a2 United States Patent

US008683321B2

(10) Patent No.: US 8,683,321 B2

Ingersoll et al. (45) Date of Patent: *Mar. 25, 2014
(54) REGISTRY DRIVEN INTEROPERABILITY (56) References Cited
AND EXCHANGE OF DOCUMENTS
U.S. PATENT DOCUMENTS
(75) Inventors: Christopher Todd Ingersoll, Berkeley, 5.005.200 A 4/1991 Fisch
CA (US); Jayaram Rajan Kasi, San 5157726 A 101992 Merkle et al.
Jose, CA (US); Alexander Holmes, San 5,159,630 A 10/1992 Tseng et al.
Jose, CA (US); Michael Clark, Los 5,224,166 A 6/1993 Hartman, Jr.
Gatos, CA ([JS)’ Ashok Aletty, 5,311,438 A 5/1994 Se_llc?rs et al.
Saratoga, CA (US), Sathish Babu K. 5,513,323 A 4/1996 Williams et al.
Senathi, Fremont, CA (US); Helen S. (Continued)
Yuen, Oakland, CA (US)
FOREIGN PATENT DOCUMENTS
(73) Assignee: Open Invention Network, Durham, NC
(US) Jp 05-127961 A 5/1993
Jp 09-179760 A 7/1997
(*) Notice: Subject. to any disclaimer,. the term of this i,\f;o 1(1)115%23 ﬁl gggg?
patent is extended or adjusted under 35
U.S.C. 154(b) by 777 days. OTHER PUBLICATIONS
Tlhl.s patent is subject to a terminal dis- Australian Examiner’s Report on patent application No. 2003251886
claimer. dated Sep. 26, 2008, 2pp.
(21) Appl. No.: 12/763,136 (Continued)
(22) Filed: Apr. 19, 2010
Primary Examiner — Stephen Hong
(65) Prior Publication Data Assistant Examiner — Matthew Ludwig
(74) Attorney, Agent, or Firm — Haynes Beffel & Wolfeld
US 2010/0205522 Al Aug. 12,2010 LLP; Ernest J. Beffel, Ir.
Related U.S. Application Data
(60) Continuation of application No. 11/369,784, filed on (57 ABSTRACT
Mar. 7, 2006, now Pat. No. 7,703,008, which is a . .
divisi £ application No. 10/199.963. filed on Jul The present invention relates to systems and methods for
119\]1;1(%120 appplctatIiIon - 847 433 »202, liled on Jul. registry driven transformation of a document exchanged
’ » low bal. No. 7,03 /,582. between businesses or applications. More particularly, it
(51) Int.Cl relates to systems and protocols for using one or more com-
G 0;5 F }7 00 (2006.01) monly accessible registries to transform electronic commerce
(52) US.Cl ’ documents among dissimilar interfaces, preferably XML
e))) documents. Particular aspects of the present invention are
(58) gsfdc fCl """ .'ﬁ71t5_/23‘é’ 7151/1229’ 715/236; 715/239 described in the claims, specification and drawings.
ield of Classification Searc
USPC oo 715/229, 234, 236, 239

See application file for complete search history.

AL

20 Claims, 11 Drawing Sheets

L

—

(2 103
: et
Rogistry APY Tiansformaton AP

A

process ICD
SR

execute Trangformations 101

10

Transformed Envelope
T

——

Tensforted Dovument___
r Tiois

US 8,683,321 B2
Page 2

(56) References Cited
U.S. PATENT DOCUMENTS

5,557,798 A 9/1996 Skeen et al.
5,784,566 A 7/1998 Viavant et al.
5,790,677 A 8/1998 Fox et al.
5,812,669 A 9/1998 Jenkins et al.
5,941,945 A 8/1999 Aditham et al.
6,049,785 A 4/2000 Gifford
6,072,942 A 6/2000 Stockwell et al.
6,115,744 A 9/2000 Robins et al.
6,125,391 A 9/2000 Meltzer et al.
6,148,290 A 11/2000 Dan et al.
6,269,380 Bl 7/2001 Terry et al.
6,389,533 Bl 5/2002 Davis et al.
6,393,442 Bl 5/2002 Cromarty et al.
6,425,119 Bl 7/2002 Jones et al.
6,434,628 Bl 8/2002 Bowman-Amuah
6,463,460 B1 10/2002 Simonoff
6,507,875 B1* 1/2003 Mellen-Garmnett et al. 719/310
6,538,673 Bl 3/2003 Maslov
6,636,889 Bl 10/2003 Estrada et al.
6,671,695 B2 12/2003 McFadden
6,789,077 Bl 9/2004 Slaughter et al.
6,862,573 B2* 3/2005 Kendall etal. 705/7.11
6,868,401 Bl 3/2005 Carpenter et al.
6,961,760 B2 11/2005 Li etal.
7,219,223 Bl 5/2007 Bacchus et al.
7.458,018 B2 11/2008 Jones et al.

2002/0194181 Al
2002/0194227 Al
2003/0046583 Al

12/2002 Wachtel
12/2002 Day et al.
3/2003 Goldman et al.
2003/0079029 Al 4/2003 Garimella et al.
2003/0208505 Al 11/2003 Mullins et al.
2004/0205615 Al* 10/2004 Birderccoeovveevenrnn 715/523
2005/0071266 Al 3/2005 Eder

OTHER PUBLICATIONS

Pivotal Intelligence Engine, Technology Overview, 2001 Pivotal
Corporation, pp. 1-27.

XEDILorg, XML and EDI: Peaceful Co-Existence, by XMLSocu-
tions Corporation, O 1999-2001 XMLSolutions, 12pp.

B. Omelayenko, D. Fensel, “Scalable Document Integration for B2B
Electronic Commerce”, Special Issue of Electronic Commerce
Research Journal onn B2B Research, Sep. 12, 2001, pp. 1-31.

Burdett, David, et al. “Collaboration-Protocol Profile and Agreement
Specification—Version 1.0”, ebXML Trading Partners Team. May
20, 2001, 90 pp, www.ebxml.org/specs/ebCCP.pdf.

Supplementary European Search Report for European Patent Appli-
cation No. 03765553.7, PCT/US03/21862, dated Dec. 19, 2008,
mailed Jan. 12, 2009 2pp.

White Paper, “Plug and Play Business Software Integration the Com-
pelling Value of the Open Applications Group” Open Applications
Group, Copyright 2000, pp. 1-15.

Open Applications Group White Paper Document No. 20010301,
Best Practices and XML Content for eBusiness and Applicaiton
Integration, OAGIS Extensions Release 1.1, 2001, pp. 1-34.
Glushko article: Advanced Technology Program Close Out Perfor-
mance Report: Project Title: Component-Based Commerce: The
Interoperable Future, Apr. 14, 2000, 8 pages, Publication Status
Unclear.

Glushko article: ATP Close Out Performance Report: Component-
Based Commerce: The Interoperable Future, 9th Revision, modified
Jan. 31, 2000, 57 pages, Publication Status Unclear.

Jones, Information Security article, Jan. 2002, Authorization / EAM
Ain’t Easy, http://'www.infosecuritymag.com/2002jan/features
eam.shtml, 12 pages.

Salz, R., O’Reilly, XML.Com: Examining WSDL, May 15, 2002,
available at http://www.xml.com/pub/1/2002/05/15/ends.html, 5
pgs.

Schneier, Bruce, Applied Cryptography 1966, John Wiley and Sons,
Inc., pp. 40-41.

VORDEL Web Services Security: Knowledgebase, http://www.
vordel.com/knowledgebase/vordel viewl.html, printed Sep. 11,
2002, 2 pages.

WebServices Framework & Assertion Exchange Using SAML, 5
pages, http://www.w3.0rg/2001/03/WSWS-popa/paper23/, printed
Sep. 11, 2002.

Cover Pages: Web Service Description Languge (WSDL), Technol-
ogy Reports, 31 pages, Jul. 9, 2002, located at http://xml.coverpages.
org/wsdl.html.

K. Narayanaswamy, K. V. Bapa Rao, “An Incremental Mechanism for
Schema Evolution in Engineering Domains”, IEEE 1988, pp. 294-
300.

Jul. 30, 2012 OA from JP 2010-150940, 2-page translation.

* cited by examiner

US 8,683,321 B2

Sheet 1 of 11

Mar. 25, 2014

U.S. Patent

st]|
| T Sdew T T [
CI || ozg | |w T
- B TE ”
NS | [|s7e oLt
siepueu [1| v M ,
dvs |1l 2 0
N———/ _—0
buiddiyg \ﬂﬂﬁ o fEm
Jobuesg | ||) | O¥0-9v0 |))
- Y a0 |) |
—)| 000°0%0 |) -
org | (|vo | W |)
—~ Y oo |) | f
. — T)EEGTAIDEED 1
1 ‘914 v dvs | [l ST) L Emaniseyy
I Y s |y | W)
-)EIEEEE DR
gmwﬁmg¢ ol) | EE |) [y)
. — g Wy <] A e SN ?

