
(12) United States Patent
Beddoe et al.

11111111111111111111111111#111111111!1111111111111111111111111111

(10) Patent No.: US 8,601,585 B2
(45) Date of Patent: Dec. 3, 2013

(54) MODIFICATION OF MESSAGES FOR
ANALYZING THE SECURITY OF
COMMUNICATION PROTOCOLS AND
CHANNELS

(75) Inventors: Marshall A. Beddoe, San Francisco, CA
(US); Kowsik Guruswamy, Sunnyvale,
CA (US)

(73) Assignee: Spirent Communications, Inc.,
Sunnyvale, CA (US)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 1077 days.

(21) Appl. No.: 11/745,338

(22) Filed: May 7, 2007

(65) Prior Publication Data

US 2008/0282352 Al Nov. 13, 2008

(51) Int. Cl.
H04L 29/06 (2006.01)

(52) U.S. Cl.
USPC 726/25; 370/244; 370/389; 709/206

(58) Field of Classification Search
USPC 726/25; 370/244
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

6,665,306 B1 * 12/2003 Thakur et al. 370/419
7,242,681 B1 * 7/2007 Van Bokkelen et al. 370/389

2004/0001443 Al * 1/2004 Soon et al. 370/244
2005/0015213 Al * 1/2005 Somervill et al. 702/117
2005/0111362 Al * 5/2005 Freytsis et al. 370/230
2005/0195820 Al * 9/2005 Betts et al. 370/392
2005/0198156 Al * 9/2005 Cheng 709/206
2007/0086389 Al * 4/2007 Park et al. 370/332

Source
Endpoint

110

Original
Message-

140

2007/0192687 Al * 8/2007 Simard et al. 715/523
2007/0204347 Al 8/2007 Caceres et al.
2008/0120283 Al * 5/2008 Liu et al. 707/4

FOREIGN PATENT DOCUMENTS

WO WO 2006/099536 A2 9/2006
WO WO 2006/099536 A3 9/2006

OTHER PUBLICATIONS

Sengar, "MTPSec: Customizable Secure MTP3 Tunnels in SS7 Net-
work", 2005, IEEE, p. 1-8.*
Finlay, I. et al., "Multiple Vulnerabilities in Many Implementations of
the Simple Network Management Protocol (SNMP)," CERT® Advi-
sory CA-2002-03, Pittsburgh, PA, US.

(Continued)

Primary Examiner - David Pearson
Assistant Examiner - Gregory Lane
(74) Attorney, Agent, or Firm - Haynes Beffel & Wolfeld
LLP; Ernest J. Beffel, Jr.

(57) ABSTRACT

A system is used to analyze the implementation of a protocol
by a device-under-analysis (DUA). The system includes a
source endpoint, a destination endpoint (the DUA), and a
message generator. The source endpoint generates an original
message and attempts to send it to the DUA. The original
message is intercepted by the message generator, which gen-
erates a replacement message. The replacement message is
then sent to the DUA instead of the original message. The
replacement message is deliberately improper so as to ana-
lyze the DUA's implementation of the protocol. The message
generator includes a structure recognition system and a muta-
tion system. The structure recognition system determines the
underlying structure and/or semantics of a message. After the
structure recognition system has determined the structure, it
creates a description of the structure (a structure description).
The mutation system modifies the message based on the
structure description to generate a replacement message.

Message
Generator

130

16 Claims, 2 Drawing Sheets

100

Replacement
Message

150

V

Destination
Endpoint

(DUA) 120

US 8,601,585 B2
Page 2

(56) References Cited

OTHER PUBLICATIONS

Griffin, J.L., "Testing Protocol Implementation Robustness," Pub-
lished in the Proceedings of 29th Annual International Symposium on

Fault-Tolerant Computing (FTC), Jun. 15-18, 1999, Madison, Wis-
consin, US.
Kaksonen, R., "A Functional Method for Assessing Protocol Imple-
mentation Security," VTT Publications 448, 2001, 128 p.+ app. 15p.,
Technical Research Centre of Finland, FI.
Kaksonen, R. et al., "Software Security Assessment through Speci-
fication Mutations and Fault Injection," Proceedings of the Int'l Fed-
eration for Information Processing (IFIP) TC-6/TC-11 Fifth Joint
Int'l Working Conference on Communications and Multimedia
Security (CMS'01), May 21-22, 2001, Darmstadt, Germany, pp.
173-183.
Miller, B. et al., "Fuzz Revisited: A Re-examination of the Reliability
of Unix Utilities and Services," Computer Sciences Department, Oct.
1995, pp. 1-23, Madison, Wisconsin, US.
Protos Test-Suite: c06-snmpvl, University of Oulu (eesoulusfi)-
http://www.eesoulusfi/research/ouspg/protos/testing/c06/snmpv1/in-
dex, Oct. 17, 2002, pp. 1-26, Finland.
Protos Test-Suite: c06-Idapv3, University of Oulu (eesoulusfi)-
http://www.eesoulusfi/research/ouspg/protos/testing/c06/Idapv3/in-
dex.html, Dec. 2001, pp. 1-13, Finland.
Rubin, S. et al., "On the Completeness of Attack Mutation Algo-
rithms," 19th IEEE Computer Security Foundations Workshop
(CSFW), Jul. 2006, 14 pages, [Online] [Retrieved on Jan. 19, 2010]
Retrieved from the Internet <URL: http://pages.cs.wiscsedu/Hha/
jha-papers/security/CSFW 2006.pdf>.
U.S. Appl. No. 11/514,809, filed Sep. 1, 2006, Guruswamy.
U.S. Appl. No. 11/351,403, filed Feb. 10, 2006, Guruswamy.
Beddoe, M., "Network Protocol Analysis using Bioinformatics Algo-
rithms," 2004, [Retrieved on May 17, 2007] Retrieved from the
Internet <URL: http://www.4tphisnet/-awalters/PI/pispdf>.
Case, J. et al., "A Simple Network Management Protocol (SNMP)"
(RFC 1157), May 1990, [Retrieved on May 17, 2007] Retrieved from
the Internet <URL: http://www.faqs.org/rfcs/rfc1157.html>.
Marquis, S. et al., "SCL: A Language for Security Testing of Network
Applications," Proceedings: 15th IBM Centre for Advanced Studies
Conference (CASCON), Toronto, Canada, Oct. 2005, pp. 155-164,
[Retrieved on May 17, 2007] Retrieved from the Internet <URL:
http ://po st.queensu. ca/-trd/research/papers/marquisSCL spdf>.

