thus the thresholds that avoid or reduce perfor-
mance degradation will be different for each implementation.
Those of skill in the art will understand where such limits are
for their individual implementations.

MTS logic 104 represents logic in system 100. While cer-
tain logic (not shown) within MTS logic 104 may suffer
performance degradation due to excessive relationship depth
or data skew, other logic may be provided to detect data skew.
MTS logic 104 includes crawler 112 to crawl through multi-
tenant database 102 to detect data skew. In one embodiment,
each table is inspected to determine whether relationship
depth of objects in the table is greater than a threshold value
(e.g., a configurable value stored for crawler 112). Determi-
nation of depth greater than a threshold is performed for a
given tenant ID (e.g., the ID associated with each data ele-
ment of tables 120-0 through 120-N). In one embodiment,
skew is defined not only for a given tenant ID, but also for a
given table. Thus, skew may be identified for a particular

4
tenant with respect to a particular table (e.g., table 120-1),
identifying skew per tenant ID per table.

In one embodiment, MTS logic 104 includes scheduler
114, which provides scheduling for the crawl operations of

5 crawler 112. Additional details related to embodiments of a
crawler and embodiments of a scheduler are provided below
with respect to FIG. 3. Generally, scheduler 114 may indicate
when crawler 112 should execute. The execution may be in
response to a request, an event, or a timer. Scheduler 114 may

10 invoke crawler 112 with limitations on resource usage by
crawler 112, thus controlling the loading effect on the MTS.
For example, scheduler 114 may invoke crawler 112 only on
non-peak hours, or restrict the amount of processing
resources or memory that can be used by the crawler.

15 While specific reference is made above to system 100, in
general, embodiments of the invention relate to detecting data
skew, where data skew indicates a relationship depth for data
elements of the multitenant database greater than a threshold
for a particular client organization. A skew agent may execute

20 to determine skew, which may include a crawler to mine the
database for skew information. The skew agent receives a
request to detect data skew in a multitenant database, and
initiates a database crawl operation to detect data skew for
data stored in the multitenant database.

25 Detecting data skew involves determining whether a rela-
tionship depth of objects within the multitenant database is
higher than a threshold. Thus, the skew agent calculates the
relationship depth of objects within the multitenant database,
including identifying relationships by tenant ID. The skew

30 agent identifies data skew for any case where relationship
depth exceeds the threshold for data associated with a par-
ticular tenant ID. In one embodiment, data skew is deter-
mined based on tenant ID and database table. There may be
different thresholds for different tables.

35 With regard to operations related to determining skew, or
mining the database for skew information, the skew agent
determines what relationships to monitor for skew. In one
embodiment, all data relationships are monitored for skew. In
alternative embodiments, only certain relationships are moni-

40 tored for skew, or skew may be detected for certain relation-
ships in one crawl, and a different relationship in a different
craw. The relationships to monitor for data skew prevent may
be identifiable at the UDD (universal data dictionary) level by
an attribute on the (foreign key) fields of an entity. The UDD

45 includes definitions of objects, including their fields, for the
system.

In one embodiment, calculating the relationship depth of
objects includes identifying a data model associated with the
object, and calculating relationship depth based on the data

so model. For example, the data model may indicate relation-
ships that are monitored, or may define how relationships are
stored, and thus how the crawler can mine for the skew infor-
mation. In one embodiment, a multitenant database may
include standard data models for use by all tenants, and cus-

55 tom data models for user-defined objects and/or tables. Thus,
the skew agent may need to determine from a user definition
how the relationships are to be calculated. Calculating rela-
tionship depth on such custom objects may include accessing
a metadata table or other information that identifies the cus-

60 tom data model of the object. Then relationship depth can be
calculated based on the specific data model defined.

In one embodiment, the skew agent can initiate skew detec-
tion based on receiving a request from an MTS administrator.
In one embodiment, the skew agent can initiate skew detec-

65 tion based on receiving a request from a user administrator.
For example, a setup page can exist for user-side administra-
tors to allow them to see skewed relationships, and they may

US 8,768,963 B2
5

be able to request a recalculation (e.g., via selecting a button
or other GUI element). In one embodiment, a runtime page
can exist for all organizations or per organization that shows
skew data and lets an administrator request a re-count per
relationship or per organization.

In one embodiment, the skew agent can initiate skew detec-
tion based on timing, such as at a particular time of day (e.g.,
performing a scan task once a day), or at the expiration of a
timer. In one embodiment, the skew agent can initiate skew
detection based on a state of the MTS of which the database
is a part. For example, the state of the MTS could be evaluated
for load, and crawling could be initiated when load is under a
certain level, and paused whenever the load is above a level.
Thus, crawling could be performed as a background process
without causing excessive load on the MTS.

In one embodiment, the skew agent identifies candidates
for skew analysis by logging slow running queries. The iden-
tification of candidates may be used to determine what to
analyze the next time a crawl is triggered. Additionally, iden-
tification could trigger an analysis to occur (e.g., trigger the
initiation of a crawl).

In one embodiment, object relationships are registered at
startup time of an application server, making them available
to a scheduled task responsible for data mining to detect skew.
The skew agent can be configured to automatically disregard
entities that do not have a "deleted" column or valid indexes
containing the deleted column.

With regards to data related to determining skew, the
crawler can store information in a cache (e.g., a memcache),
and then dump or store relationships identified as skewed in a
database table (e.g., in system data). Results data and running
data during a crawl can be stored, for example, in memory
associated with one or more application servers and refreshed
some variable number of minutes (e.g., a simple map
reloaded every 5 minutes). If such a map becomes too large,
the tenant ID associated with identified skew can be stored as
a key in memory, with relationship details in memcache.

For large multitenant databases, it is expected that the run
time for mining skew information will be relatively slow (e.g.,
6-8 hours). Thus, the skew agent scheduler may attempt to
schedule the mining for a particular block of time (e.g., at
night) most likely to allow the operations to be performed
without overloading the system. Especially because of the
fact that mining is expected to be relatively slow, an indication
of skew may become outdated, for example, continuing to
display warnings for a relationship even though the organi-
zation's administrator has been working all day trying to
alleviate the data skew. Thus, in one embodiment, a validation
process can be executed to improve end user experience.

The validation process may be a satellite process that reex-
amines skewed data (data or relationships flagged or marked
as skewed). Thus, the likelihood of false positives (the system
flagging data as skewed when the data is now within bounds)
can be reduced by a process referred to below as an inspector.
The inspector can execute more frequently (e.g., every 30
minutes) and only verify whether previously detected skew
has been resolved.