\ /2\ /=)

<T
()

=/

\ /2\ /5

=T
o

—~/

lahng
V0

81015
3UIJuQ

1ahng
0d

2

U.S. Patent Mar. 25, 2014 Sheet 2 of 11 US 8,683,321 B2

310
Jn
312
320 313
FIG. 3
401 402

424

=
|I\J
oS
S
~D
N
5
™~
| T P

| TP
S
| T p
4
IV
7
74
P

U.S. Patent Mar. 25, 2014 Sheet 3 of 11 US 8,683,321 B2

X12 markup '\C . — 006
il OO i ontivomép Purchaseider
e \ \ 1A, / /r 771
S e T xCBL Contivorap | 5034 | XS0
\ grger (5038
. —

S |50 15T map L
% p/' ——— (e
m\IFlat makap L1 XSIT map / \ XSTmap ——— 4]
PurchaseOrder XSTmep || ¥ST map XS0
myVersion

XS
Contivo map 5013\\ 501F \

/

-~ ; .

—— 4)[(Jcrgelr KUY ’((ﬁgér Contivomap | | Contivo rap

RegPO (3Ad) 15 20 \ /

020000 % [W N e

10 Contivo map | yor N o |a0ee

*502C { \ ORDERS(2
XSLT| ORDERS0Z

JD-50X clas | | SOX-XSD class A0

|

o 501C
x -
/ Order \
35
0y Java map (XDK)
XS map/v v\
Java string Java map [XOK|

/ substitution
\ (51

XCBL 1 Java map (¥DK] XCBL
PurchaseCrder ™ Purchaselrder

30 21
SOX Y~ Java map (XOK) }—"1 50X FI G . 5

501

r =

US 8,683,321 B2

Sheet 4 of 11

Mar. 25, 2014

U.S. Patent

L Ild

9914

07| 1sx/woaxy//:dny | ‘sles=buipeaiy] | uaisiaauogodisx/woaxy/dny | |SY il
0L Isx/woaxy//dny | ajes=Buipeay] | UoISIBAUO)O4/ask/wox//dny | SX il
0L Jelpy/woaxy//.dny | - 8jes=buipeaiy| $SP|0'UQISIBAUT04 | eAep 1]
TSEN abeyord Lonenbijuo? uonewuawajdwy [8dA| gl usuodulo)
90/ 5L/ v 20 200 02
00€ 00¢
AX0S T80 A 'X0S 749
AR} % % . . o Gdl| | 18pIDESELIING | TopIEseLIg
00€ 00¢
XX0S 783 X'X0S 140
(0l % % . ¥ « | 1dL| J8pigsseyaind | depigsseyand
00€ 00¢
YX0S78)| A 'X0S 40
oS . . . \ . | 18pIgaseyaing | Japigaseyoiny
(| uonay | 8ainiag [uonay | soinisg dl dl
1UBu0dWI0Y | 1807 | UONIOT | BAIBIBY | BAIB08Y | puasS | puas | anigosy | puss 0 | 8dAjoo(wos
ned el sl eed 09) 909/ coe) woe) 0! 209 09/

U.S. Patent Mar. 25, 2014 Sheet 5 of 11 US 8,683,321 B2

801 DocmentLbrar ,
R / m Exterrallink Fl G . 8

1 Byl RN _—"
ety | Srng| T 00 T bl
0.*| #rsions 0n Byurl: Sting

By IssungAgency

a1 Document v Verson e DoeentFay
pliverVrsin: g e Sy 0..
0.11 intion S
+documentLibranVersion gﬂ?ﬁ'g% Sy 1 MapConiet
o | sremespaces . go;seng gg Ss'g
311 Nemespace o et @ggﬂmgﬂﬁes g
Roreresga L +%épendenmes 0. +docls at N PP &ecewmgP oy Sting
fonane: Sting] D00 AL Srng B egingSanis St
Byclassifcation: String B B desoption: String ecewmgAcmn Smng
shanelanag S|g @}Bame. el et g
oranespaeSis 00 | 1 amespane o A\tUHLSrq W B name : Sring
ByvilatonSs: Stin @)d P~ i
S ranespaeirsin: Sing @;desc i Sting [#areDod g2 Tansformationiap
teiptn: i @)dus\/e son: Sting [Eotost:n
oSHUSACTVE : & rsmatinlAL St
0SAUS. NACTVE B ocatonlAL: Sting
OSTATUS: EPRECIATED DEPHEC\ATED
oSS, DELFTED , ‘
JALAED slastmaloCot | /HmapComponents
oNOTVALDATED B ranslomaton 0.
— AL i
Sslemles t\ig[l]qulﬂemems @Oﬁggpeongn iUng i
821 Globa Flement 0. sent (v destripton: String
By name . Sting 82 KM Docld o componenye Sy
{ByBknensene S [t @0' Penenelfle: Sty
0.* 0.1 Hschemafile | Byversionpe: Sing plagehane: 3 Sﬂg
it Sehemafle @obeanﬁ\assName:SUmg ggieeccuulﬂ%né STTQ <:cﬂguratmn
o fleNane: Sting | |EMAIR 0.0 [Confguefor
e orelsliefal:Strng | - |GoMINOR gﬁgg B name St
T oI f valle - String
| o
sheancartile o 1 (& ExternalFil

U.S. Patent Mar. 25, 2014 Sheet 6 of 11 US 8,683,321 B2

905
e Registry
XIMModule | =,
.(deecutefsthe.) (0
[equired transformations Registry Client
™ AP
Vo
Document
Transformation AP
—) 908
T[T [JConio] - FIG. 9
A1 (o (0
: Document
ATM Hegistry AP Transformation AP
l process ICD l | |
S getMaps 101 :
| _Maps. |
Uinrg |

execute Transformations 104
|
Transformed Document

j et — ——_——_——_—— - T —
createNewEnvelope B 1015
Transfomed Envelope e

|

Tiansformed Envelope |
1 T T |
|

|

U.S. Patent Mar. 25, 2014 Sheet 7 of 11 US 8,683,321 B2

{1131 vr1132

Sender Registry Receiver Registry
i 10 A3 1
IDOC XCBL XCBL 0AG
ORDERS02 7 Order Order PurchaseQrder
ORDERSQ? #F.... 4. | 72
XSO XS 0~ AXD
il / All
0AG LA [oc
PurchaseQrder || ORDERS02
721 ORDERS0Z
XSO XSD
i 1 A 1
myFatMarkup XCBL X12 Markup
XYZ Order // Order Order 850
(A 35 30 —tp#) 1)
XSO XSD XSD XSD

FIG. 11

U.S. Patent Mar. 25, 2014 Sheet 8 of 11

Input

- Source Doc Type Attribute Set
- Sender Party/Service/Action

- Receiver Party/Service/Action

NO

Transformation policy

US 8,683,321 B2

<> No transformation?

1203 Get Target doc types

Y

1204 Compute lowest cost path

A 4

1205 Find end doctype from result

1206 NO

End doctype found

1207 Extract path

A A

1208 Create transformation instructions

1209 Return transformation
Instructions

FIG. 12

Ce

1 Returnno
transformation instruction

U.S. Patent

Mar. 25,2014 Sheet 9 of 11

Input
<1204 Com utelovvest) Sarthode
T cost%ath - Sender Party/Senvice/Action
-Receiver Party/Senvice/Action

Y

1301 Get intersection

1311 For each connected

US 8,683,321 B2

121 Add yNode to
processedNodes

nodes between node {yNode) that
senderand are not labeled
receiver registries
v 3™
10 Add startNode to Is yNode in
SourceNodss processedNodes?
133 For each iNodein\ I
SourceNodes s ProcessedNodes
[yNode].cost >yNode.cost +
! i)
2 Label ot INode.cost?

131t ProcessedNode
[yNode].cost =
yNode.cost +
INode.cost
ProcessedNode
[yNode] prev = iNode

A 4

1315 Add yNode to

Y

13
Is ProcessedNodes
yNode].cost =yNode.cost +
iNode.cost?

NO

k4
ls yNode local?