McCloghrie, K. et al., "Structure of Management Information Ver-
sion 2 (SMIv2)" (RFC 2578), Apr. 1999, [Retrieved on May 17,
2007] Retrieved from the Internet <URL: http://www.faqs.org/rfcs/
rfc2578.html>.
Nevill-Manning, C. et al., "Identifying Hierarchical Structure in
Sequences: A linear-time algorithm," Journal of Artificial Intelli-
gence Research, vol. 7, Sep. 1997, pp. 67-82, [Retrieved on May 17,
2007] Retrieved from the Internet <URL: http: / /arxiv.org/abs /cs/
9709102>.
Tal, 0. et al., "Syntax-based Vulnerability Testing of Frame-based
Network Protocols," Proceedings: 2nd Annual Conference on Pri-
vacy, Security and Trust, Fredericton, Canada, Oct. 2004, pp. 155-
160, [Retrieved on May 17, 2007] Retrieved from the Internet <URL:
http ://po st.queensu. ca/-trd/research/papers/FinalP STO4 spdf>.
Turcotte, Y et al., "Security Vulnerabilities Assessment of the X.509
Protocol by Syntax-based Testing," Military Communications Con-
ference (MILCOM), Monterey, CA, Oct. 2004, vol. 3, pp. 1572-
1578, [Retrieved on May 17, 2007] Retrieved from the Internet
<URL: http://post.queensusca/-trd/research/papers/MILCOM.pdf>.
Zhang, S. et al., "A Lightweight Approach to State Based Security
Testing," Proceedings: 16th IBM Centre for Advanced Studies Con-
ference (CASCON), Toronto, Canada, Oct. 2006, Article No. 28,
[Retrieved on May 17, 2007] Retrieved from the Internet <URL:
http ://po st.queensu. ca/-trd/research/papers/zhangState spdf>.
Zhang, S. et al., "Applying Software Transformation Techniques to
Security Testing," Proceedings: Software Technology and Engineer-
ing in Practice (STEP), Toronto, Canada, Oct. 2005, [Retrieved on
May 17, 2007] Retrieved from the Internet <URL: http://post.
queensusca/-trd/research/papers/step2005.pdf>.
Aitel, D., "An Introduction to SPIKE, the Fuzzer Creation Kit" (pre-
sentation slides), Aug. 1, 2002, Black Hat USA, Las Vegas, NV,
[online] [Retrieved Jun. 26, 2007], Retrieved from the Internet
<URL: https://www.blackhat.com/presentations/bh-usa-02/bh-us-
02-aitel-spike.ppt>.
Beddoe, M., "Heuristics for Packet Field Identification," Mu Security
Research Labs blog, Jan. 4, 2007, [online] [Retrieved Jun. 26, 2007],
Retrieved from the Internet <URL: http://labs.musecurity.com/2007/
01/04/heuristic s-for-packet-field-identification/>.
Beddoe, M., "The Protocol Informatics Project: Automating Net-
work Protocol Analysis" (presentation slides), 2005.
Sonne, B., "Covert Channel detection using Bioinformatics Algo-
rithms," nCircle 360 Security blog, May 11, 2006, [online]
[Retrieved on Jun. 26, 2007] Retrieved from the Internet <URL:
http://blog.ncircle.com/archives/2006/05/covert channel detec-
tion using.html>.

* cited by examiner

U.S. Patent Dec. 3, 2013 Sheet 1 of 2 US 8,601,585 B2

Original
Message

140

Source
Endpoint

110
}

Message
Generator

130

FIG. 1

100

Replacement
Message

150

1
Destination

Endpoint
(DUA) 120

U.S. Patent Dec. 3, 2013 Sheet 2 of 2 US 8,601,585 B2

Structure
Description

220

Message Generator 130

1
Structure

Recognition
System 200

Original Replacement Mutation

Message System Message -
140 210 150 I

,

FIG. 2

US 8,601,585 B2
1

MODIFICATION OF MESSAGES FOR
ANALYZING THE SECURITY OF

COMMUNICATION PROTOCOLS AND
CHANNELS

REFERENCE TO RELATED APPLICATION

This application is related to the following utility applica-
tion, which is hereby incorporated by reference in its entirety:
U.S. application Ser. No. 11/514,809, filed on Sep. 1, 2006,
entitled "Automated Generation of Attacks for Analyzing the
Security of Communication Protocols and Channels."

BACKGROUND

5

10

15

The present invention relates to automated generation of
attacks for security analysis of hardware and software.

Computerized communication, whether it occurs at the
application level or at the network level, generally involves
the exchange of data or messages in a known, structured 20

format (a "protocol"). Software applications and hardware
devices that rely on these formats can be vulnerable to various
attacks that are generally known as "protocol abuse." Protocol
abuse consists of sending messages that are invalid or mal-
formed with respect to a particular protocol ("protocol 25

anomalies") or sending messages that are well-formed but
inappropriate based on a system's state. Messages whose
purpose is to attack a system are commonly known as mali-
cious network traffic.