In one embodiment, the skew agent maintains a history of
warnings at the application level. When warning state
changes from skewed to non-skewed, the skew agent can hide
the notice and/or give an all-clear message. In the event of a
warning state changing to skewed, the message can be used
for rate limiting and/or for displaying a notice. In addition to
skew notices, the skew agent could provide statistics related
to any one or more components of the crawl for a tenant.

Regarding enforcement of skew warnings, skew can be
handled in many ways. In one embodiment, the system sim-

6
ply provides default hooks that display warnings on entities
with data skew problems. Beyond a certain threshold, the
skew agent can send an email to the parent-object-owner
and/or the administrators and/or provide other notification. In

5 one embodiment, there are multiple thresholds, and beyond a
final threshold, the system may prevent further operations
from being performed on an identified skewed relationship.
Thus, object merger or change of ownership may be pre-
vented.

10 In one embodiment, there may be tiered thresholds (tn),
which may be specified as Org Values. The defaults might, for
example, be something like: t1=10^4, where a surface warn-
ing is generated on the UI; t2=10^5, where an email is sent to
an administrator of the tenant organization; and, t3=10^6,

15 where the system blocks further inserts, certain edits, merges
(e.g., merging two problematic accounts should not be
allowed), ownership changes, or lookups. In one embodi-
ment, thresholds could be specific to an entity, allowing dif-
ferent thresholds for different entities.

20 In one embodiment, a user-side administrator is able to
request a recalculation of skew. In such a scenario, it may be
assumed that the user administrator would like a recount to be
known sooner rather than later. In such a case, rate limiting
may be applied to the tenant to free resource bandwidth to

25 perform a recount (e.g., reduce available resources to the
tenant by an amount of resources used to perform the
recount). Such a case of recount may be more specific than a
crawl that looks at all data in the multitenant database; rather,
the recount can be restricted to the tenant ID of the requesting

30 tenant.
FIG. 2 is a block diagram of an embodiment of a multi-

tenant database table architecture with data relationships that
are checked for skew. System 200 represents components of
a multitenant database that is checked for data skew. More

35 specifically, tables 210 and 220 are part of a multitenant
database that is configured with multiple tables of data
objects. Table 210 includes objects 212 and 216, while table
220 includes objects 222 and 228.

In one embodiment, table 210 represents a table that
40 includes a standard Objects, defined by a standard data model

available system-wide in a UDD. Table 220 represents a table
that includes custom objects defined by metadata associated
with the objects (e.g., metadata 226 associated with object
222). The metadata could be stored with the objects in table

45 220, or could be stored in a separate table (not illustrated).
The objects are intended to be represented generically.

Objects 212 and 216 are illustrated as having Fields A, B, and
C. Field C is illustrated as the object field that is to be checked
for relationship 214 to other objects. Data skew is detected

so based on the relationships for a particular tenant ID. Thus,
relationships may also be computed for object 216, but
assuming that object 216 has a different tenant than object
212, its relationship depth or count will be counted towards a
threshold for the other tenant ID.

55 Object 222 is illustrated as having Fields A, C, D, and E.
Assuming for the sake of example that Field C is the field
from which relationship depth is determined, relationships
224 can be computed towards a relationship depth threshold
for a tenant ID associated with table 220. Even assuming the

60 tenant ID is the same for Objects 212 and 222, relationships
214 and 224 may count towards different thresholds, because
in certain implementations relationship depth is counted per
tenant ID per table, and objects 212 and 222 are in different
tables.

65 Object 228 is illustrated as having Fields A, E, F, and C.
The point of illustrating object 228 is to indicate that while
objects 212 and 216 have the same fields, or are based on the

US 8,768,963 B2
7

same data model, objects 222 and 228 are not necessarily
based on the same data model. Rather, metadata associated
with the object is accessed in determining data skew for the
data model associated with the particular object.

FIG. 3 is a block diagram of an embodiment of a system
having a scheduler, a crawler, and an inspector to detect skew
in a multitenant database environment. System 300 illustrates
components of a skew agent or skew manager that determines
skew. Not all components are required for every implemen-
tation. Thus, a skew agent could be implemented that is more
or less complex than what is illustrated in skew agent 300. The
various components are illustrated with various functional
components.

Skew agent 300 includes scheduler 310, which manages
when skew is determined. Trigger detection 312 represents
mechanisms that allow the skew agent to determine when to
perform a crawl, or when to perform a recalculation or other
skew detection process. Trigger detection 312 may include
mechanisms to receive a request by a user administrator, or to
receive a request by an MTS administrator. In one embodi-
ment, scheduler 310 includes timer 314 or similar timing
control mechanism. Thus, trigger detection 312 can be oper-
ated based on timer 314 to perform a skew detection process
based on timing (e.g., a time of day, or after a certain amount
of time).

In one embodiment, scheduler 310 can schedule skew
detection for multiple database instances. Thus, database (db)
identifier 316 enables scheduler 310 to indicate what database
instance to mine for skew information. In one embodiment,
rather than identifying a particular database, database identi-
fier 316 represents a progress indicator or "bookmark". When
mining for data, the mining operations may be interrupted
(e.g., if they take too long, or if system circumstances change
causing the function to be paused). Database identifier 316 as
a progress indicator logs where data mining was interrupted
to enable scheduler 310 to generate tasks to pick back up
where it last left off.

Task generators 318, 320, and 322 each represent mecha-
nisms to enable scheduler 310 to generate jobs 324 to perform
the data skew detection operations. Detecting skew may be a
very substantial process to perform. Rather than sending a
massive process to an application server for execution, mul-
tiple smaller data skew tasks can be created as individual jobs
324. All jobs can be sent to the same application server, or
could be sent to multiple different application servers for
execution. Jobs 324 represent operations for execution within
system 300. In one embodiment, jobs 324 may include any
jobs or tasks to perform within system 300, and not just tasks
related to detecting skew. Task generators 318, 320, and 322
specifically provide operations related to data skew detection.

Task generator 318 generates tasks that are related to a
database crawl. Thus, in one embodiment, task generator 318
invokes crawler 340 as an application to execute on one or
more application servers to crawl the database. The tasks for
crawler 340 to execute are part of jobs 324, which are sent to
execution resources 330. A database crawl can be understood
as a series of operations that analyze multiple (or possibly all)
elements of the database or a subset of the database.

Crawler 340 includes task execution 342 to perform the
tasks related to crawling or mining the database for skew
information. Crawl state 344 represents a state of crawl opera-
tions of crawler 340, or persisted state information. Thus,
crawler 340 can be interrupted in performing its crawl opera-
tions, and then return to where it was interrupted. Thus, the
crawl does not need to be performed in one continuous opera-
tion. Rather, the crawl could be performed, for example, over
multiple days in the case of a large database, and a crawl that

8
only takes place for a period of time once per day. Skew tagger
346 enables crawler 340 to tag or indicate data where skew is
detected.