NO

A 4

134 Next connected

SourceNodes

A

=\ node... /

L@ Next SourceNodes
/

(136 Retum Path)

FIG. 13

US 8,683,321 B2

Sheet 10 of 11

Mar. 25, 2014

U.S. Patent

EESHEES S E|[|wsE

wes B EHe0Q6 LD PAR "e|[nel[Ne) [e) T8 [*E][Pa] |

oo | B

-

101~

vl 94

"paAlasal syBu |1y "ou| ‘auQ assswwon ‘1oz BlAdon

:ipr 7 wgetsx @@l 1
- ™ W05 180X

uoljeuLOJSUEI| M Sjeal’ _ _ w4 may aeai) _ E _ sj918q Wiessy [4
SJUOWILIOD sjuswwoD
Z plomAsy F| pJomAsy spaomlay
RwejodApop:plomuin 14N aJedsaweN
1apIQaseLding awen Ajweg
UOIJEULIOSURI] MAN 3)eal) _ _ AlIwe § maN ajeal) _ E _ 9ja18q

Bolejen

uopewnoul Ajiued Juswnaog selwed wewnoog 3 g

2211 juswinsoqg

07

€07l
(el

suonew.ojsuel] [« salfiwed Juawno([« sedd] juewnooq [4] Bweyos [« NxI mp

Ae|dsiqg abeuepy | suojosuuog ebeuely | SJuewnoo(q ebeuepy | uonezjueBiQ ebeuey | diysiasquapy abeuely | seoialag abeuepy

suoday| Japio IETER)
asmoug| Ajddng | aindoud | aounog | uonensiulwpy | safialag AW
- a uopeziuefio uiwpy :uoljeziuebio
%f FN0 uiwpy :adAL Jasn [qeIAl 2lIBUDIN 43S ._o?_om moo_tcm ao;
Q FIUINNWOT alyosd @y poBolf dipy @y swoy o)} *INO 394INN0I
09 &7 _M_ 1LY "88J1000/SUBLUIDOD/LU LUBUILIK /LU0D"BUC 0" puepebwydpy _,\0_ SsaIppy |

g.

B 5| fosHEs sowored FE) yores B | ﬂ._\ B Q. . vea= |

| puas®@ disH [slool (seoABd MAIA MPT (Bl |

Jalo|dx3 Joulalu| JOSCIOII - ouag aUQ 30iauo) [E»

US 8,683,321 B2

Sheet 11 of 11

Mar. 25, 2014

U.S. Patent

[_=%Eoeese o30A el sl (Me] @ mela]|

S HEESSE||vasE]
B

ruame | |
‘paAalasald mur_m_.. [1\- At} “0:0 IJBWWOD “_\GON a_._m_._>QOU
£l81y {5
UODELLIOJSUEL] MON S)eal?) _ _ pa199Iag aj8leq _
W& /1 8bed B €2/ 01-1 Buike|dsig
m m_ ‘o | paigesip Zl ol * ldl 00€ "X 'XOQS ‘189 4spioeseydind 002 ‘A 'XOS 180 1epigeseyaind|
m & 5| peigesip zL] ol zdl . 00€ ‘A 'XQS ‘180 Y8pi0aseyoind 00Z ‘A 'XQS 180 “8pigeseyaind|]
m & | peigeus 2l ol M ldl 00€ ‘X 'XQS 16D UspiQsseyaind 002 ‘A 'XQS 160 4epigeseyand|]
m & v | peigesip FARWR B] 2dl N 00€ ‘A 'XOS 180 4spigeseyaind 00Z ‘A 'XOQ$ 180 “4spigeseyaind|
m & v| peigeus 2l oL M ldl 00€ ‘X 'XQS 16D UspiQsseyaind 002 ‘A 'XQS 160 4epigeseyand|
m & v | peigeus zL1] ol 2d1l . 00€ ‘A 'XQS ‘180 JepiQaseyoind 00Z ‘A 'XQS 180 “spigeseyaind|]
I & v peiqeus ¢l ol « ldl 00€ "X 'XQS 180 JepIQaseyaind 00Z ‘A 'XQS 1180 Yepioaseyoind|
ik m_ Yo | PeIgesIp FARNN ol Zdl » 00€ ‘A 'XOS 190 YepiQeseyaing 002 ‘A 'XOS 190 Jepigsseyaind|]
m m_ ‘o | pPelgeus cl Gl * ldl 00€ ‘X 'XQS ‘189 4spi0eseyaind 00Z ‘A "XQS 1189 “48pigaseyaind|
m & v| peigeus L] os M . 00€ 'Y 'XOS 18D epi0eseyaing 002 ‘A 'XQS 160 4epiQeseyand|
suonoy| smyeis| aljusuodwon|isog| di 2a1es9y| d1 puas adA] oog oL adf} soq woud|O
@@ /1 3bed (A GlgJ 1617 £Z/01-) Buikedsia
N _ UOLELIIOJSUEI] MIN SJEID) _ _ 09399128 ajleg ,
:mU\ sHNsay yoleag
05
Sm_p(| \o.e8g paoueapy __ 8|9 __ yoJeag _
o 00 ", XOS 180 18piQesedind] adA] uswnoaog oy
QP [00Z A "X0OS 180 8piQeseyaing adA| uawnsog woig
'SUCHBLLIOJSUE.] S|GE|IEAR |8 pUl O} {,) 85 "yY2Ieag,, Bunpilo uslyj mojaq spisly 8y} Jo ||e Jo Aue) Buljiy AqQ uoiewIojsUBY & Jo} 42Iess 8ses|d
& [a] |3 "SUOEWLIOJSUEIYSUBLINOO LU LU 3/UIUPE/UIE/QSSA WD BUO 0 pue|iedl; Ry (@] sseippy |
.0 &3 tosHEr sweB] pesB | T F @. + . v |

| puas@ der Isiool sewotEd MOA WPT [BI |

Jauojdx3 Jauseju] YOSCIOIY - owaq auQ sdsewwo)

G1 9

US 8,683,321 B2

1
REGISTRY DRIVEN INTEROPERABILITY
AND EXCHANGE OF DOCUMENTS

PRIORITY INFORMATION

This application is a continuation of U.S. application Ser.
No. 11/369,784 filed 7 Mar. 2006, which is a divisional of
U.S. application Ser. No. 10/199,963, entitled “Registry
Driven Interoperability and Exchange of Document” by
Christopher Todd Ingersoll, Jayaram Rajan Kasi, Alexander
Holmes, Michael Clark, Ashok Aletty, Sathish Babu K. Sen-
athi and Helen S. Yeun filed on 19 Jul. 2002.

COPYRIGHT NOTICE

A portion of the disclosure of this patent document con-
tains material that is subject to copyright protection. The
copyright owner has no objection to the facsimile reproduc-
tion by anyone of the patent document or the patent disclosure
as it appears in the Patent and Trademark Office patent file or
records, but otherwise reserves all copyright rights whatso-
ever.

BACKGROUND OF THE INVENTION

The present invention relates to systems and methods for
registry driven semantic transformation of a document
exchanged between businesses or applications. More particu-
larly, it relates to systems and protocols for using one or more
commonly accessible registries to transform electronic com-
merce documents among dissimilar interfaces, preferably
XML documents.

Business-to-business (B2B) and application-to-applica-
tion (A2A) electronic commerce are replacing former proto-
cols for electronic data interchange (EDI). As businesses
strive to improve their efficiency with B2B and A2 A systems,
anumber of incompatible platforms and competing standards
have emerged. One need that has been identified is to convert
the documents from one system to another.

XML has become a widely used type of data because the
rigid syntactic rules which must be applied to create inline
markup make it relatively simple for computer programs to
interpret and process. For example, a purchase order written
in XML could be processed by an order entry software appli-
cation that knows how to read the markup annotations that
describe what is being purchased, who the purchaser is, and
so forth. The growing acceptance of XML as an encoding
scheme for documents has led to development of XML -ified
application program interfaces for many legacy applications
by enterprise adapter implementation (EAI) vendors.

EAI vendors bridge one system to the next, on an applica-
tion-by-application basis. Interoperability is achieved by
design, at design time. Connections between systems or
applications are static. Implementation of new versions of
applications requires modification of the static connections.
Routing among applications is typically within an enterprise.
Integration logic is developed on a point-to-point basis.
Semantic logic is coded into EAI routines. Semantic logic and
syntactic logic are mixed in the coding. The sending party or
source of a document is responsible to ensure that what they
send is exactly what the target or recipient has advertised to
receive. There is no concept of modeling degrees of compat-
ibility for an interface, as opposed to requiring perfect com-
patibility. This perfect compatibility is difficult to achieve, as
it requires that all clients be updated with the latest versions of
the services’ interfaces and that interfaces be updated con-
temporaneously. Transformation components are difficult to

15

25

30

35

40

45

55

2

reuse. No commonly accessible repository is provided to
capture individual transformation preferences or to support
transformation based on user profiles. The EAI vendor
approach makes it difficult and costly to adapt transform
routines from one pair of systems or applications to another.