Various systems have been developed that identify or 30

detect attacks when they occur. This functionality, which is
known as intrusion detection, can be implemented by a sys-
tem that is either passive or active. A passive intrusion detec-
tion system (IDS) will merely detect an attack, while an active
IDS will attempt to thwart the attack. Note that an IDS reacts 35

to an actual attack. While an IDS might be able to detect an
attack, it does not change the fact that an attack has occurred
and might have damaged the underlying system.

A proactive solution to the attack problem is to analyze a
system ahead of time to discover or identify any vulnerabili- 40

ties. This way, the vulnerabilities can be addressed before the
system is deployed or released to customers. This process,
which is known as "security analysis," can be performed
using various methodologies. One methodology for analyz-
ing the security of a device-under-analysis (DUA) is to treat 45

the DUA as a black box. Under this methodology, the DUA is
analyzed via the interfaces that it presents to the outside
world. As a result, it is not necessary to access the source code
or object code comprising the DUA.

For example, a security analyzer sends one or more mes- so

sages (test messages) to the DUA, and the DUA's response is
observed. A response can include, for example, registering an
error or generating a message (response message). The DUA
can then send the response message to the security analyzer.
Depending on the analysis being performed, the security 55

analyzer might send another test message to the DUA upon
receiving the response message from the DUA. The test mes-
sages and response messages can be analyzed to determine
whether the DUA operated correctly.

Some protocols involve a series of message exchanges 60

between two endpoints (e.g., a client and a server). Ideally, an
endpoint would receive a first message from another end-
point, process the first message correctly, and transmit a
proper second message to the other endpoint. In order to
analyze whether one endpoint (the DUA) is operating cor-
rectly, the other endpoint is modified to process the first
message incorrectly and/or transmit an improper second mes-

2
sage to the DUA. This testing method requires the other
endpoint to be completely re-implemented, which takes a
long time to prototype and test.

SUMMARY

One way to test the implementation of a protocol by a
device-under-analysis (DUA) is to send the DUA an improper
message (e.g., a message that does not conform to the proto-
col). If these messages are part of a series of message
exchanges between the DUA and an endpoint, the endpoint
must be completely re-implemented, which takes a long time
to prototype and test. An alternative is to use the original
endpoint (which is supposed to work correctly) and allow it to
transmit a message, but change this message before it reaches
the DUA. For example, the original endpoint receives a first
message from the DUA, processes the first message correctly,
and attempts to transmit a proper second message to the DUA.
Before the second message reaches the DUA, it is intercepted
and replaced with an improper (i.e., test) message. The DUA
then receives the improper message. In one embodiment, the
replacement message is improper because its structure and/or
syntax does not conform to the appropriate protocol. In this
embodiment, analysis of the DUA would be similar to syntax-
based vulnerability testing of the DUA's implementation of
the protocol.

In one embodiment, a system is used to analyze a DUA's
implementation of a protocol. The system includes a source
endpoint, a destination endpoint (the DUA), and a message
generator. The source endpoint generates an original message
and attempts to send it to the DUA. The original message is
intercepted by the message generator, which generates a
replacement message. The replacement message is then sent
to the DUA instead of the original message. The replacement
message is deliberately improper so as to analyze the DUA's
implementation of the protocol.

In one embodiment, the message generator includes a
structure recognition system and a mutation system. The
structure recognition system determines the underlying struc-
ture and/or semantics of a message (e.g., the original mes-
sage). After the structure recognition system has determined
the structure, it creates a description of the structure (a struc-
ture description). The mutation system modifies the message
based on the structure description to generate a replacement
message.

The message generator can include other components in
addition to the structure recognition system and the mutation
system. In one embodiment, the message generator includes
a flow engine, which implements an Internet Protocol (IP)
stack. In another embodiment, the message generator
includes a rule system, which determines whether a particular
message should be forwarded to the DUA as-is or subjected to
further processing.

Other aspects of the invention include software, systems,
components, and methods corresponding to the above, and
applications of the above for purposes other than security
analysis.

BRIEF DESCRIPTION OF THE DRAWINGS

The invention is illustrated by way of example, and not by
way of limitation, in the figures of the accompanying draw-
ings in which like reference numerals refer to similar ele-
ments.

65 FIG.1 illustrates a block diagram of a system for analyzing
a DUA's implementation of a protocol, according to one
embodiment of the invention.

US 8,601,585 B2
3

FIG. 2 illustrates a block diagram of a message generator,
according to one embodiment of the invention.

DETAILED DESCRIPTION
5

In the following description, "device," "device-under-
analysis," and "DUA" represent software and/or hardware.
Software includes, for example, applications, operating sys-
tems, and/or communications systems. Hardware includes,
for example, one or more devices. A device can be, for 10

example, a switch, bridge, router (including wireline or wire-
less), packet filter, firewall (including stateful or deep inspec-
tion), Virtual Private Network (VPN) concentrator, Network
Address Translation (NAT)-enabled device, proxy (including
asymmetric), intrusion detection/prevention system, or net- 15

work protocol analyzer. A DUA can also be multiple devices
that are communicatively coupled to form a system or net-
work of devices. For example, a DUA can be two firewall
devices that establish an encrypted tunnel between them-
selves. 20

A "protocol" refers to an exchange of data or messages in
a known, structured format. Specifically, a protocol refers to
what is being communicated (for example, the data or mes-
sage content). Types of protocols include, for example, net-
working protocols (including network packets), application 25

program interfaces (APIs; including API calls, remote
method invocation (RMI), and remote procedure call (RPC)),
and file formats.