In one embodiment, crawler 340 includes information
5 related to data models and how to count relationship depth for

objects in the database. Alternatively, crawler 340 may access
the information from system data or from the database itself.
As illustrated, UDD (universal data dictionary) 372 repre-
sents system data available from a system database associated

10 with system 300. UDD 372 can include information related to
the data model of objects to be checked for relationship depth.
Metadata 374 may represent metadata information stored in
system data that describes the format or data model of an
object, and allows system 300 to determine relationship

15 depth. Alternatively, metadata 374 may represent metadata
stored in the database itself. Thus, crawler 340 could access
metadata 374 to identify how the objects are structured, and
how to recognize relationship depth of the object, and then
would determine the relationship depth accordingly by

20 accessing the object from the database.
Task generator 320 generates tasks that are related to veri-

fication of relationships marked as skewed by crawler 340. In
one embodiment, task generator 320 invokes inspector 350
(which could also be referred to as a skew verification agent)

25 as an application to execute on one or more application serv-
ers to determine whether skew has been resolved on data or
relationships marked as skewed. The tasks for inspector 350
to execute are part of jobs 324, which are sent to execution
resources 330. Skew verification 352 enables inspector 350 to

30 check on relationship depth specifically for data previously
marked as skewed. It will be understood that skew verification
352 does not need to mine the database for skew information,
but need only verify the relationship depth for flagged data.
Thus, the scope of skew verification 352 is smaller than that of

35 crawler 340. Thus, inspector 350 can run more frequently
than crawler 340 (e.g., hourly or every half-hour in contrast to
once daily).

Task generator 322 generates tasks that are related to a
manually requested recalculation of relationship depth. In

40 one embodiment, task generator 322 invokes inspector 350,
but could also invoke inspector 350 or another logic program
or routine of a program to perform a relationship depth cal-
culation. A recalculation is an operation performed in
response to a specific request by a user administrator or a

45 system administrator. The user administrator manages the
access to the multitenant database from the user side. A sys-
tem administrator manages the multitenant database. In one
embodiment, a recalculation can be requested by a user
administrator through an MTS interface, for example to allow

so a user administrator to attempt to clean up a problem relation-
ship depth and verify that it is corrected.

Execution resources 330 include hardware resources 332
and one or more database interfaces 334. Hardware resources
332 include any processing devices, memory devices, storage

55 devices, and other hardware that may be used to perform jobs
324. Hardware resources 332 include the hardware that
executes the application servers and crawler 340 or inspector
350. Database interface 334 represents hardware intercon-
nections, ports, and interface circuits (e.g., a network inter-

60 face circuit (NIC)), as well as the software and network stacks
used to interconnect to a multitenant database.

As suggested previously, there may be limits placed on
resource use for the crawler operations, inspector operations,
and recalculation operations. Execution restrictions 360 rep-

65 resent the limits that may be placed on the use of execution
resources 330 by various jobs 324. Crawler limits 362 indi-
cate restrictions on the operation of crawler 340, and inspec-

US 8,768,963 B2
9

for limits 364 indicate restrictions on the operation of inspec-
tor 350. Recalculation limits 366 indicate limits on the
operations associated with a recalculation. The restrictions
placed on a recalculation may be distinct from the limits
placed on a program that will perform the recalculation
operations, e.g., inspector 350.

Examples of the types of limits that may exist in execution
restrictions 360 may include how many processing resources
a program is allowed to have, how many threads or how many
processes are allowed to be executed at the same time, how
many or which application servers can process the requests,
how many database connections can be opened and/or what
bandwidth is available through the connections, how much
memory can be consumed, or other restrictions.

FIG. 4 is a block diagram of an embodiment of an environ-
ment for on-demand database services. Environment 400
includes components related to an on-demand database ser-
vice. Environment 400 includes multitenant database system
(MTS) 440 and one or more organizations 410 and 420, which
are tenants of the MTS. Each organization can include one or
more users and/or user devices.

MTS 440 provides on-demand database services for envi-
ronment 400. An on-demand database service, such provided
by MTS 440, is a database system that is made available to an
outside user as needed by the user (e.g., on the demand of the
user). Thus, a user does not necessarily need to be concerned
with building and/or maintaining the database system, and
rather can simply store and access data as needed from a
remotely operated database system.

In one embodiment, MTS 440 stores information from one
or more tenants into tables of a common database image or
multitenant database (MTDB) 450. Accordingly, MTS 440
provides on-demand database service. A database image may
include one or more database objects. A multitenant database
stores data for various different tenants or organizations in a
single database instance. Resources (such as memory, pro-
cessing space, processing hardware, and other resources of
the database system are shared or allocated among the differ-
ent tenants.

Multitenant database 450 includes tenant data 452, . . . ,

454. The tenant data may be divided into different storage
areas, which can be a physical and/or a logical arrangement of
data. In one embodiment, multitenant database 450 is
accessed via a relational database management system
(RDBMS) or the equivalent, which executes storage and
retrieval of information against the database object(s). In one
embodiment, multitenant database 450 is accessed via an
object-oriented database management system (OODBMS) or
the equivalent. In one embodiment, multitenant database 450
is accessed via an object-relational database management
system (ORDBMS) or the equivalent. It will be understood
that an RDEMS manages data stored in the database based on
a relational model, where data and data relationships are
stored in tables. An OODBMS includes at least some integra-
tion of a database with an object-oriented programming lan-
guage, and data is stored in the database in the same mode of
representation as is provided in the programming language.
An ORDBMS implements both a relational model and an
object-oriented model, storing data in tables, and allowing
representation of data consistent with a programming lan-
guage.

Application platform 448 represents a framework that
allows applications of MTS 440 to execute. Thus, application
platform 448 includes the software components (such as an
operating system) to allow execution of the applications.
Hardware platform 460 provides hardware resources to
enable the applications to execute on application platform

10
448, as well as enabling execution of management or control
logic for MTS 440. In one embodiment, application platform
448 of MTS 440 enables creation, managing, and executing
one or more applications developed by the provider of the

5 on-demand database service, users accessing the on-demand
database service via network 430, or third party application
developers accessing the on-demand database service via
network 430.

MTS 440 represents any type of system that may provide
10 on-demand database service. In addition to application plat-

form 448 and hardware platform 460, which includes proces-
sor resources 462 and memory resources 464, MTS 440 may
include other components. MTS 440 includes network inter-
face 442 to enable user devices to access MTS 440 over

15 network 430. In one embodiment, MTS 440 includes system
data 444, program code 446, and process space 449. System
data 444 represents data specific to the running of MTS 440,
rather than being tenant data. It is logically separated from the
tenant storage, and may be physically separated (e.g., by

20 designating storage areas or address ranges for system data).
Program code 446 represents code to implement various
functions of MTS 440, which enable the system to provide
on-demand database service. Process space 449 represents a
framework for executing MTS processes and tenant-specific

25 processes, such as running applications as part of an applica-
tion hosting service. Additional processes that may execute
on MTS 440 include database indexing processes. It will be
understood that MTS 440 may include more or fewer com-
ponents than what is illustrated.