FIG. 1 illustrates the EAI vendor approach, as applied to
supplier processing of incoming purchase orders into four
disparate systems. In this figure, incoming purchase orders
originate from three sources 101, an electronic data inter-
change (EDI) buyer, and online store customer and an Open
Application Group Business Object Document (OAG BOD)-
compliant buyer. Each of the sources has a native interface
102 that produces a purchase order as input to the EAI infra-
structure 103. The formats of the documents may include
EDI, XML and OAG. Four target systems 106, include an
SAP Financial system, an SAP MRP system, Biz IQ system
and a Granger shipping system. The native formats of docu-
ments 105 accepted by these target systems include IDOC,
BAPI, OAG and a custom application program interface
(API). To connect the source and target, both syntactic and
semantic differences need to be overcome. Point-to-point
adapters 104 transform source documents into target docu-
ments on a pairwise basis. Even document transformations
between systems utilizing the same syntax, such as OAG-to-
OAG transformations, involved differing semantics, so an
adapter is required. When a source or target system is
updated, for instance if Oracle financials are substituted for
SAP financials or an upgraded shipping system is installed,
new adapters need to be written. In all likelihood, old and new
adapters are both retained by the EAI infrastructure. As sys-
tems are updated, more and more adapters are subject to
revision or replacement. A single transformation engine man-
ages the transformation process and provides the transforma-
tion resources.

Accordingly, opportunities arise to devise methods and
structures that commonly manage transformation of docu-
ments between dissimilar interfaces, that provide runtime
interoperability and distributed execution of transformations.

SUMMARY OF THE INVENTION

The present invention relates to systems and methods for
registry driven transformation of a document exchanged
between businesses or applications. More particularly, it
relates to systems and protocols for using one or more com-
monly accessible registries to transform electronic commerce
documents among dissimilar interfaces, preferably XML
documents. Particular aspects of the present invention are
described in the claims, specification and drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a high-level block diagram of a prior art transfor-
mation process using point-to-point connections.

FIG. 2 is a high-level block diagram of the transformation
process using a web services engine.

FIG. 3 is a hierarchical block diagram of document fami-
lies and versions.

FIG. 4 is a block diagram of document libraries,
namespaces, schemas and document families.

FIG. 5 is a network diagram of document family members
and transforms among members.

FIGS. 6 and 7 are tables for transform sequences and logic
components used to carry out transform sequences.

FIG. 8 is a class diagram including document libraries,
namespaces, document types and schemas, document fami-
lies and transforms.

US 8,683,321 B2

3

FIG. 9 is a high-level block diagram of a software compo-
nent that carries out transforms.

FIG. 10 is a corresponding activity diagram.

FIG. 11 illustrates sequences of transforms.

FIGS. 12 and 13 are flowcharts depicting aspects of deter-
mining the preferred sequence of transforms to convert a
source document into a target document.

FIGS. 14 and 15 illustrate user interfaces that support
administration of document families and searching to find
transforms.

DETAILED DESCRIPTION

The following detailed description is made with reference
to the figures. Preferred embodiments are described to illus-
trate the present invention, not to limit its scope, which is
defined by the claims. Those of ordinary skill in the art will
recognize a variety of equivalent variations on the description
that follows.

FIG. 2 depicts supplier processing of incoming purchase
orders destined for four disparate systems. Incoming pur-
chase orders originate from three sources 201, an EDI buyer,
an online store customer and an OAG-compliant buyer. The
native formats utilized by the three sources 201 may include
EDI, XML and OAG. Four target systems 206 include an SAP
Financial system, an SAP MRP system, a Biz IQ system and
a Grainger shipping system. The native formats accepted by
these target systems 206 include IDOC, BAPI, OAG and a
custom API. In this system, a web services engine 211 per-
forms semantic transformations using a common syntactic
base. For instance, EDI and OAG documents are converted to
XML, as a common syntactic base. Transformations from
XML to XML handle semantic differences between the
source and target document. XML documents may be recon-
verted to native formats such as EDI, OAG, IDOC, or BAPI.
The syntactical transformations to and from XML may be
handled as part of the web services engine 211 or by the
interfaces or adapters 202, 205 associated with the source 201
and target 206.

The web services engine 211 has access to a variety of
transforms 213, including transforms using the common syn-
tactic base. These transforms may be reusable. More than one
transform may be invoked to convert a document from source
semantics to target semantics. It may be desirable to utilize a
common semantic base for transformations, for instance,
transforming incoming documents to a well-understood
document schema, such as the xXCBL schema for electronic
commerce documents 212. By transforming incoming docu-
ments to a common semantic base, the need for point-to-point
transforms is minimized. The transforms may be chained and
may be reusable. The transforms may be isomorphic or
homomorphic. That is, the transforms need not be perfectly
reversible. The transforms typically will be rated, either a
priori or by comparing source and target semantics before and
after transformation, to estimate the degree of loss resulting
from the transform. A transform success score can be used to
select among alternate sequences of transforms from source
to target semantics. Loss resulting from transforms can be
compensated for by including in the target document one or
more fields that capture imperfectly translated information
from the source document. These fields may be user view-
able, so that a user associated with the source, the target or an
intermediary service provider can respond to imperfections in
the computer-implemented transformation service. Alterna-
tively, the source document and target document can be sent
to the target, with references to parts of the source document
that have been imperfectly transformed or that are suspected

10

15

20

25

30

35

40

45

50

55

60

65

4

of having been imperfectly transformed. These references
can be part of the target document or a separate document,
such as an error document. They can be a string, a pointer or
some other form of reference. References can be provided to
one or more sections of the target document where the imper-
fectly transformed information belongs. The references to the
target document may be to an element or subsection of the
target document or to a specific location within an element or
subsection. In yet another embodiment, the target document
and excerpts of the source document can be sent to the target,
with references to the excerpts of the source document and,
optionally, to the target document.

A commonly accessible registry, partially illustrated in
FIG. 2, facilitates management of the community using XML
schema definition (XSD)-based XML electronic commerce
documents or, more generally, a schema for a syntax using
character data encoding text characters and markup data iden-
tifying sets of storage units according to the logical structure
of'the documents. Maintaining transformations in at least one
repository facilitates reuse, both in design of needed trans-
forms and execution. A commonly accessible repository of
transforms also permits distributed execution. The web ser-
vices engine may use resources of the source, target, or an
intermediary service. Upon determining the interfaces used
by source and target, appropriate transform logic can be
obtained from the commonly accessible registry or a cache in
which transform logic previously obtained from the com-
monly accessible registry is kept. Interoperability is estab-
lished at runtime, based on entries in one or more registries
and logic residing in one or more repositories. At runtime,
connections are dynamically determined between source and
target. When source or target implements a version change,
the dynamic determination of the connection accounts for the
version change.

A commonly accessible registry can provide a so-called
semantic hub. The commonly accessible registry may main-
tain service descriptions for the applications that provide
services, such as electronic commerce services. Inbound and
outbound document interfaces are registered as part of the
service descriptions, preferably in the form of XSD defini-
tions. A service is free to register multiple interfaces, for
instance to support multiple versions of an electronic com-
merce document standard (e.g., xCBL 2.0, xCBL 3.0, or
xCBL 3.5) or to support multiple document standards (e.g.,
xCBL, IDOC, OAG, or BAPI). The introduction of document
family concepts provides a way to manage schemas and docu-
ment types across documents standards and standards ver-
sions, as well as custom systems. Document families associ-
ate document types that represent the same business events
into families. Transformation maps or transforms manage
standard and custom logic to convert among document family
members. A cost of using a particular transform may reflect
imperfect translation of the document. Again, a transform
success score can be associated with the transform either a
priori, based on prior experience, or by dynamically compar-
ing the semantic content of the document before and after
application of the transform.

Maintaining transforms using XML as a common syntactic
base is preferred, but not necessary. XML is a rich, self-
describing data representation that facilitates declarative
mapping logic. Several semantic bases, such as xCBL com-
ponent model, provide a consistent semantic base to harness
XML’s powerful semantics. Modeling of XML documents to
a semantic registry facilitates reuse and rapid development of
new transforms, thereby enhancing the value of existing
transforms. Focusing on semantic mapping, with a common
syntactic base and even a common semantic base, reduces the

US 8,683,321 B2

5

complexity of developing new transforms. Business analysts,
instead of programmers, may be able to use transform-author-
ing tools to define XML-to-XML semantic conversions.

