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REAL TIME TEST RESULT PROMULGATION 
FROM NETWORK COMPONENT TEST 

DEVICE 

RELATED APPLICATION 5 

This application is a continuation application of U.S. appli- 
cation Ser. No. 12/130,963, filed 30 May 2008, entitled 
"REALTIME TEST RESULT PROMULGATION FROM 
NETWORK COMPONENT TEST DEVICE," by inventors 
Brian Silverman, Abhitesh Kastuar, Thomas R. Mc Beath and 
Sergey Rathon, now U.S. Pat. No. 7,958,387, issued 7 Jun. 
2011. 

This application is related to U.S. patent application Ser. 
No. 12/130,944, filed 30 May 2008, entitled "METHOD 
AND DEVICE USING TEST DATA STREAMS BOUND 
TO EMULATED DEVICES" by inventors Abhitesh Kastuar, 
Jan-Michael Kho and KaChon Lei, now U.S. Pat. No. 7,826, 
381, issued 2 Nov. 2010. 

This application is also related to U.S. patent application 
Ser. No. 12/130,854, filed 30 May 2008, entitled "METHOD 
AND APPARATUS FOR EMULATING NETWORK 
DEVICES," by inventor David Joyner, now U.S. Pat. No. 
8,264,972, issued 11 Sep. 2012. The related applications are 
incorporated by reference. 

BACKGROUND OF THE INVENTION 

10 

15 

20 

25 

The technology disclosed relates to real-time collection 
and flexible reporting of test data. In particular, it is useful 30 

when collecting packet counts during tests of network devices 
that simulate thousands or even millions of data sessions 
conducted through a device under test ("DUT"). 

The Internet and backbone networks handle a very large 
volume of data traffic. The routers and switches that handle 35 

these volumes of data are much different from the equipment 
that ordinary people have in their homes. While the names are 
the same, the capacities and protocols are much different. 

In addition to backbone infrastructure, so called triple play 
infrastructure is being deployed at a local level. Triple play 40 

infrastructure involves high volumes of data, because it deliv- 
ers voice, data and HDTV services into homes, typically 
using a single physical channel. Both scheduled, broadcast 
HDTV and HDTV on-demand have the potential of creating 
packet loads that far exceed the data demands of even the 45 

most ambitious websurfer. 
During development and prior to deployment, it is useful to 

test high capacity routers, switches and hybrid devices. Test- 
ing is particularly important as new features are added and old 
features are enhanced. Many alternative protocols exist for so 

carrying packets from one point to another. The more alter- 
native protocols a device attempts to accommodate, the 
greater the likelihood of unpredicted interactions. 

Regression testing is one tool for making sure that new 
features do not break existing components. In regression test- 55 

ing, previously run-tests are repeated to assure that new func- 
tions have been implemented without impairing old ones. 
Elaborate scripts are often developed for regression testing. 

During development and prior to deployment, conform- 
ance, functional, performance and passive testing may be 60 

conducted. Conformance testing allows developers to verify 
that the operation of their device conforms to established, 
industry-accepted standards, conventions, or rules, such as 
RFCs or draft standards. During functional testing, develop- 
ers verify that the device does everything that it has been 65 

designed to do, including protocol support, filtering, and 
management functions. Performance testing provides infor- 

2 
mation about levels of performance, such as throughput, 
frame loss, latency, route pairing, or scalability. This 
approach includes stress testing to show how a device 
behaves under load conditions. In addition, passive testing 
can be performed to analyze protocol performance, either 
intrusively or non-intrusively. 

A test device that stresses a core router, for instance, may 
include a dozen or more interfaces that operate at 10 or 40 
gigabits. In test configurations for backbone core routers or 
interconnect switch fabrics, multiple test devices may be 
combined into a single test system that generates an enor- 
mous amount of test data. 

It is difficult or impossible, using conventional data pro- 
cessing approaches, to respond to data queries in real time, 
during a test. At the end of a test, it can take hours to collect 
test sample data and marshal it into a database. 

An opportunity arises to introduce a new data collection 
and distribution architecture that is adapted to test devices. 
Better, more timely and more responsive testing may result, 
with significant benefits to those who develop and deploy 
high-volume routers and switches. 

SUMMARY OF THE INVENTION 

The technology disclosed relates to real-time collection 
and flexible reporting of test data. In particular, it is useful 
when collecting packet counts during tests of network 
devices, such as stress tests that simulate thousands or even 
millions of data sessions conducted through a device under 
test (DUT). Particular aspects of the present invention are 
described in the claims, specification and drawings. 

BRIEF DESCRIPTION OF THE DRAWINGS 

FIG. 1 is a line drawing of a SpirentTM SPT-9000A test 
chassis. 