30 As mentioned above, environment 400 includes organiza-
tions 410 and 420, which represent tenants of MTS 440. Each
organization may include one or more individual, and may be
an individual or small company, up to a large corporation or
organization. Thus, it will be understood that the number of

35 user devices associated with each organization could poten-
tially be hundreds or even thousands. Each organization is
assigned a tenant identifier (ID) within MTS 440. Each tenant
ID could have certain associated properties for use, depend-
ing on how the organization is configured. User device 422 is

40 associated with organization 420, and access MTS 440 under
the tenant ID of organization 420. Similarly, user devices 412
and 416 are associated with organization 410, and access
MTS 440 under the tenants ID assigned to organization 410.

User devices 412, 416, and 422 may be any machine or
45 system that is used by a user to access a database user system.

For example, any of the user devices can be a handheld
computing device, a mobile phone, a laptop computer, a work
station, and/or a network of computing devices. Each user
device can be provided with an on-demand database service

so from MTS 440 via network 430.
Within an organization, users may be further given access

privileges and/or restrictions, as illustrated by data filter 414.
As illustrated, user device 416 may access MTS 440 in accor-
dance with whatever access is available to organization 410,

55 while user device 412 has additional restrictions applied by
data filter 414. In one embodiment, data filter 414 may addi-
tionally or alternatively provide specific user interface fea-
tures for user 412 in accessing data from MTS 440.

The users of user devices 412, 416, and 422 may differ in
60 their respective capacities, and the capacity of a particular

user device might be entirely determined by permissions
(permission levels) for the current user. For example, where a
salesperson is using a particular user device to interact with
MTS 440, that user device has the capacities assigned to that

65 salesperson. However, an administrator using the same user
device may have different capacities assigned to that admin-
istrator. In systems with a hierarchical role model, users at one

US 8,768,963 B2
11

permission level may have access to applications, data, and
database information accessible by a lower permission level
user, but may not have access to certain applications, database
information, and data accessible by a user at a higher permis-
sion level. Thus, different users will have different capabili-
ties with regard to accessing and modifying application and
database information, depending on a user's security or per-
mission level. Such enforcement could occur based on data
filter 414, which can filter per device and/or could filter for the
entire organization (e.g., a central filter as opposed to distrib-
uted filtering).

Network 430 represents any network or combination of
networks. A network is generically an interconnection of
devices that communicate with each other. Network 430 can
be or include any combination of a LAN (local area network),
WAN (wide area network), telephone network, wireless net-
work, point-to-point network, star network, token ring net-
work, hub network, or other appropriate configuration. TCP/
IP (Transfer Control Protocol and Internet Protocol) networks
are commonly used, such as the global internetwork of net-
works often referred to as the "Internet." Reference to specific
networks in certain examples herein is meant only to provide
examples, and is not limiting.

In one embodiment, user devices 412, 416, 422 (and other
user devices not shown) communicate with MTS 440 over
network 430 using TCP/IP and, at a higher network level, use
other common protocols to communicate, such as HTTP
(HyperText Transfer Protocol), FTP (File Transfer Protocol),
AFS (Andrew File System a distributed network filesystem
using trusted servers), WAP (Wireless Access Protocol). In an
example where HTTP is used, user device 412 might include
an HTTP client commonly referred to as a "browser" for
sending and receiving HTTP messages to and from an HTTP
server at MTS 440 (not specifically shown, but which could
be executed on hardware platform 460). Such an HTTP server
might be implemented as the sole network interface between
MTS 440 and network 430, but other techniques might be
used as well or instead. In one embodiment, the interface
between MTS 440 and network 430 includes load sharing
functionality, such as round-robin HTTP request distributors
to balance loads and distribute incoming HTTP requests
evenly over a plurality of servers. At least as for the users that
are accessing that server, each of the plurality of servers has
access to data in MTS 440; however, other alternative con-
figurations may be used instead.

In one embodiment, MTS 440 implements a web-based
customer relationship management (CRM) system. For
example, in one embodiment, MTS 440 includes application
servers configured to implement and execute CRM software
applications as well as provide related data, code, forms,
webpages and other information to and from user devices
(e.g., 412, 416, 422) and to store to and retrieve from a
database system related data, objects, and webpage content.
With a multitenant system, data for multiple tenants may be
stored in the same physical database object; however, tenant
data is typically arranged so that data of one tenant is kept
logically separate from that of other tenants. The logical
separation prevents one tenant from having access to another
tenant's data. An express sharing of data among tenants is
possible, which removes the logical separation. In one
embodiment, MTS 440 implements applications other than or
in addition to a CRM application. For example, MTS 440 may
provide tenant access to multiple hosted (standard and cus-
tom) applications, including CRM application. User (or third
party developer) applications, which may or may not include
CRM, may be supported by application platform 448, which
manages creation, storage of the applications into one or more

12
database objects and executing of the applications in a virtual
machine in process space 449 of MTS 440.

In one embodiment, MTS 440 is configured to provide
webpages, forms, applications, data and media content to user

5 client) device to support the access by user devices as tenants
of MTS 440. In one embodiment, MTS 440 provides security
mechanisms to keep each tenant's data separate unless the
data is shared. More than one MTS may be used. If more than
one MTS is used, the multiple systems may be located in

10 close proximity to one another (e.g., in a server farm located
in a single building or campus), or they may be distributed at
locations remote from one another (e.g., one or more servers
located in city A and one or more servers located in city B).

As used herein, each MTS could include one or more
15 logically and/or physically connected servers distributed

locally or across one or more geographic locations. Addition-
ally, the term "server" refers to a computer system, including
processing hardware and process space(s), and an associated
storage system and database application (e.g., OODBMS,

20 RDBMS, ORDBMS) as is known in the art. It will be under-
stood that "server system" and "server" are often used inter-
changeably herein. Similarly, a database object described
herein can be implemented as single databases, a distributed
database, a collection of distributed databases, a database

25 with redundant online or offline backups or other redundan-
cies, and might include a distributed database or storage net-
work and associated processing intelligence or logic.