A document family, as illustrated in FIG. 3, allows for
categorization and grouping of documents. Related docu-
ments are grouped under the same document family 300.
Documents may be specified by a document identifier. The
document identifier logical construct is used to represent a
root element of a message, for instance a root element of an
XML electronic commerce document. A document identifier
may specify a document ID, its relationships, versions and
family associations. Both XML and non-XMIL documents
may be assigned document identifiers and stored in a com-
mon registry. Attributes of the document identifier may
include a document identifier (e.g., the name “Order”); the
namespace (e.g., urn:x-commerceone:document:com:com-
merceone: XCBL30:XCBL30.s0x); a document library name
(e.g., a xCBL, DTD, EDIFACT); a schema language (e.g.,
SOX, XSDL); a version (e.g., 3.0); and the document family
name (e.g., PurchaseOrderFamily, PricelnquiryFamily,
QuoteFamily). The document family organizes documents by
document identifier in a hierarchy of versions. In FIG. 3, the
document family tree 300 or other data structure is used to
organize individual families 310, 320. A purchase order fam-
ily 310, for instance, may include one or more major versions
311, 312, 313. One or more of the major versions may be
associated with minor versions (not illustrated), in a similar
tree-structure. A version attribute may record both major and
minor versioning. One possible differentiation between
major and minor visions would be that major versions have
significant changes that require transformation, whereas
minor versions have no structural differences, only sub-ele-
ment extensions. Users of the system may commonly extend
a document’s sub-element without modifying the doctype
itself. This sub-element extension can be treated as a minor
version, in the same way that modification of the doctype is
handled. Therefore, the doctype node represents the doctype
schema and all the schemas that make up the doctype ele-
ment. For example, if the Lineltem element is extended, and
this extended type is used in instance of the PurchaseOrder,
then the PurchaseOrder doctype is versioned. When sub-
elements are versioned, users register new doctypes. They
specify the parent doctype node and assign a new minor
version relationship to the parent. A version ID is generated
and assigned to the new node.

A registry may subdivide schemas into namespaces, as
illustrated in FIG. 4. XML namespaces (e.g., XSD, SOX,
RosettaNet, CIDX) and non-XML namespaces (e.g. EDI,
EDIFACT) can be registered and managed using a schema
namespace management component. A schema namespace
may have various attributes including: a namespace URI;
name; classification, namespace status; validation status (for
XSD namespaces); namespace version; description; docu-
ment library name; schema language (for XSD type
namespaces); schema files; bean jar file name; dependent
namespaces (if any, for XSD and SOX type namespaces); and
external or informational URLs. Typically, different versions
of namespaces will have different URIs. For instance, docu-
ment libraries for major xCBL version 3.0 401 and for major
xCBL version 3.5 402 may have one or more namespaces
(411, 412, 413) and 414, respectively, that can be used to
support minor versions. One way of maintaining a schema is
to use n files for n document schemas. A namespace manager
may store meta data about the namespace, the schema files
associated with the namespace and the Java jar file containing
JavaBeans and classes corresponding to the schema files. A
graphical user interface using a browser-based tool may be

10

15

20

25

30

35

40

45

50

55

60

65

6

used to manage registration, activation, deactivation and dele-
tion of namespace sets. Published namespaces may be first
validated, including associated schema files, with tools such
as the validation API from XML tools (XDK). In FIG. 4, there
are two document libraries 401, 402. Each of the document
libraries includes three schema namespaces (411, 412, 413)
and 414, respectively. Name spaces are associated with
schema files 421-425 and 426. Working back up the tree from
anamespace family 431 for purchase orders, for instance, two
purchase orders of xCBL 3.0 and xCBL 3.5 types, 432, 433,
respectively, are associated with particular document sche-
mas 421, 426, respectively.

FIG. 5 presents another view of the document family,
depicted here as a network of document family members
interconnected by transforms. In this purchase order family,
documents 501, 502, 503 are identified by library, document
identifier, version and schema type. For instance, document
501A is from the xCBL library, identified as an Order, version
4.0, using the schema type XSD. Document 501C is also from
the xCBL library, identified as an Order, version 3.5, using
schema type SOX. Document 502A is from the X12 markup
library, identified as an 850 document, version 4200, using
schema type XSD. Document 502B is custom flat file docu-
ment marked up in XML. This is the kind of document that
could be prepared with a template and word processor, for
instance. In this figure, separate transforms identified for each
direction of conversion between document family members.
Transform types identified included Contivo maps, XST
maps, XSLT maps, Java classes translating between XSD and
SOX, Java substring substitutions and Java maps (XDK).
Different transform types may be used for transforms and
inverse transforms between document family members. The
system can be adapted to new or different transform types, for
instance, as extensions of existing classes. For instance, trans-
lating from xCBL version 3.5 501B to xCBL version 3.0 501F
involves applying an XSLT transform. Translating the oppo-
site direction involves applying a Java component. The net-
work of document family members interconnected by trans-
forms can be considered a directed graph, in the sense that
interconnections between nodes (document family members)
are directed links (one directional transforms) having difter-
ent attributes. Well-known algorithms can be applied to
traverse this network while avoiding loops or circular refer-
ences. Not illustrated in this diagram, an a priori transform
success score or an experience-based transform success score
can be associated with each of the transforms that link docu-
ment family members.

FIGS. 6 and 7 depict tables that may be used to identify
transforms in a document family such as depicted in FIG. 5.
These tables can be accessed at runtime by a transformation
engine to identify a preferred transform. Some transforms
may be cached. In FIG. 6, the transformation from one docu-
ment family member 601 to another 602 is accomplished by
applying one or more logic components 611 in the order
listed. These logic components can be Java class files, XSLT
maps, XST maps, or any other generic or custom transform,
accommodating current and future document standards and
transformation standards. The transform success score 610
measures the imperfection resulting from translating the
source 601 to the target document 602. In this example, the
transform entries are indexed by the source and target docu-
ment attributes. These attribute sets comprise the document
family namespace, family name, protocol, schema language,
doctype, XML QName, and version ID. When searching for
transform entries, wildcards can be used in the search. Trans-
form entries may optionally contain flags for special rules
603-608. Custom transformations can be applied at the trad-

US 8,683,321 B2

7

ing partner level, service level or action level. The source or
target trading partner ID can be flagged 603, 604 to indicate
that the special logic components should be used for particu-
lar source or target trading partner. Similarly, service and
action can be flagged 605-608 to indicate that special logic
components should be used for particular source or target
service or action. The transformation engine should use the
most specific transform definition available. For instance, a
definition that is specific to a trading partner, service and
action triplet would be considered more specific to transform
designated only by trading partner. Hierarchical importance
may be assigned to trading partner, service or action, in case
different elements of the triplet are defined for difterent trans-
forms. For instance, trading partner may be considered more
important than service if two transforms match the source and
target document types, one transform which is specific to a
trading partner and the other which is specific to a service.
Other attributes of the transformation may evoke special
rules. The present invention is not limited to special rules
categorized by trading partners, services and actions. FIG. 7
provides additional information regarding logic components
701 used as components of transforms in a column 611. For
logic components 710, a type 702, an implementation 703, a
configuration 704, a package 705 and a version 706 may be
supplied.

FIG. 8 depicts classes that may be used to represent a
document family. Some aspects of these classes correspond to
logical structures depicted in FIGS. 3 and 4. Document
library 801 is the highest level of organization for documents
and schemas. The name of a document library is represented
by a string, such as “xCBL.* A library optionally may be
versioned 802. The library version is represented by string.
For a versioned or unversioned library, namespaces may be
provided 811. Among namespaces, there may be dependen-
cies, as indicated by the relationship loop that points from the
namespace class back to the namespace class. Attributes of
the namespace include a namespace URI, a name, a classifi-
cation, a schema language, a namespace status, a validation
status, a namespace version and a description. These
attributes may be expressed the strings. In addition, flags or
flag values may be provided to indicate whether the
namespace is active, inactive, depreciated or depleted. Flags
or flag values also may be provided indicate whether the
namespace is validated or not validated. Associated with the
namespace are an external link 803, global elements 821,
schema files 824 and external files 827. In this embodiment,
the namespace may be externally linked by a URL to a uni-
form resource name. A description of the external link 803
also may be provided. The namespace may be linked to a set
of global elements 821. These global elements express valid
root element names of XML documents, which correspond to
document types recognized in the namespace. This class of
global elements may be redundant to data maintained in other
classes. The namespace also may be linked to a set of schema
files 824. Two distinct links may be provided, to root schema
files and to other schema file containers. The root schema file
is the root file that joins or includes the other schema files.
Dependencies among namespaces are modeled, allowing all
schema files for a namespace and all dependent namespaces
to be retrieved, as well as to ensure that schemas are not
accidentally removed leaving other namespaces in inconsis-
tent states. Attributes of a schema file may include a filename
string and a relative path string. An absolute path may alter-
natively the provided. A schema file element 824 is repre-
sented by an external file 827. The external file object is used
to model the physical location of a file and can be referenced

10

15

20

25

30

35

40

45

50

55

60

65

8

by any entity that requires a physical file representation. This
external file may, for instance, be a bean jar file linked directly
to the namespace.