A protocol generally has three characteristics: structure,
semantics, and state. Protocol structure (also known as syn- 30

tax) refers to the layout of a message, such as its fields,
arguments, or parameters, and its possible length. Protocol
semantics refers to the context of a message, such as its actual
content and what the content means. Protocol state refers to
how the history of previous messages affects later messages. 35

Recall that one way to test a DUA's implementation of a
protocol is to send the DUA an improper message (e.g., a
message that does not conform to the protocol). If these
messages are part of a series of message exchanges between
the DUA and an endpoint, the endpoint must be completely 40

re-implemented, which takes a long time to prototype and
test.

An alternative is to use the original endpoint (which is
supposed to work correctly) and allow it to transmit a mes-
sage, but change this message before it reaches the DUA. For 45

example, the original endpoint receives a first message from
the DUA, processes the first message correctly, and attempts
to transmit a proper second message to the DUA. Before the
second message reaches the DUA, it is intercepted and
replaced with an improper (i.e., test) message. The DUA then 50

receives the improper message.
In one embodiment, the replacement message is improper

because its structure and/or syntax does not conform to the
appropriate protocol. In this embodiment, analysis of the
DUA would be similar to syntax-based vulnerability testing 55

of the DUA's implementation of the protocol.
System

FIG. 1 illustrates a block diagram of a system for analyzing
a DUA's implementation of a protocol, according to one
embodiment of the invention. The system 100 includes a 60

source endpoint 110, a destination endpoint 120, and a mes-
sage generator 130. The destination endpoint 120 is the
device that is being analyzed (i.e., the DUA). The source
endpoint 110 is the device that is communicating with the
DUA 120 according to the protocol whose implementation is 65

being tested. The source endpoint 110 generates an original
message 140 and attempts to send it to the DUA 120. In one

4
embodiment, the message is a network packet or a protocol
data unit (PDU). The original message 140 is intercepted by
the message generator 130, which generates a replacement
message 150. The replacement message 150 is then sent to the
DUA 120 instead of the original message 140. The replace-
ment message 150 is deliberately improper so as to analyze
the DUA's implementation of the protocol.

The message generator 130 can intercept the original mes-
sage 140 in various ways. In one embodiment, the source
endpoint 110 uses the message generator 130 as a proxy. In
this embodiment, the message generator 130 receives all mes-
sages that are sent from the source endpoint 110 to the DUA
120. When the message generator 130 receives a message, it
can forward the message in its original form (i.e., unaltered)
or generate a replacement message 150 and send the replace-
ment message to the DUA 120 instead. The network traffic
can be proxied either directly or via a layer-2 bridge. Note that
using a layer-2 bridge enables modification of a packet at any
layer while the packet is in transit. A layer-2 bridge also
makes it easier to change the functionality of the message
generator 130 if desired.

In order for the DUA 120 to be analyzed, the system 100
would also include a security analyzer (not shown). Security
analyzers are further discussed in U.S. application Ser. No.
11/351,403, filed on Feb. 10, 2006, entitled "Platform for
Analyzing the Security of Communication Protocols and
Channels," which is hereby incorporated by reference in its
entirety.
Message Generator

The message generator 130 can generate the replacement
message 150 in various ways. In one embodiment, the mes-
sage generator 130 first determines the underlying structure
of a message (e.g., original message 140) and then modifies
the message based on this structure. FIG. 2 illustrates a block
diagram of a message generator, according to one embodi-
ment of the invention. The message generator 130 includes a
structure recognition system 200 and a mutation system 210.
The message generator 130 receives a message (e.g., original
message 140), and the message is input into the structure
recognition system 200 and the mutation system 210.

The structure recognition system 200 determines the
underlying structure and/or semantics of a message. For
example, the structure recognition system 200 determines
one or more fields that are included in the message, including
their locations, lengths, and semantic meanings. This auto-
mated field identification is sometimes called protocol analy-
sis or protocol reverse engineering. Since a protocol adheres
to a syntax or grammar, this area of study is called grammati-
cal inference, grammar induction, automata induction, and
automatic language acquisition.

In one embodiment, the structure recognition system 200
identifies the structure heuristically using a grammar-build-
ing algorithm. Various heuristics can be used, including
delimiters, protocol extensions, sliding windows, sequence
alignment, and the Sequitur algorithm. These heuristics will
be described below.

After the structure recognition system 200 has determined
the structure, it creates a description of the structure (structure
description 220). In one embodiment, the structure descrip-
tion 220 describes the abstract syntax of a protocol (e.g.,
locations of various field boundaries within a message). In
another embodiment, the structure description 220 describes
the semantics of various fields within the message. For
example, the structure description 220 includes a list of off-
sets where the field boundaries exist and any metadata asso-
ciated with the semantic types of the fields. In yet another

US 8,601,585 B2
5

embodiment, the structure description 220 describes how
various fields of the message can be mutated (i.e., modified)
for testing purposes.

In one embodiment, the structure description 220 com-
prises text that conforms to the eXtended Markup Language 5

(XML) format. For example, the structure description 220
conforms to a new, proprietary format such as Open Protocol
Modeling (OPM) XML. An exemplary structure description
220 will be discussed below.

After the structure description 220 has been generated, it is 10

transmitted to the mutation system 210. The mutation system
210 modifies a message (based, in part, on the structure
description 220) to generate the replacement message 150.
For example, the mutation system 210 receives a message and
a structure description 220 and parses the message using the 1

structure description 220. The mutation system 210 then
identifies a field of the message and injects invalid data into
that field, thereby generating the replacement message 150.

In one embodiment, the mutation system 210 has access to
a large library (not shown) of mutations and attacks against 20

certain field semantics, such as lengths, Uniform Resource
Locators (URLs), etc. The mutation system 210 takes the
message off the network, modifies it so that it contains a type
of mutation (thereby generating the replacement message
150), and sends the replacement message back out on the
network. In one embodiment, for repeatability purposes, the
mutation system 210 tracks which changes have been made to
a message and the current state of the protocol stream when
the replacement message was injected.