FIG. 5 is a block diagram of an embodiment of an environ-
ment for on-demand database services with a multitenant

30 database having multiple data tables. Environment 500
includes components related to providing an on-demand
database service, and may be one example of environment
400 of FIG. 4, with additional components shown. Environ-
ment 500 includes one or more multitenant database systems

35 (MTS) 540 and one or more tenants of the MTS, as illustrated
by user device 510. User device 510 is generally part of an
organization that is the tenant, and user device 510 provides a
computing device through which access to MTS 540 is avail-
able. MTS 540 provides on-demand database services for

40 environment 500.
Environment 500 may include conventional, well-known

elements that are explained only briefly here. For example,
user device 510 (and any other user devices through which
users access MTS 540) could include a desktop personal

45 computer, workstation, laptop, handheld device, cell phone or
smart phone, or any wireless access protocol (WAP) enabled
device or any other computing device capable of interfacing
directly or indirectly to the Internet or other network connec-
tion.

so User device 510 includes processor 512, which represents
one or more processor devices, and may be any combination
of one or more processors. Processor 512 provides hardware
means to execute programs and applications on user device
510. Memory 514 represents a memory system for user

55 device 510, and may be any combination of one or more
memory devices, short term, and/or tong term memory. I/O
(input/output) 516 represents any type of input and output
devices such as keyboards, pointers and controllers, touch-
screens, buttons, microphones, or other input mechanisms,

60 and monitors, screens, printers, interfaces to networks, and/or
other output devices.

User device 510 includes network interface 518, which
represents hardware interconnections and control logic and
circuitry to enable user device 510 to connect to network 530.

65 Network interface 518 also has associated drivers and possi-
bly other software components to allow user programs to
interface with the interconnection hardware. User device 510

US 8,768,963 B2
13

includes client 520, which represents a program that allows a
user of user device 510 to access information from network
530, such as accessing MTS 540. UI 522 represents a user
interface component of client 520, or a user interface in which
information from client 520 is presented on user device 520.
Thus, UI 522 may be integrated with client 520, or it may be
separate from client 520, but display data related to the execu-
tion of client 520. UI 522 is rendered on display or user
interface hardware or device, which can be understood to be
represented by UI 522.

In one embodiment, user device 510 runs an HTTP client as
client 520. An HTTP client may be, for example, a browsing
program or a browser, which may include a WAP-enabled
browser in the case of a cell phone, PDA or other wireless
device. The HTTP client allows a user (e.g., subscriber of
MTS 540) of user device 510 to access, process, and view
information, pages, and applications available from MTS 540
over network 530, based on permissions and privileges. The
user interface device of user device 510 can be used to access
data and applications hosted by MTS 540, and to perform
searches on stored data, and otherwise allow a user to interact
with various GUI (graphical user interface) pages that may be
presented to a user.

Similar to what is discussed above with reference to net-
work 430 of environment 400, network 530 represents any
network or group of networks over which access can be
provided to MTS 540. Network 530 may include switching
and/or routing elements, cables, connectors, and other com-
ponents. In one embodiment, at least part of network 530 is
the Internet, referring to a specific global internetwork of
networks. However, it should be understood that other net-
works can be used in addition to or instead of the Internet,
such as an intranet, an extranet, virtual private network
(VPN), a non-TCP/IP based network, any LAN or WAN or
other network.

In one embodiment, user devices such as user device 510
(which may be client systems) communicate with application
server 550 to request and update system-level and tenant-
level data from MTS 540 that may require sending one or
more queries to tenant data storage in database instance 580
and/or system data in system database 542. In one embodi-
ment, MTS 540 (e.g., application server 550) automatically
generates one or more SQL statements (e.g., one or more SQL
queries) designed to access the desired information. System
data storage in system database 542 may generate query plans
to access the requested data from database instance 580.

In one embodiment, MTS 540 includes one or more appli-
cation servers 550. From one perspective, application server
550 can be considered a network interface of MTS 540 to
connect to network 530. Application server 550 exchanges
(i.e., receives and/or transmits) data with network 530, such
as receiving requests and sending replies or sending data.
Application servers 550 may share hardware resources for
interfacing with network 530, or they may be assigned sepa-
rate resources. In one embodiment, one or more of applica-
tion servers 550 can be implemented as an HTTP application
server.

In one embodiment, each application server 550 is config-
ured to handle requests for any user associated with any
organization that is a tenant. Thus, a request from user device
510 could be received and processed at any application server
550. There may be advantages to avoiding affinity for a user
and/or an organization or tenant to a specific application
server 550, such as the ability to add and remove application
servers from a server pool at any time for any reason, as well
as for workload balancing among the servers. In an imple-
mentation where user and/or tenant affinity is used, an appli-

14
cation server could not be removed without completing its
jobs and/or handing off users to another server.

In one embodiment, an interface system implementing
aloud balancing function (e.g., an F5 Big-IP load balancer) is

5 communicably coupled between application servers 550 and
the user devices to distribute requests to the application serv-
ers 550. In one embodiment, the load balancer uses a least
connections algorithm to route user requests to the applica-
tion servers 550. Other examples of load balancing algo-

10 rithms, such as round robin and observed response time, also
can be used. For example, in certain embodiments, three
consecutive requests from the same user could hit three dif-
ferent application servers 550, and three requests from differ-
ent users could hit the same application server 550. In this

15 manner, MTS 540 is multitenant, wherein MTS 540 handles
storage of, and access to, different objects, data, and applica-
tions across disparate users and organizations. In one embodi-
ment,

Each application server 550 includes elements to provide
20 database access service and request processing. Application

server 550 includes API (application programming interface)
552 and UI 554. UI 554 represents server-side components
that provide user interface elements that are provided to user
device 510 for display. API 552 provides an interface for users

25 and/or developers to access resident processes of MTS 540.
In one embodiment, application server 550 includes appli-

cation (appl) platform 560, which provides a sub-environ-
ment on which applications hosted by application server 550
can be executed. Application platform 560 may include an

30 operating system or other control logic, as well as business
logic and common routines for use by the applications. As
illustrated, application platform 560 includes application
setup mechanism 562 that supports creation and management
of applications, including configuration, by application

35 developers, which may be saved as metadata into tenant data
storage of database (db) instance 580. Save routines 564
represent the mechanisms used to store data in database
instance 580, such as storing the application setup metadata.
Such applications can be executed by subscriber users, for

40 example, in process space 570.
In one embodiment, invocations to or related to such appli-

cations may be coded using PL/SOQL (Procedural Language
Salesforce Object Query Language) that provides a program-
ming language style interface extension to API 552. Thus,

45 PL/SOQL 566 is capable of serving as a procedural extension
to an on-demand database centric service API that allows flow
control and transaction control to execute on a server in con-
junction with database APIs (e.g., SOQL, data manipulation
language (DML), or others). PL/SOQL 566 can enable the

so capability to thread together multiple SOQL/DML state-
ments as a single unit of work on the server. PL/SOQL 566
need not necessarily be considered a general purpose pro-
gramming language, seeing that it may be implemented as
heavily data focused, but is not necessarily implemented that

55 way. In one embodiment, PL/SOQL 566 can be used by
developers to interlace with an on-demand database system,
in contrast to traditional application developers' conventional
tools, such as PL/SQL (Structured Query Language) of
ORACLE, Inc. of Redwood Shores, Calif., and others.