The namespace is linked to documents and document fami-
lies, in this embodiment, through the document ID class 812.
The document ID 812 may actually have two types of links to
a namespace, one of which is the root namespace it belongs
to, and the other which is used for extension namespaces. This
supports major versions and minor versions. A major version
document ID may be a brand new version of a document that
does not extend a previous version of a document. A minor
version document ID may extend either a major or minor
version document ID. A major version doc ID will only have
a single namespace relationship, which references the
namespace within which the root element is defined. A minor
version doc ID references the super parent (major version)
doc ID’s namespace, along with any other namespaces within
which any extensions exist. The document 1D 812 may be
associated with the document family 804, an external ID 805,
document rule 813, a transformation map 823 and an XML
document ID 822. Attributes of a document ID may include a
name, a URI and a primary alternate URI. A URI is automati-
cally generated for a doc ID using three components:
namespace URI, DocID Name, Docld version. This Doc Id
URI is used to refer to this Doc ID. If a user desires a custom
Doc ID naming scheme, they may enter their own URI, and
this is set in the primaryAltld relationship. Users may also
have more than one naming scheme, in which case the oth-
erlds relationship models these names. All these names
should be unique. Attributes of a document 1D may further
include a display name, a description and a document version.
All of these attributes may be maintained as strings. A spe-
cialization of document ID is XML document 1D 822, for
XML documents. Attributes of the specialization may include
an XML element name, a version type, a bean class name and
major and minor versions. As characteristic of XML, a rela-
tionship loop indicates that XML document IDs may repre-
sent nested elements. An external ID 805 may be associated
with the document ID 812. The external ID 805 may be a
registry key or an alias for a URI. Both a primary, default link
and one or more user supplied aliases may link the document
1D and external ID.

Document ID rules 813 may be sufficiently generalized to
support transforms, validations, and display maps. Trans-
forms 823, sometimes called transformation maps, are a spe-
cialization of the document ID rule 813. Logic implementing
the transform is linked to a document ID rule 813 through a
set of transform components 825. A transform component, in
turn, is linked to an external file 827. Attributes of the trans-
formation map 823 may include a cost or transform success
score, a transformation URI and a location URI. The trans-
formation URI uniquely identifies a transformation map
within a registry. A location URI is an optional identifier that
indicates where the transformation should take place. For
example, if only one host within a network is capable of
performing the transformation, its URI is assigned to the
location URI attribute and the transformation/router will send
the transformation to this host to be performed. Attributes of
the transformation component 825 may include a transforma-
tion component URI, a name, description, component type,
implementation file, package name and execution order.
Transformation components 825 are linked as a set to the
document ID rule 813. The execution order attribute confirms
the sequence in which transforms are applied, if more than
one transform is required. In this embodiment, transform
logic may include one or more of an XSLT map, and XST
map, a Java component, or a Contivo map. Transform com-

US 8,683,321 B2

9

ponents are linked to set of configuration elements 826.
Attributes of the configuration element may include a name
and a value. Document ID rules 813 are also linked to a set of
map context strings 814. These strings associate the docu-
ment ID rule 813 and with a particular trading party, either a
sending/source or receiving/target party, or with a particular
service or action, as described above in the context of FIGS.
6 and 7.

Logic to retrieve and execute transforms may conveniently
be accessed through an XML transformation module (XTM),
as illustrated in FIG. 9. The XTM module is supported by a
registry service 905, which serves transformation logic from
local and remote registries. A registry client application pro-
gram interface 904 maintains transparency as to whether a
transform is retrieved from a local cache or registry 906 or a
remote registry. A retrieved transform or transform reference
may be passed to a document transformation application pro-
gram interface 907, which, in this embodiment, includes
resources for various transform types 908. If in alternative
embodiment, the registry client API 904 may be invoked from
the document transformation AP1907, also called a document
transformation service. The document transformation service
907 may be invoked by an XTM module 902 either in the
services home community or from a remote community, such
as a community that is sending documents to the home com-
munity. An upgrade to the transformation service may involve
adding a new type of transform 908 and new version of the
transformation engine 907. Connectors between XTM mod-
ules and document transform APIs may be upgraded in
phases, after upgrading the document transformation AP1907
and the component transforms 908. A document transforma-
tion service may be invoked from a different community than
the home community. For instance, a service sending a pur-
chase order from community A to community B may invoke
the service homed in community B. To perform the transform
required so that the PO prepared using community A’s
semantics will be acceptable to community B, it may be
necessary to invoke a transform that only runs on the trans-
formation engine in community B. In this case, the XTM
module in community A will invoke the document transform
API in community B to remotely execute one or more trans-
forms, converting the purchase order from community A’s
semantics and to community B’s semantics.

The transformation may be identified in the inbound mes-
sage 901, which may but preferably does not include the
details of which transforms should be applied to accomplish
the transformation. In FIG. 10, a so-called interoperability
contract document (ICD) 1011 is transmitted to the XTM
1001, in the same envelope 901 as the message to be trans-
formed. The ICD may include a path of transformation
instructions and connectors along a route to carry a document
from source to target. In one embodiment, the XTM module
is associated with a connector component in a community of
B2B applications, which community may belong to one or
more networks of communication. The XTM module may
access the ICD and determine whether the transformation
instructions that it contains identify its connector as perform-
ing any transformation. If there is no transformation to be
performed by the current connector or its XTM module, the
XTM module may return success and, optionally, may log a
pass-through event. If a transformation is to be performed by
the current XTM module, it parses the transformation instruc-
tions and obtains 1002, 1003 a sequence of transforms be
executed from the registry client AP11002. The XTM extracts
a source document from the envelope 901. It matches the
source document attributes with the first transform to be
performed and indicates an error if there is a mismatch. It

20

25

30

40

45

55

65

10

invokes 1014 the document transform API 1003, with the list
of transforms to be retrieved and performed. If an error is
generated during the transform process, the error may be
noted, or the transform may be aborted and an error message
returned. The XTM module 1001 may archive the source and
transformed target documents for security, non-repudiation,
debugging or other purposes (not illustrated). The XTM mod-
ule determines whether the target prefers to have the source
document transmitted, as well as the transformed target docu-
ment, and if so, attaches it when it creates 1016 the outgoing
envelope 903. The XTM module should be implemented in a
thread-safe manner. The transformed envelope 903, is
returned 1017.

An ICD is contained in the same envelope 901 as the
message to be transformed, may use the following schema to
identify a transformation required:

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs=“http://www.w3.0rg/2001/XMLSchema”
elementFormDefault="qualified” attributeFormDefault="unqualified”>
<xs:element name="TransformationContract’>
<xs:annotation>
<xs:documentation>Transformation Instructions
</xs:documentation>
</xs:annotation>
<xs:complexType>
<xs:sequence>
<xs:element name="“Attachment” type="xs:boolean”
minOccurs="“0"/>
<xs:element name="Transformation” minOccurs="0"
maxOccurs="unbounded”>
<xs:complex Type>
<Xs:sequence>
<xs:element name="“Connector” type="xs:anyURI"/>
<xs:element name="StartDocTypeName”
type="“xs:QName”/>
<xs:element name="StartDocVersion” type="xs:string”/>
<xs:element name="EndDocTypeName”
type="“xs:QName”/>
<xs:element name=“EndDocVersion” type="xs:string”/>
<xs:element name=“CommunityID” type="xs:string”
minOccurs="0"/>
<xs:element name=“ComponentID” type="xs:string”
maxOccurs="unbounded”/>
</xs:sequence™>
</xs:complexType>
</xs:element>
</xs:sequence™>
</xs:complexType>
</xs:element>
</xs:schema>

An example of transformation instructions, according to
schema above, is:

<xs:element name="Transformation” minOccurs="0"
maxOccurs=“unbounded”>
<xs:complexType>
<xs:sequence>
<xs:element name=“Connector” type="xs:anyURI"/>
<xs:element name="StartDocTypeName” type="xs:QName”/>
<xs:element name="StartDocVersionID” type="xs:string™/>
<xs:element name="EndDocTypeName” type="xs:QName”/>
<xs:element name="EndDocVersionIlD” type="xs:string”/>
<xs:element name="“CommunitylD” type="“xs:string”
minOccurs="“0"/>
<xs:element name="“ComponentID” type="xs:string”
maxOccurs="unbounded”/>
</xs:sequence™>
</xs:complexType>
</xs:element>

US 8,683,321 B2

11

In this example, the source document type is identified by
StartDocTypeName and StartDocVersion. The StartDoc-
TypeName should be a fully qualified document type, a
QName in XML terms, including a namespace and local
name of the root element for the document type. Alterna-
tively, a unique naming convention could be used, with appro-
priate administrative provisions to enforce uniqueness within
a relevant scope. A version identifier should be supplied to
distinguish among variations of the same document. A cus-
tomer may extend an address element within a purchase
order, for instance, and the extensions will have a different
minor version ID than the major version. EndDocTypeName
and EndDocVersion identify the target document resulting
from the transform. Community ID specifies the community
where the transform is registered. Component ID is used to
look up the transform logic, for instance via the transforma-
tion component 825.