The mutation system 210 can also modify a message in a 30

random manner. In this mode, a random offset in the message
and a random length are chosen. The mutation system 210
then randomly flips bits in the message to generate the
replacement message. The seed is logged for repeatability
purposes.

The mutation system 210 is further described in U.S. appli-
cation Ser. No. 11/514,809, filed on Sep. 1, 2006, entitled
"Automated Generation ofAttacks forAnalyzing the Security
of Communication Protocols and Channels " In particular,
that application describes how to automatically generate a
message that tests a particular a protocol (e.g., based on a
description of the protocol or the protocol's grammar, which
is similar to the structure description 220).

The message generator 130 can include other components
in addition to the structure recognition system 200 and the 45

mutation system 210. In one embodiment, these components
process the original message 140 before it is passed to the
mutation system 210, thereby forming a processing pipeline.
The components can be used in any order, as long as they
process the message before it reaches the mutation system
210.

For example, the message generator 130 can include a flow
engine (not shown). The flow engine implements an Internet
Protocol (IP) stack. The flow engine associates a message
with a session that is flowing through the message generator
130. The flow engine can also defragment a message (e.g., an
IP message), reassemble a stream of messages (e.g., mes-
sages according to the Transmission Control Protocol
(TCP)), and re-order messages.

In one embodiment, the flow engine parses a message to 60

obtain meta-data associated with the message. Examples of
meta-data obtained from the message include information
about the source and/or destination of a packet (e.g., IP
address and port number) and the lower-level protocol used to
send the packet (e.g., TCP or User Datagram Protocol
(UDP)). The flow engine can also track other meta-data, such
as the session associated with the packet and information

6
about fragmentation and reassembly (e.g., the packet's initial
order within the stream). The flow engine then outputs not
only the message (which might have been processed) but also
any meta-data.

As another example, the message generator 130 can
include a rule system (not shown). The rule system deter-
mines whether a particular message should be forwarded to
the DUA 120 as-is or subjected to further processing within
the message generator 130. For example, the rule system can
use a filter to identify a message based on various character-
istics. These characteristics can include both the message
content and any meta-data associated with the message. For
example, a regular expression can be used to match a string

5
within the message's content. As another example, a filter
condition can identify the third packet in a stream that was
sent by a particular server. Filtering enables protocol assess-
ment to be as shallow or deep as desired.

EXAMPLE

Consider a trap message according to the Simple Network
Management Protocol (SNMP). The format of an SNMP trap
message is described in RFC 1157 ("A Simple Network Man-

25
agement Protocol (SNMP)," by J. Case et al., May 1990). The
message includes a top-level message and a protocol data unit
(PDU). The top-level message has the following format:

SEQUENCE{
version version -1 for RFC 1157

INTEGER {

version-1(0)

community -- community name
35 OCTET STRING

The PDU has the following format:
IMPLICIT SEQUENCE {

enterprise -- type of object generating trap
OBJECT IDENTIFIER,

40 agent-addr -- address of object generating trap
NETWORK ADDRES S

generic-trap -- generic trap type
INTEGER {

coldStart(0),
warmStart(1),
linkDown(2),
linkUp(3),
authenticationFailure(4),
egpNeighborLoss(5),
enterpriseSpecific(6)

specific-trap
50 INTEGER,

time-stamp

TimeTicks,
variable-bindings

VarBindList
55

-- enterprise-specific code

-- time elapsed between last (re)initialization of
network entity and generation of trap

-- "interesting" information

In one embodiment, the structure description 220 of the
SNMP trap message is:

<protocol>
<message name="trap">
<list name="message">
<asn.sequence name="seq">

65 <asn.integer name="version" value="0"/>
<asn.string.octet name="community" value="public"/>

US 8,601,585 B2
7

-continued

<asn.tag name="pdu" value="0xa4">
<asn.oid name="enterprise-id" value="1.3.6.1.4.1.31337.0"/>
<asn.ip name="agent-addr" value="127.0.0.1"/>
<asn.integer name="generic-trap" value="0"/>
<asn.integer name="specific-trap" value="0"/>
<asn.timeticks name="timestamp" value="0"/>
<asn.sequence name="varbind">

<list name="list">
<asn.sequence name="varbind0">

<asn.oid name="name" value="1.3.6.1.2.1.2.1.0"/>
<asn.integer name="value" value="0x21"/>

</asn.sequence>
</list>

</asn.sequence>
</asn.tag>

</asn.sequence>
</list>
</message>
</protocol>

The SNMP trap message represented by the above struc-
ture description 220 has the following characteristics: a ver-
sion value of 0, a community value of public, an enterprise-id
value of 1.3.6.1.4.1.31337.0, an agent-addr value of
127.0.0.1, a generic-trap value of 0, a specific-trap value of 0,
a timestamp value of 0, a binding of the "name" variable to
1.3.6.1.2.1.2.1.0, and a binding of the "value" variable to
0x21.

Note that the structure description 220 above includes dif-
ferent data types (asn.sequence, asn.integer, asn.string.octet,
asn.tag, etc.). The mutation system 210 includes instructions
for mutating each data type. For example, if the mutation
system 210 receives a structure description 220 that includes
the asn.integer data type, it can determine how to mutate that
portion of the corresponding message. Appendix A contains
exemplary data types.

SNMP version 2 is described in RFC 2578 ("Structure of
Management Information Version 2 (SMIv2)," by K.
McCloghrie et al., April 1999).
Heuristics for Determining Structure

Recall that, in one embodiment, the structure recognition
system 200 identifies the structure of a message heuristically
using a grammar-building algorithm. Various heuristics can
be used, including delimiters, protocol extensions, sliding
windows, sequence alignment, and the Sequitur algorithm.