60 in one embodiment, PL/SOQL 566 includes variable and
expression syntax, block and conditional syntax, loop syntax,
object and array notation, pass by reference, and other syntax
known to other programming languages. Thus, hill control
over syntax and the ability to reference dynamic schema

65 elements is provided with anew language and runtime for
database services. Where embedded concepts that interface
with on-demand database applications are provided, syntax

US 8,768,963 B2
15

and semantics that are easy to understand and which encour-
age efficient use of database APIs may also be employed. In
one embodiment, PL/SOQL 566 is implemented as a strong
typed language with direct (non-quoted) references to
schema objects such as Object and Field names (both stan-
dard and custom).

More details about PL/SOQL language embodiments is
discussed in commonly owned U.S. Provisional Patent Appli-
cation 60/828,192 entitled, PROGRAMMING LANGUAGE
METHOD AND SYSTEM FOR EXTENDING APIS TO
EXECUTE IN CONJUNCTION WITH DATABASE APIS,
by Craig Weissman, filed Oct. 4, 2006, now expired, which is
incorporated in its entirety.

In one embodiment, invocations to applications may be
detected by one or more system processes, which manage
retrieving application metadata 586 for the subscriber making
the invocation and executing the metadata as an application in
a virtual machine. Metadata 586 provides data related to
access and/or use of data stored in database instance 580. In
one embodiment, metadata is stored in a separate table within
database instance 580, and in an alternative embodiment,
metadata 586 is stored with other data elements of user stor-
age (such as with user storage 584 of table 582-0.

In one embodiment, application server 550 includes pro-
cess space 570, which may include tenant process spaces
576-0 through 576-N (for some integer number N of process
spaces configured in application server 550), tenant manage-
ment process space 572 and system process space 574. It will
be understood that process space 570 is an abstraction to
illustrate the resources allocated for execution of processes
(e.g., programs or applications) within application server
550. The skilled reader recognizes that memory and proces-
sor and other hardware resources may need to be allocated, as
well as software resources to support the execution of a pro-
cess. The processes may be executed as separate threads, or
my share a thread. In one embodiment, the number N of
tenant processes is equal to a number of subscriber tenants. In
another embodiment, the number N of tenant processes may
be higher than the number of subscriber tenants. Tenant man-
agement process 572 provides management of the other pro-
cesses, including determining when certain processes
execute. System process 574 executes operations related to
functions of MTS 540.

Each application server 550 may be configured to tenant
data storage in database instance 580 and the tenant data
stored therein, and to system data storage of system database
542 and the system data stored therein to serve requests of
user devices. As mentioned above, in one embodiment, tenant
data is separated logically, and stored in the same multitenant
database. In one embodiment, database instance 580 stores
data in tables 582-0 through 582-M, where M is some integer
number of tables. In one embodiment, different tables store
data of different types. Application metadata 586 may be
implemented as a separate table. Alternatively, one of the
tables 582-0 through 582-M could be a table that stores vary-
ing types of objects, which are defined through metadata
stored in the table.

In one embodiment, database instance is further imple-
mented with user storage space distinct identifiable) from its
associated tenant. Thus, for example, user data may include
the tenant ID, as well as an identifier specific to a user. Thus,
storage 584 may represent either or both of tenant storage or
user storage. For example, a copy of a user's most recently
used (MRU) items might be stored to in user storage within
database instance 580. Similarly, a copy of MRU items for an
entire organization that is a tenant might be stored to a tenant
storage area of database instance 580. In one embodiment, the

16
tenant data and the system data (as illustrated by system
database 542) are stored in separate databases.

Application servers 550 may be communicably coupled to
database systems, e.g., having access to system database 542

5 and tenant database instance 580, via a different network
connection. For example, one application server may be
coupled via a network (e.g., the Internet), another application
server might be coupled via a direct network link, and another
application server might be coupled by yet a different net-

io work connection. The application servers may connect to the
database systems via TCP/IP or another transport protocol, at
least partially depending on the network interconnect used.

Regarding storage in database instance 580, one tenant
might be a company that employs a sales force where each

15 salesperson uses MTS 540 to manage their sales process.
Thus, a user might maintain contact data, leads data, customer
follow-up data, performance data, goals and progress data,
and other data, all applicable to that user's personal sales
process e.g., storage 584, which may be tenant storage). Thus,

20 all of the data and the applications to access, view, modify,
report, transmit, calculate, or perform other operations can be
maintained and accessed via a user device having nothing
more than network access. In an example of an MTS arrange-
ment, the user can manage his or her sales efforts and cycles

25 from any of many different user devices. For example, if a
salesperson is visiting a customer and the customer has a
lobby with Internet access, the salesperson can obtain critical
updates as to that customer while waiting for the customer to
arrive in the lobby.

30 While each user's data might be separate from other users'
data regardless of the employers of each user, some data
might be organization-wide data shared or accessible by a
plurality of users or all of the users for a given organization
that is a tenant. Thus, there might be some data structures

35 managed by MTS 540 that are allocated at the tenant level
while other data structures might be managed at the user level.
Because MTS 540 may support multiple tenants including
possible competitors, MTS 540 should have security proto-
cols that keep data, applications, and application use separate.

40 Additionally, because many tenants may opt for access to an
MTS rather than maintain their own system, redundancy,
up-time, and backup are additional functions that may be
implemented in MTS 540. In addition to user-specific data
and tenant specific data, MTS 540 may also maintain system

45 level data usable by multiple tenants or other data. Such
system level data might include industry reports, news, post-
ings, and the like that are sharable among tenants.

In one embodiment, each database instance 580 can be
viewed as a collection of objects, such as a set of logical

so tables, containing data fitted into predefined categories. A
"table" is one representation of a data object, and may be used
herein to simplify the conceptual description of objects and
custom objects according to the present invention. It should
be understood that "table" and "object type" may be used

55 interchangeably herein. Each table generally contains one or
more data categories logically arranged as columns or fields
in a viewable schema. Each row or record of a table contains
an instance of data for each category defined by the fields.