One implementation of'an ICD specifying the target’s pret-
erence to receive (or not) the original, source document in
addition to the transformed target document is expressed in
the following schema excerpt:

<xs:element name="TransformationContract™>

<xs:annotation™>

<xs:documentation>Transformation Instructions</xs:documentation™>
</xs:annotation>
<xs:complexType>

<xs:sequence>

<xs:element name="Attachment” type="xs:boolean”
minOceurs=“0"/>

The attachment tag will indicate whether the original, source
document should be attached or not. A default, in the absence
of'this element, may either be to attach the document or not to
attach it.

FIG. 11 depicts chaining of transforms to convert a docu-
ment from source semantics to target semantics. In this figure,
the document state is indicated by a block and a state-to-state
transform is indicated by a solid or dotted line. The solid and
dotted lines indicate alternative transforms. These transforms
may be public and private transforms or may be generally
applicable and specially selected transforms. In the first
example, source 1101 desires to send a purchase order to
target 1104. The document standard or native interface of the
source is IDOC. The document name and version for this
purchase order, within IDOC semantics, is ORDERS2. The
schema type is XSD. The native interface of the target is
OAG. The document name is Purchase Order. The version for
this purchase order is 7.2.1. The schema type is XSD. In this
example, transforms from both the source or sender registry
1131 and the target or receiver registry 1132 are used. The
series of transforms is traced 1141. The source document is
subject to source registry 1131 transforms 1101-1102 and
1102-1112. These transforms convert the ORDERS02 docu-
ment to an XCBL version 4.0 Order document. Two additional
transforms 1103-1113 and 1113-1104 from the target registry
1132 are applied next. Thus, by application of four trans-
forms, the IDOC interface document is converted to an OAG
interface document. In this instance, the common intermedi-
ate semantic base is xXCBL. By inspection of FIG. 11, it
becomes apparent that three transforms from the sender reg-
istry 1131 and a single transform from the receiver registry
1132 could, alternatively, have been used to convert the IDOC
interface document. An alternative path would have been to
convert from a xCBL version 4.0 to version 3.5 using a
transform 1112-1122 in the sender registry 1131. Then, the

10

15

25

30

35

40

45

50

55

60

65

12

receiver registry 1132 transform with similar functionality
1103-1113 would not need to be used. The choice of paths
1141 for this conversion may be explained by the dotted line
in the receiver registry between 1103 and 1113. This implies
that the target preferred use of its own transform for conver-
sion between versions 4.0 and 3.5. In the second example,
source 1121 desires to send its XYZ Order to target 1124.
Three transforms 1121-1122, 1113-1123, and 1123-1124 are
used 1142. Again, the semantic base for transforms is xCBL.
A custom transform is used to convert the marked up flat file
to xCBL version 3.5. Non-custom transforms are used there-
after to convert the document to X12 markup format. While
these examples illustrate transforms stored in both source and
target registries, other configurations of registries may
equally well be used, such as a single common registry or a
common registry and supplemental registries for sources and
targets with custom logic components.

More detail regarding computation of transform sequences
using both source and target registries of transforms is pro-
vided in flowchart FIGS. 12 and 13. FIG. 12 is an overall
flowchart. FIG. 13 depicts one of many algorithms that can be
used to trace paths through one or more registries of docu-
ment family members. FIG. 12 begins 1201 with information
about the source document and identifications of the source
and target. The source document is described by a document
type attribute set. The source and target are described by a
triplet of party, service and action. The first logical branch
1202 determines whether a policy against transformations
has been set. This type of policy might apply where the target
wants the source to bear all risk of an erroneous transforma-
tion, so use of public transform elements is at the source’s
own risk. If there is a policy against transformation, a no
transform instruction message is returned 1211. Passing the
logical branch 1202, the document type of the target is
retrieved 1203. This may be from a registry, as described
above. Give information about the source and target docu-
ments, alternative transform sequences or paths are deter-
mined 1204, which may include transform success scores for
the paths and also may include transform preferences of the
source and target. The list of alternative paths is inspected and
candidate paths that produce the desired target document type
are identified 1205. If no path producing the desired target
document type appears in the list, a no transform instruction
message is returned 1211. Passing the logical branch 1206, a
preferred path is selected and extracted 1207. The preferred
path may have a preferred transform success score or it may
conform to transform preferences of the source, target or
both. Transform instructions are created 1208 and returned
1209.

FIG. 13 illustrates tracing transform sequence paths
through source and target registries, beginning from a par-
ticular document family member. In overview, the algorithm
queries the source and target registries for the intersection of
identical document types in the source and target document
families. It performs integrity and error checks not illustrated
in the figure. For each part of a multi-part message, it deter-
mines the target document and runs a cost algorithm that
recursively traverses a document family graph, following
transform links between document state nodes. If the docu-
ment type of a node is among the intersection of identical
document types previously determined, the algorithm splits
into a path through both registries. If a transformation policy
applies that requires lossless transformation (perfect trans-
form success scores), then lossey transform paths are ignored.
This traversing and costing are a variation on Dijkstra’s algo-
rithm for solving a single-source, shortest-path problem on an
edge-weighted graph in which all the weights are non-nega-

US 8,683,321 B2

13

tive. It finds the shortest paths from some starting node to all
other nodes, one-by-one. Paths are traversed, in Dijkstra’s
algorithm, in order of their weighted lengths, starting with the
shortest, proceeding to the longest. In general, any traversal of
the applicable document families from source document to
target document may be used, and document families may be
small enough that the particular traversal used has minimal
impact on computational costs.

Referring to the flow chart in FIG. 13, this part of the
algorithm begins 1204 with a start node or document family
member, and party/service/action triplets identifying the
source and target. At step 1301, an intersection of nodes
between source and target registries is calculated. For
instance, do both source and target process xCBL version 3.0
or XCBL version 3.5 documents? If there is no intersection
between document semantics processed by the source and
target, no transform sequence is available. Referring to FIG.
11, the intersection would be xCBL versions 4.0 and 3.5
(111210 1103 and 1122 to 1113). Lists are maintained by this
processing algorithm of SourceNodes, ProcessedNodes and
transform sequences. Some or all of these lists may be main-
tained in stacks or heaps of recursively allocated and pro-
cessed variables. Referring to FIG. 5, boxes (e.g., 501, 502 or
503) are SourceNodes from which a walk of the directed
graph proceeds. SourceNodes may be labeled or unlabeled,
depending on the progress of the walk. The walk begins by
adding the StartNode to the list of SourceNodes 1302. The list
is processed in a loop bounded by 1303 and 1305 and by an
inner loop bounded by 1311 and 1324. At 1303, processing of
a so-called iNode in the SourceNodes list begins. The current
iNode is labeled. Then, connected members of the document
family that have not yet been labeled are considered 1311. For
instance, referring to FIG. 5, for iNode 501B, the connected
document family member nodes would be 501A, 501C, 501F
and 502C. The connected nodes that are unlabeled are called
yNodes 1311. A yNode is tested 1312 to determine whether it
is in the ProcessedNodes list and, if not, it is added to the list
1321 and processed 1313. If the yNode is in the Processed-
Nodes list, the algorithm determines whether the current path
to the yNode is better than previously calculated paths. At step
1313, the cost of reaching the current yNode is compared to
the previous cost of reaching the same node. Ifthe current cost
is better than the old cost, processing proceeds to step 1314,
where the ProcessedNode list is updated. At step 1315, yNode
is added to the SourceNodes list for later processing. Again at
step 1313, if the current cost is not better, then processing
proceeds to step 1322, which tests whether the costs are the
same. [f the costs are the same, then a variety of criteria might
be used to break the tie 1323. One criterion is to favor an
instance of yNode that is in the receiver’s registry, when the
same node appears in both the receiver’s and sender’s regis-
tries. Another criterion would be to favor an instance of
yNode that is in the sender’s registry. Yet another criterion
would be to favor the path that involves the fewest nodes or
hops. At step 1324, processing loops to 1311, where the next
connected node that is not labeled is processed. If the unla-
beled connected nodes all have been processed, the next step
is 1305, at which processing loops to 1303 where the next
iNode in SourceNodes is processed. When all SourceNodes
have been processed 1305, the results of this processing are
returned 1306.