Delimiters
A delimiter is a sequence of one or more characters that is

used to specify a boundary between regions in a data stream
(e.g., between fields in a message). Commonly-used delim-
iters include the comma character, the tab character, and the
newline character (which is a carriage return character and/or
line feed character). In order to identify the structure of a
message, the structure recognition system 200 would deter-
mine the location of each delimiter within the message. These
locations would signal the field boundaries within the mes-
sage.

Note that delimiters can be used on a message-by-message
basis. In other words, an algorithm that relies on delimiters to
define structure does not need to be pre-exposed to several
messages for training purposes.

Protocol Extensions
Many protocols can be extended for special uses. These

protocols include, for example, HTTP (HyperText Transfer
Protocol), SIP (Session Initiation Protocol), and SMTP
(Simple Mail Transfer Protocol). RFC 2774 ("An HTTP
Extension Framework," by H. Nielsen et al., February 2000)
describes a framework for HTTP extensions. RFC 1869

8
("SMTP Service Extensions," by J. Klensin et al., November
1995) describes service extensions for SMTP.

If a message conforms to a particular base protocol but
possibly includes extensions, then the message can be parsed

5 according to the base protocol. Contents of the message that
differ from the base protocol will be treated as extensions to
the protocol.

Sliding Windows
A message is analyzed using an n-byte sliding window. The

10 sliding window helps identify important fields such as
lengths. In one embodiment, a 1-, 2- and 4-byte sliding win-
dow is applied to a message, and the remaining length of the
message is compared to the value inside the sliding window.
The match can be either exact or within a margin of error,

15 typically the size of the sliding window itself.
For example, consider the following 12-byte message,

where a pair of digits represents a byte:
04 06 00 08 41 41 41 41 41 41 41 41
Applying a 1-byte sliding window to the message yields the

20 following, where the format used is offset of window [value
of window] -number of bytes remaining:
0 [04]-11
1 [06]-10
2 [00]-9

25 3 [08]-8
4 [41]-7

Applying a 2-byte sliding window to the message yields the
following, where the format used is offset of window [value

30 of window] -number of bytes remaining:
0 [04 06]-10
1 [06 00]-9
2 [00 08]-8
3 [08 41]-7

35 4 [41 41]-6

Note that with the 1-byte sliding window, placing the win-
dow at offset 3 results in a window value (08) that equals the
number of bytes remaining in the message (8). Similarly, with

40 the 2-byte sliding window, placing the window at offset 2
results in a window value (00 08) that equals the number of
bytes remaining in the message (8). Thus, it is probable that
either the 8-bit (1-byte) value at offset 3 or the 16-bit (2-byte)
value at offset 2 contains the length of the rest of the message.

45 Other factors can also be taken into consideration when
performing this type of heuristic analysis, such as the trans-
port protocol in use. For example, datagram protocols may
not have a top level length value prepended to data blocks.
Blocks can also be identified in a message by using a variable

50 length sliding window and comparing each window to one
another based on a fuzzy match, such as Kolmogorov Com-
plexity. This would work by choosing a window size such as
32-bytes and sliding the window over the message. This win-
dow would then be compressed using a dictionary based

55 algorithm and saved for later comparison. "N" more windows
would be processed and then compared to one another's
compression grammar. The most similar data sets could be
considered blocks within the message as long as they were
sufficiently distributed in the message stream (e.g., not over-

60 lapping).
Note that sliding windows can be used on a message-by-

message basis. In other words, an algorithm that relies on
sliding windows to define structure does not need to be pre-
exposed to several messages for training purposes.

65 Sequence Alignment
Performing heuristic analysis of protocol fields is more

challenging when the packets contain variable-length fields.

US 8,601,585 B2
9

When this occurs, it is difficult to compare packets to one
another to assess the similarities and differences at data off-
sets. In one embodiment, to solve this problem, sequence
alignment algorithms are used to align variable-length pack-
ets. After the packets have been aligned, their consensus
sequences can be analyzed to determine the beginnings and
ends of the fields in the packets.

Sequence alignment algorithms are used in biology to
understand the relationship between two sequences of genetic
information (e.g., DNA) or amino acids. A sample sequence
is compared to a database of sequences whose structure is
known. The sample sequence is aligned to a particular length
by inserting gaps where necessary. These same algorithms
can be used to align two strings, each of which represents a
message that conforms to a particular protocol.

For example, consider the following strings:
GET/index.html HTTP/1.0
GET/HTTP/1.0
Although both strings conform to HTTP, they differ in length.
As a result, their fields are not aligned. The second string can
be aligned to the first string by inserting several spaces (de-
noted as "_") after the first "I" character, as follows:
GET/index.html HTTP/1.0
GET/ HTTP/1.0

Note that a sequence alignment algorithm uses multiple
samples (e.g., messages or packets). Thus, the quality of an
alignment will increase as more packets are processed and the
algorithm "learns" over time. Various alignment algorithms
can be used, such as Levenshtein edit distance, Needleman-
Wunsch, Smith-Waterman, and Hidden Markov Model tech-
niques. The result however, is the same: a set of messages
aligned to the same length, with gaps inserted where neces-
sary.

Once this data is assembled, the structure recognition sys-
tem 200 scores down each column using a sliding window and
attempts to identify characteristics of certain types of fields.
Consider the following alignment:
x08 x00 xad x4b x05 xbe x00 x60
x08 x00 x30 x54 x05 xbe x00 x26
x08 x00 xf7 xb2 x05 xbe x00 x19
x08 x00 x01 xdb x05 xbe x00 x0e
x08 x00 x4f xdf x05 xbe x00 x2f
x08 x00 xf8 xa4 x05 xbe x00 x27
x08 x00 xe8 x28 x05 xbe x00 x4c
x08 x00 xe8 x6c x05 xbe x00 x10
x08 x00 xc3 xa9 x05 xbe x00 xla
x08 x00 xdd xcl x05 xbe x00 x56
x08 x00 x88 x42 x05 xbe x00 x50
x08 x00 xb0 x42 x05 xbe x00 x39
x08 x00 x3e x38 x05 xbe x00
x08 x00 x99 x36 x05 xbe x00 x42
x08 x00 x0f x56 x05 xbe x00 x36
x08 x00 xe6 xda x05 xbe x00 x03
x08 x00 x83 xd9 x05 xbe x00 xlb
x08 x00 xclxd9 x05 xbe x00 x5e

Various pieces of information can be used to determine
where field boundaries exist in the messages. For example,
notice the consensus value for each column. In the first case,
this value is 0x08. The location of this value within the ASCII
character set indicates that the value is outside the range of
printable characters. In other words, the value is binary data.