For example, a CRM database may include a table that
60 describes a customer with fields for basic contact information

such as name, address, phone number, fax number, or other
information. Another table might describe a purchase order,
including fields for information such as customer, product,
sale price, date, or other fields. In one embodiment, a multi-

65 tenant database has standard entity tables for use by all ten-
ants. For CRM database applications, such standard entities
might include tables for Account, Contact, Lead, and Oppor-

US 8,768,963 B2
17

tunity data, each containing pre-defined fields. Thus, tables
582-0 through 582-M may include standard, defined tables.

In one embodiment, tenants may be allowed to create and
store custom objects, or they may be allowed to customize
standard entities or objects, for example by creating custom
fields for standard objects, including custom index fields.
U.S. patent application Ser. No. 10/817,161, filed Apr. 2,
2004, entitled "Custom Entities and Fields in a Multi-Tenant
Database System", teaches systems and methods for creating
custom objects as well as customizing standard objects in a
multitenant database system. In one embodiment, for
example, all custom entity data rows are stored in a single
multitenant physical table, which may contain multiple logi-
cal tables per organization. It is transparent to customers that
their multiple "tables" are in fact stored in one large table or
that their data may be stored in the same table as the data of
other customers.

FIG. 6 represents a flow diagram of an embodiment of
detecting skew in an on-demand database services environ-
ment. Flow diagrams as illustrated herein provide examples
of sequences of various process actions. Although shown in a
particular sequence or order, unless otherwise specified, the
order of the actions can be modified. Thus, the illustrated
implementations should be understood only as an example,
and the process can be performed in a different order, and
some actions may be performed in parallel. Additionally, one
or more actions can be omitted in various embodiments of the
invention; thus, not all actions are required in every imple-
mentation. Other process flows are possible.

A skew agent receives a crawl trigger, 602. The crawl
trigger can be initiated by an automated process (e.g., a tinier
or a calendared event), or the trigger can be initiated in
response to a human interaction (e.g., an administrator
requesting a crawl). The skew agent initiates a database
crawler to perform the crawl, 604. In one embodiment, the
skew agent includes a scheduler or scheduling process to
generate crawl jobs, 606. The crawl jobs are sent to execution
resources such as one or more application servers and asso-
ciated hardware for execution.

The crawler then continues its operation to perform the
crawl jobs. In one embodiment, the crawler identifies a data
model for a table and/or for an object of a multitenant data-
base, 608. For standard objects, data model information may
be available from system data. For custom objects, the
crawler may read metadata describing the data model of an
object to inspect for skew. The crawler calculates relationship
depth based on the information about the data model, 610.

The crawler compares the calculated relationship depth
against a threshold value for the tenant ID, and possibly for
the combination of tenant ID and table, 612. In one embodi-
ment, relationship depth is calculated per tenant and table the
threshold relationship depth is not exceeded by the calculated
relationship depth, 614, the crawler continues its scan, 616.

If the threshold relationship depth is exceeded by the cal-
culated relationship depth, 614, the crawler identifies the
tenant (and possibly table and/or object) associated with the
skew, 618. In one embodiment, the crawler identifies the
tenant and object as being skewed. The skew agent could then
specifically identify the skewed data or skewed relationship
directly to a user for correction.

FIG. 7 represents a flow diagram of an embodiment of
determining if skew is resolved in an on-demand database
services environment. While the flow of FIG. 6 discusses
operations associated with the execution of the crawler, the
flow of FIG. 7 discusses the operations associated with the
execution of a skew verification tool (such as inspector 350 of
FIG. 3).

18
The skew agent receives a validation trigger, 702. The

validation trigger can be initiated by an automated process
(e.g., a timer or a calendared event), or the trigger can be
initiated in response to a human interaction (e.g., an admin-

5 istrator requesting a verification of skew). The skew agent
initiates a skew inspector to perform the verification, 704. In
one embodiment, the skew agent includes a scheduler or
scheduling process to generate validation jobs, 706. The vali-
dation jobs are sent to execution resources such as one or

10 more application servers and associated hardware for execu-
tion.

The inspector then continues its operation to perform the
jobs related to verification of identified skew. In one embodi-
ment, the inspector validates a tenant ID and database and

15 potentially object flagged for skew, 708. Similar to the
crawler discussed above, the inspector can access data model
information to determine how to calculate skew for a particu-
lar object or table. The inspector calculates relationship depth
based on the information about the data model to determine if

20 the skew has been resolved, 710.
If the skew is resolved, 712, the inspector removes a skew

flag associated with the data, 714. If the skew is not resolved,
712, the inspector maintains the flag for future validation
operations, 716. In one embodiment, skew that has not been

25 resolved is placed on a schedule for validation. Thus, the skew
may be checked periodically to determine if skew is resolved.
In one embodiment, the inspector or the skew agent can apply
further restrictions to data for which skew has not been
resolved.

30 Various operations or functions are described herein,
which may be described or defined as software code, instruc-
tions, configuration, and/or data. The content may be directly
executable ("object" or "executable" form), source code, or
difference code ("delta" or "patch" code). The software con-

35 tent of the embodiments described herein may be provided
via an article of manufacture with the content stored thereon,
or via a method of operating a communications interface to
send data via the communications interface. A machine read-
able medium or computer readable medium may cause a

40 machine to perform the functions or operations described,
and includes any mechanism that provides (i.e., stores and/or
transmits) information in a form accessible by a machine
(e.g., computing device, electronic system, or other device),
such as via recordable/non-recordable storage media (e.g.,

45 read only memory (ROM), random access memory (RAM),
magnetic disk storage media, optical storage media, flash
memory devices, or other storage media) or via transmission
media (e.g., optical, digital, electrical, acoustic signals or
other propagated signal). A communication interface

so includes any mechanism that interfaces to any of a hardwired,
wireless, optical, or other medium to communicate to another
device, such as a memory bus interface, a processor bus
interface, an Internet connection, a disk controller. The com-
munication interface can be configured by providing configu-

55 ration parameters and/or sending signals to prepare the com-
munication interface to provide a data signal describing the
software content.

Various components described herein may be a means for
performing the operations or functions described. Each com-

60 ponent described herein includes software, hardware, or a
combination of these. The components can be implemented
as software modules, hardware modules, special-purpose
hardware (e.g., application specific hardware, application
specific integrated circuits (ASICs), digital signal processors

65 (DSPs), etc.), embedded controllers, hardwired circuitry, etc.
Besides what is described herein, various modifications

may be made to the disclosed embodiments and implemen-

US 8,768,963 B2
19

tations of the invention without departing from their scope.
Therefore, the illustrations and examples herein should be
construed in an illustrative, and not a restrictive sense. The
scope of the invention should be measured solely by reference
to the claims that follow.