The calculation of alternative transform sequences and
preferred transform sequences may operate in different envi-
ronments. The following use cases illustrate some of these
environments. In the first use case, no transformation is
required. The module for determining a transform sequence is
invoked, but the source and target documents are the same

40

45

14

type. No transformation is required. In the second use case, no
transformation is available between source and target. This
may be the case when no transform sequence can be calcu-
lated between differing source and target documents, or when
transformation policy is “no transforms™ and the source and
target documents differ, or when only a lossless transforma-
tion is accepted but all calculated transform sequences are
lossey, as indicated by their transform success scores. An
operating exception occurs. In the third use case, the source
and target are in the same community, so only one transform
registry is queried and a valid path exists. One or more trans-
form sequences are determined. A preferred sequence is
determined. In a fourth use case, the source and target are in
separate communities and a valid path exists. Two transform
registries are queried. As in the third case, one or more trans-
form sequences are determined and a preferred sequence is
determined.

Transform success scores, as described above, can be
determined a priori, by experience or dynamically, or, more
generally, by any metric of a lossey semantic transform. An a
priori score is assigned to a transform based on some combi-
nation of analysis and tests. The score does not change with
experience. An experience based score may begin with an a
priori score or a default score, and be adjusted with experi-
ence. For instance, methods of dynamically computing suc-
cess, explained below, can be applied for selected transforms
that are used, and the corresponding transform success score
updated, for instance as a weighted or moving average, either
discarding an oldest historical success score or assigning
relative weights to past and present success scores. One
approach to dynamically determining success scores is to
apply a transform to the candidate document and analyze the
transformed document. The transform is applied to the source
or intermediate source document, producing a target or inter-
mediate target document. The content of elements (in an
XML or similar document) is listed for source and target
documents, for instance in a frequency table. Discrepancies
between the source and target frequencies reduce the trans-
form success score, regardless of whether the difference is
positive or negative. The discrepancies optionally are
reported. The success score can depend on exact matches
between element contents, or may be weighted by degree.
The following example helps illustrate this approach to
dynamic scoring. The source document fragment is:

<NameAddress>
<Name>Pikachu Pokemon</Name>
<Address1>125 Henderson Drive</Address1>
<City>Pleasanton</City>
<State>CA</State>

</ NameAddress >

The transformed target document fragment is:

<NameAddress>
<Name>Pikachu Pokemon</Name>
<Street>Henderson Drive</Street>
<HouseNumber>125</HouseNumber >
<City>Pleasanton</City>
<State>CA</State>

</NameAddress>

A frequency comparison, based on elements of the source
document fragment and keyed to exact matches would be:

US 8,683,321 B2

15

Source Doc
frequencies

Target Doc

Content frequencies

Pikachu Pokemon
125 Henderson Drive
Pleasanton

1
1
1
CA 1

—— O

A dynamic transform success score corresponding to the
fraction of fields in the source document that appear verbatim
as fields in the target document can be expressed as a success
of 75 percent or a cost of 25 percent could be assigned to this
example. A different score would be assigned if partial
matches counted, as the house number element of the target
document matches one token of the address 1 element of the
source document. The success score could correspond to the
fraction of the text in fields of the source document that
appears verbatim in fields of the target document. Application
of a sequence of scores requires calculation, for some pur-
poses, of an aggregate success scores. When individual scores
are combined into an aggregate transform success score, the
combination may be additive, averaged or multiplicative. The
method of constructing an aggregate transform success may
take into account the number of transforms in sequence, as in
the multiplicative combination of success scores or may accu-
mulate (without compounding) the errors, as in the additive
combination of costs. For instance, in the multiplicative com-
bination, ifthe transforms are T1, T2 and T3, loss percentages
can be calculated for each of the three and combined as
(1-T1)*(1-T2)*(1-T3). More generally, an aggregate trans-
form success score may be any metric of a sequence of trans-
forms resulting in a lossey transformation from source to
target document.

User interfaces for administering document family infor-
mation and for searching for transforms are illustrated in
FIGS. 14 and 15. FIG. 14 depicts a user interface supporting
administration of document families. A document tree 1401
shows the hierarchical interrelationship of major 1403 and
minor 1404 versions of a document 1402. For a family, docu-
ment family information common to family members is dis-
played 1411. FIG. 15 depicts a user interface supporting a
search to find available transforms, for instance, to prepare a
new transform sequence. The results displayed 1511 identify
part of 23 transform sequences that convert a source docu-
ment (PurchaseOrder, CBL, SOX,Y, 200) from xCBL version
2.0 to version 3.0. The search criteria are specified using a
standard 1501 or advanced 1502 query interface. One or more
rows of the results can be deleted 1512 or used to create a new
transformation 1513. In this example, the transform
sequences returned vary by expressed preferences of sending
party 1514 or receiving party 1515, cost or losseyness of the
transform 1516 and logical components implementing the
transform sequence 1517.

While the present invention is disclosed by reference to the
preferred embodiments and examples detailed above, it is
understood that these examples are intended in an illustrative
rather than in a limiting sense. Computer-assisted processing
is implicated in the described embodiments. Accordingly, the
present invention may be embodied in methods for computer-
assisted processing, systems including logic to carry out
transform processing, media impressed with logic to carry out
transform processing, data streams impressed with logic to
carry out transform processing, or computer-accessible trans-
form processing services. It is contemplated that modifica-
tions and combinations will readily occur to those skilled in

10

15

20

30

40

45

50

60

16

the art, which modifications and combinations will be within
the spirit of the invention and the scope of the following
claims.

We claim as follows:

1. A computer-assisted method of transforming a docu-
ment with semantic encoding destined for a target service,
including:

electronically requesting by target service identifier and

receiving from an interface registry at least one target
document version used by a target service from among a
plurality of document versions in a document family;
and

electronically requesting by source and target document

versions and receiving from a document family registry
one or more transforms or references to transforms to be
applied sequentially to convert a document from the
source document version to the target document version.

2. The method of claim 1, further including applying the
transforms to convert the document from the source docu-
ment version to the target document version.

3. The method of claim 2, wherein the target service iden-
tifier is a party/service/action triplet.

4. The method of claim 2, wherein the source and target
document versions use different semantic encoding of data,
which requires transformation.

5. The method of claim 4, wherein versions of the semantic
coding include major versions distinguished by system stan-
dard and minor versions distinguished by release version
within a particular system standard.

6. The method of claim 1, wherein the document family
registry includes for document family members identifica-
tions of a system standard, a document identifier, a release
version and a schema type.

7. The method of claim 1, wherein the transforms include
one or more of Contivo maps, XSLT maps, XST maps, XSD-
SOX classes, and Java maps.

8. The method of claim 1, wherein applying the transforms
includes using processing resources of a requesting service,
distinct from processing resources of the document family
registry.

9. The method of claim 1, wherein the transforms are stored
in the local repository and are checked against a non-local
repository for currency before application.

10. The method of claim 1, wherein applying the trans-
forms includes preserving semantically coded source data
from the document in a user viewable field of a transformed
document.

11. The method of claim 1, further including selecting
among alternative sequences of transforms based on a trans-
form success score.

12. A computer-assisted method of exposing transforms
applicable to a document family, including:

maintaining a document family registry data structure,

including for a particular document family

document family versions;

transforms including program instructions that trans-

form data between document family versions;

responding to requests that identity first and second docu-

ment family versions by providing one or more

sequences of transforms or references to transforms to

be executed remotely, that transform the data from the

first document family version to the second document

family version.

13. The computer-assisted method of claim 12, wherein the
document family versions in the document family registry
data structure are identified by library, document identifier,
release version and schema type.

US 8,683,321 B2

17

14. The method of claim 12, further including traversing
the document family registry data structure and identifying
one or more sequences of multiple transforms that collec-
tively transform from the first document family version into
the second document family version.

15. The method of claim 14, wherein:

maintaining the transforms further includes maintaining

transform success scores; and

responding to requests further includes calculating com-

posite transform success scores for the sequences of
transforms.

16. The method of claim 15, wherein the transform success
scores correspond to a fraction of fields translated verbatim
from a field of the source document to a field of the target
document.

17. The method of claim 15, wherein the transform success
scores correspond to a fraction of text in fields of the source
document found verbatim in fields of the target document.

10

15

18

18. The method of claim 12, wherein:

maintaining the document family registry data structure
further includes maintaining special rules for transforms
to be applied corresponding to one or more participants
in a document exchange.

19. The method of claim 12, wherein:

the transforms to be executed remotely are privately main-
tained transforms, maintained separately from the docu-
ment family registry data structure.

20. The method of claim 12, wherein:

maintaining the document family registry data structure
further includes maintaining special rules for transforms
to be applied corresponding to one or more participants
in a document exchange; and

responding further includes referring to private transforms,
maintained securely within the document family regis-
try data structure.

#* #* #* #* #*