Also, notice the rate at which a column changes values in
relation to its neighboring columns. For example, if the slid-
ing window size is 2 bytes and if the column of the least
significant byte is changing more rapidly than the most sig-
nificant byte, it may be indicative of a sequence number that
is increasing as time goes on. Another example would be if

10
two bytes changed at exactly the same rate 100% of the time.
This could mean that this is a checksum field or a random
identifier. A field that contains a large amount of gaps can be
assumed to be a variable-length field. Therefore, identifica-

5 tion of a prepended length field should be attempted.
Using sequence alignment algorithms for protocol analysis

is known as protocol informatics. Protocol informatics is
further described in "Network Protocol Analysis using Bio-
informatics Algorithms" by Marshall A. Beddoe, available at

10 http://www.4tphi.net/-awalters/PI/pi.pdf.
Sequitur
Sequitur is an algorithm that infers a hierarchical structure

(such as message syntax) from a sequence of discrete sym-
bols (such as a string). Sequitur replaces repeated phrases

15 with a grammatical rule that generates the phrase and contin-
ues this process recursively. The result is a hierarchical rep-
resentation of the original sequence, which offers insight into
its lexical structure. The algorithm is driven by two con-
straints that reduce the size of the grammar and produce

20 structure as a by-product. Sequitur is further described in
"Identifying Hierarchical Structure in Sequences: A linear-
time algorithm" by Craig G. Nevill-Manning et al., Journal of
Artificial Intelligence Research, Vol. 7, 1997, pp. 67-82.

Additional Embodiments
25 A message generator 130, a structure recognition system

200, and a mutation system 210 can each be implemented in
hardware, software, or a combination of both. Also, a mes-
sage can be any type of structured data, such as a file. If the
message is a file, the DUA would be the software application

30 or device that opens and/or executes the file.
In the preceding description, for purposes of explanation,

numerous specific details are set forth in order to provide a
thorough understanding of the invention. It will be apparent,
however, to one skilled in the art that the invention can be

35 practiced without these specific details. In other instances,
structures and devices are shown in block diagram form in
order to avoid obscuring the invention.

Reference in the specification to "one embodiment" or "an
embodiment" means that a particular feature, structure, or

40 characteristic described in connection with the embodiment
is included in at least one embodiment of the invention. The
appearances of the phrase "in one embodiment" in various
places in the specification are not necessarily all referring to
the same embodiment.

45 Some portions of the detailed descriptions that follow are
presented in terms of algorithms and symbolic representa-
tions of operations on data bits within a computer memory.
These algorithmic descriptions and representations are the
means used by those skilled in the data processing arts to most

so effectively convey the substance of their work to others
skilled in the art. An algorithm is here, and generally, con-
ceived to be a self-consistent sequence of steps leading to a
desired result. The steps are those requiring physical manipu-
lations of physical quantities. Usually, though not necessarily,

55 these quantities take the form of electrical or magnetic signals
capable of being stored, transferred, combined, compared,
and otherwise manipulated. It has proven convenient at times,
principally for reasons of common usage, to refer to these
signals as bits, values, elements, symbols, characters, terms,

60 numbers, or the like.
It should be borne in mind, however, that all of these and

similar terms are to be associated with the appropriate physi-
cal quantities and are merely convenient labels applied to
these quantities. Unless specifically stated otherwise, as

65 apparent from the following discussion, it is appreciated that
throughout the description, discussions utilizing terms such
as "processing" or "computing" or "calculating" or "deter-

US 8,601,585 B2
11

mining" or "displaying" or the like, refer to the action and
processes of a computer system, or similar electronic com-
puting device, that manipulates and transforms data repre-
sented as physical (electronic) quantities within the computer
system's registers and memories into other data similarly
represented as physical quantities within the computer sys-
tem memories or registers or other such information storage,
transmission, or display devices.

The present invention also relates to an apparatus for per-
forming the operations herein. This apparatus is specially
constructed for the required purposes, or it comprises a gen-
eral-purpose computer selectively activated or reconfigured
by a computer program stored in the computer. Such a com-
puter program is stored in a computer readable storage
medium, such as, but not limited to, any type of disk including
floppy disks, optical disks, CD-ROMs, and magnetic-optical
disks, read-only memories (ROMs), random access memo-
ries (RAMs), EPROMs, EEPROMs, magnetic or optical
cards, or any type of media suitable for storing electronic
instructions, and each coupled to a computer system bus.

The algorithms and displays presented herein are not inher-
ently related to any particular computer or other apparatus.
Various general-purpose systems are used with programs in
accordance with the teachings herein, or more specialized
apparatus are constructed to perform the required method
steps. The required structure for a variety of these systems
will appear from the description below. In addition, the
present invention is not described with reference to any par-
ticular programming language. It will be appreciated that a
variety of programming languages may be used to implement
the teachings of the invention as described herein.