What is claimed is:
1. A method performed by a computing system compris-

ing:
receiving a request to detect data skew in a multitenant

database, where data skew indicates a relationship depth
for data elements of the multitenant database greater
than a threshold for a particular client organization;
wherein the multitenant database stores data for multiple
client organizations each identified by a tenant identifier
(ID) and one or more users are associated with the tenant
ID, wherein the one or more users of each client orga-
nization accesses data identified by the tenant ID asso-
ciated with the respective client organization, and
wherein the multitenant database is hosted by an entity
separate from the client organization;

initiating a database crawler to detect data skew of data
stored in the multitenant database; calculating relation-
ship depth of objects within the multitenant database,
including identifying relationships by tenant ID; and

identifying data skew where relationship depth for objects
associated with a particular tenant ID exceeds the
threshold.

2. The method of claim 1, wherein the multitenant database
is relational, and data skew indicates a relationship depth for
data elements of the multitenant database greater than a
threshold for a particular client organization for a particular
database table; wherein calculating relationship depth
includes identifying relationships by tenant ID and database
table;

and wherein identifying data skew includes identifying
objects associated with a particular tenant ID that
exceeds a threshold for a particular database table.

3. The method of claim 1, wherein receiving the request to
detect data skew comprises: receiving a request triggered by
an indication to crawl the multitenant database for data skew.

4. The method of claim 3, wherein receiving the request
triggered by the indication comprises: receiving a request
triggered by a crawl scheduler based on timing.

5. The method of claim 3, wherein receiving the request
triggered by the indication comprises: receiving a request
triggered by a crawl scheduler based on a determined state of
a multitenant database system of which the multitenant data-
base is a part.

6. The method of claim 1, wherein receiving the request to
detect data skew comprises: identifying a slow running query;
and automatically triggering a crawl based on identification
of the slow running query.

7. The method of claim 1, wherein calculating the relation-
ship depth of objects further comprises: identifying a data
model associated with the object.

8. The method of claim 7, further comprising, for an object
identified as having a data model different than a standard
data model: accessing a metadata table that identifies the
different data model of the object; and calculating relation-
ship depth by counting relationships to other objects based on
the different data model.

9. An article of manufacture comprising a non-transitory
computer readable storage medium having content stored
thereon, which when executed, cause a machine to perform
operations including:

receiving a request to detect data skew in a multitenant
database, where data skew indicates a relationship depth

20
for data elements of the multitenant database greater
than a threshold for a particular client organization;
wherein the multitenant database stores data for multiple
client organizations each identified by a tenant identifier

5 (ID) and one or more users are associated with the tenant
ID, wherein the one or more users of each client orga-
nization accesses data identified by the tenant ID asso-
ciated with the respective client organization, and
wherein the multitenant database is hosted by an entity

10 separate from the client organization;
initiating a database crawler to detect data skew of data

stored in the multitenant database;
calculating relationship depth of objects within the multi-

tenant database, including identifying relationships by
15 tenant ID; and

identifying data skew where relationship depth for objects
associated with a particular tenant ID exceeds the
threshold.

10. The article of manufacture of claim 9, wherein the
2() multitenant database is relational, and data skew indicates a

relationship depth for data elements of the multitenant data-
base greater than a threshold for a particular client organiza-
tion for a particular database table; wherein the content to
provide instructions for calculating relationship depth com-

25 prises content to provide instructions for identifying relation-
ships by tenant ID and database table; and wherein the content
to provide instructions for identifying data skew comprises
content to provide instructions for identifying objects associ-
ated with a particular tenant ID that exceeds a threshold for a

30 particular database table.
11. The article of manufacture of claim 9, wherein the

content to provide instructions for receiving the request to
detect data skew comprises content to provide instructions for
receiving a request triggered one of a request triggered by a

35 crawl scheduler based on timing, a request triggered by a
crawl scheduler based on a determined state of a multitenant
database system of which the multitenant database is a part, or
a request generated by an administrator.

12. The article of manufacture of claim 9, wherein the
40 content to provide instructions for receiving the request to

detect data skew comprises content to provide instructions for
identifying a slow running query; and automatically trigger-
ing a crawl based on identification of the slow running query.

13. The article of manufacture of claim 9, wherein the
45 content to provide instructions for calculating the relationship

depth of objects further comprises content to provide instruc-
tions for identifying a data model associated with the object.

14. The article of manufacture of claim 13, further com-
prising, for an object identified as having a data model differ-

s() ent than a standard data model, content to provide instructions
for accessing a metadata table that identifies the different data
model of the object; and calculating relationship depth by
counting relationships to other objects based on the different
data model.

55 15. A computer-based system comprising:
a processor; and
memory storing computer code components executed by

the processor, the computer code components compris-
ing:

60 a multitenant database including hardware and software
components to implement a database shared by a plural-
ity of separate and distinct customer organizations;

wherein the multitenant database stores data for multiple
client organizations each identified by a tenant identifier

65 (ID) and one or more users are associated with the tenant
ID, wherein the one or more users of each client orga-
nization accesses data identified by the tenant ID asso-

US 8,768,963 B2
21

ciated with the respective client organization, and
wherein the multitenant database is hosted by an entity
separate from the client organization;

a scheduler to receive a request to detect data skew in the
multitenant database, wherein data skew indicates a
relationship depth for data elements of the multitenant
database greater than a threshold for a particular client
organization, and initiate a database crawler to detect
data skew of data stored in the multitenant database; and

a database crawler to calculate relationship depth of
objects within the multitenant database, including iden-
tify relationships by tenant ID, and identify data skew
where relationship depth for objects associated with a
particular tenant ID exceeds the threshold.

16. The system of claim 15, wherein the multitenant data-
base is relational, and data skew indicates a relationship depth
for data elements of the multitenant database greater than a
threshold for a particular client organization for a particular
database table; wherein the database crawler is to calculate
relationship depth including identifying relationships by ten-
ant ID and database table; and wherein the database crawler is
to identify data skew including identifying objects associated
with a particular tenant ID that exceeds a threshold for a
particular database table.

22
17. The system of claim 15, wherein the scheduler is to

receive the request to detect data skew including receiving a
request triggered one of a request triggered by a crawl sched-
uler based on timing, a request triggered by a crawl scheduler

5 based on a determined state of a multitenant database system
of which the multitenant database is a part, or a request
generated by an administrator.

18. The system of claim 15, wherein the scheduler is to
receive the request to detect data skew including identifying a
slow running query, and automatically triggering a crawl
based on identification of the slow running query.

19. The system of claim 15, wherein the database crawler is
to calculate the relationship depth of objects including

15
accessing a metadata table that identifies a data model of an
object, and calculating relationship depth by counting rela-
tionships to other objects based on the data model.

20. The system of claim 15, further comprising: a skew
verification agent to re-calculate relationship depth of objects

20 identified by the database crawler as having data skew, and
remove a skew flag for an object where data skew has been
resolved.

0