APPENDIX A

Data types include, for example:
ASCII (American Standard Code for Information Inter-

change): ascii.crlf, ascii.cstring, ascii.dsv, ascii.ipv4, asci-
i.length, ascii.version

ASN (Abstract Syntax Notation): asn.counter, asn.gauge,
asn.id, asn.integer, asn.ip, asn.null, asn.oid, asn.sequence,
asn.string.bit, asn.string.general, asn.string.ia5, asn.strin-
g.octet, asn.string.printable, asn.string.utc, asn.string.utf8,
asn.tag, asn.timeticks

Block
Checksum: checksum.adler32, checksum.crc16, check-

sum.crc32, checksum.ipv4
Data: data.align, data.random
Encode: encode.base64, encode.qprint
File: file.path
HTTP (HyperText Transfer Protocol): http leader
List
Message
Net: net.ipv4, net.ipv6, net.mac
SMTP (Simple Mail Transfer Protocol): smtp.domain,

smtp.mailbox, smtp.path
String
Type: type.countl6, type.count32, type.count8, type.idl6,

type.id32, type.id8, type.lengthl6, type.length32, type -
.length8, type.offsetl6, type.offset32, type.offset8, type.u-
int16, type.uint32, type.uint8

XDR (eXternal Data Representation): xdr.array, xdr.inte-
ger, xdr.opaque, xdr.string

What is claimed is:
1. A method of modifying a network message for use with

a message generator testing a device-under-analysis (DUA),
comprising:

12
receiving at the message generator including a processor a

network message conforming to a network message pro-
tocol sent by a source system that was intended for the
DUA, the message being received at the message gen-

5 erator before the network message was received by the
DUA;

after receiving the message, determining a packet structure
of the network message based, at least in part, on the
content of the network message;

after determining the packet structure, creating a descrip-
tion of the packet structure of the message;

modifying the network message based on the description to
create a modified message that is at least one of invalid or

15
malformed with respect to the protocol or inappropriate
based on the protocol's current state; and

sending the modified message from the message generator
toward the DUA in place of the network message.

2. The method of claim 1, wherein determining the struc-
2o ture of the network message comprises

determining one or more fields that are included in the
network message based, at least in part, on the content of
the network message.

3. The method of claim 1, wherein determining the struc-
25 ture of the network message comprises

determining the structure of the message with a heuristic
based, at least in part, on the content of the network
message.

4. The method of claim 2, wherein the heuristic comprises
30 using a sequence alignment algorithm to align variable length

packets.
5. The method of claim 2, wherein the heuristic comprises

one element of a group containing a delimiter, where the
delimiter includes guessing the location of fields in the pro-

35 tocol based on the presence of commonly used delimiter
characters, and a protocol extension, where the protocol
extension includes parsing a portion of the message that con-
forms to a base protocol according to the based protocol while
treating portions of the message that do not conform to the

40 base protocol as a protocol extension.
6. The method of claim 2, wherein the heuristic comprises

one element of a group containing a sliding window and a
Sequitur algorithm to infer the location of fields in the packet.

7. The method of claim 1, wherein the description com-
45 prises text that conforms to the extended Markup Language

(XML) format.
8. The method of claim 1, wherein modifying the network

message further comprises:
parsing the network message based on the description;

50 identifying a field of the parsed message; and
injecting invalid data into the field.
9. A method of modifying a message for use with a mes-

sage generator testing a device-under-analysis (DUA), com-
prising:

55 receiving at the message generator including a processor a
message conforming to a protocol sent by a source sys-
tem that was intended for the DUA, the message being
received at the message generator before the message
was received by the DUA;

60 wherein the message comprises a network packet;
after receiving the message, determining a packet structure

of the message based, at least in part, on the content of
the message;

after determining the structure, creating a description of the
65 packet structure of the message;

modifying the message based on the description to create a
modified message that is at least one of invalid or mal-

10

US 8,601,585 B2
13

formed with respect to the protocol or inappropriate
based on the protocol's current state; and

sending the modified message from the message generator
toward the DUA in place of the message.

10. The method of claim 1, wherein the message generator
intercepts the network message from the source system to the
DUA.

11. A computer program product for modifying a network
message for use in testing a device-under-analysis (DUA), the
computer program product comprising a non-transitory com-
puter-readable medium containing computer program code
for performing a method, the method comprising:

receiving a network message conforming to a network
message protocol sent by a sending system that was
intended for the DUA, the network message being
received before the network message was received by
the DUA;

after receiving the message, determining a structure of the
network message based, at least in part, on the content of
the network message;

after determining the structure, creating a description of the
structure of the network message;

modifying the network message based on the description to
create a modified message that is at least one of invalid or
malformed with respect to the protocol or inappropriate
based on the protocol's current state; and

sending the modified message toward the DUA in place of
the network message.

12. A system for modifying a network message conforming
to a protocol, the system comprising:

a structure recognition system including a processor con-
figured to determine, after receipt of the network mes-

14
sage and based, at least in part, on the content of the
network message, a structure of the message and to
create a description of the structure;

and a mutation system including a processor configured to
5 modify the network message based on the description to

create a modified message that is at least one of invalid or
malformed with respect to the protocol or inappropriate
based on the protocol's current state.

13. The system of claim 12, wherein the structure recog-
10 nition system is configured to heuristically determine one or

more fields that are included in the network message based, at
least in part, on the content of the network message, and
wherein the mutation system is configured to inject invalid
data into the one or more fields determined by the structure

15 recognition system.
14. The system of claim 12, further comprising:
a source system generating the message for a DUA; and
a message generator comprising the structure recognition

20 system and the mutation system, the message generator
configured to serve as a proxy for the source system, and
to receive the message from the source system and to
send the modified message in place of the message to the
DUA in place.

25 15. The method of claim 1, further comprising:
before receiving the network message, establishing the

message generator as a proxy for the source system.

16. The method of claim 15, further comprising:

30
proxying the message from the source system to the DUA

via a layer 2 bridge.