FIG. 2 is a high-level block diagram of some physical and 
logical entities that combined as a test device. 

FIG. 3 is a high-level block diagram of a test device 
coupled to a DUT, with emphasis on configuration of stream 
blocks. 

FIG. 4 is a high-level block diagram of a test device, with 
emphasis on software modules at levels of management logic 
and processing card logic. 

FIG. 5 is a high-level block diagram, with emphasis on 
instantiation of multiple databases. 

FIG. 6 is a block diagram of that features the analyzer 
daemon as the central component. 

FIG. 7 is a more detailed block diagram of the interaction 
of the analyzer daemon with the stats framework. 

FIG. 8 is a block diagram that provides more detail of one 
embodiment of the analyzer driver. 

FIG. 9 is a more detailed block diagram of the Stats Frame- 
work. 

DETAILED DESCRIPTION 

The following detailed description is made with reference 
to the figures. Preferred embodiments are described to illus- 
trate the present invention, not to limit its scope, which is 
defined by the claims. Those of ordinary skill in the art will 
recognize a variety of equivalent variations on the description 
that follows. 

FIG. 1 is a line drawing of a SpirentTM SPT-9000A test 
chassis. The Spirent TestCenter SPT-9000A is one in a family 
of network test systems. Other members include the SPT- 
5000A, a high density network performance test system and 
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the portable SPT-2000A/HS. Among this family, the SPT- 
9000A is the very high density test member typically used in 
the lab or a production test environment. 

This test device is highly suitable, where high density 
Ethernet ports are desired for high-volume production and 
large port count testing. This test device has 12 vertical slots 
that can support a variety of configurations. For instance, the 
chassis can be filled with up to 144 10/100/1000 Mb per 
second Ethernet ports. Or, it can be filled with 144 fiber or 
dual media gigabit Ethernet ports. It can support up to 24 
10-gigabit Ethernet ports, 24 UniPHY (10 GbE/OC-192 
POS) ports, 24 WAN 0C-48/12/3 POS ports or 24 10 
GBASE-T ports. It is anticipated that 40 GbE and 100 GbE 
ports also will be supported, as testing requirements rise. FIG. 
1 depicts a mix of these port types. 

The Spirent TestCenterTM is one example of integrated 
performance analysis and service assurance systems that 
enable the development and deployment of next-generation 
networking technology, such as Internet telephony, broad- 
band services, 3G wireless, global navigation satellite sys- 
tems and network security equipment. The technology 
described in this disclosure applies to Spirent TestCenterTM 
products and generally to IP performance test systems and 
service verification platforms for IP-based infrastructure and 
services. This technology is useful in systems that test and 
validate performance and scalability characteristics of next- 
generation networking technology for voice, video and data 
services. Test devices, using the technology disclosed, are 
useful to network and telephony equipment manufacturers, 
semiconductor manufacturers, service providers, govern- 
ment departments, and enterprises to validate the capabilities 
and reliabilities of complex IP networks, devices and appli- 
cations, such as networks for delivery of triple play packages 
that include voice, and video and data services. The technol- 
ogy disclosed is useful in testing both control plane and data 
plane traffic. 

FIG. 2 is a high-level block diagram of some physical and 
logical entities that combined as a test device. The test device 
may include one or more chassis. Multiple chassis 201, such 
as the SPT-9000A, can communicate among themselves to 
conduct a test with a large number of ports. As illustrated, a 
chassis may include multiple processor cards 203 and each 
card may support multiple ports 207. At a logical test level, a 
variety of device types can be emulated at a port. An emulated 
device has a variety of configurable characteristics 209, such 
as network connectivity characteristics, host features and 
interfaces. Emulated devices and their configuration are more 
fully described in the context of FIG. 3, below. Test streams 
211 are coupled to emulated devices and their configured 
characteristics. Multiple streams of test data can be associated 
with a pair of test devices. A stream of test data may be 
configured to represent a multiplicity of sessions where each 
session is called a flow. A flow represents a network user 
accessing network services such as a server on the Internet, 
peer-to-peer communications with another user, etc. Each 
network user would have her own Ethernet MAC Address and 
IP Address. The users' IP addresses might be dynamically 
configured. In some embodiments of the test device, streams 
and flows are differentiated primarily by the granularity of 
test data collection. In this embodiment, separate banks of 
counters are maintained for keeping track of each stream, but 
individual flows within a stream are not separately tracked. 

The logical hierarchy of elements depicted in FIG. 2 sup- 
ports flexible scaling of tests. A small chassis with one or two 
cards can test a relatively small router or switch. Or, a cluster 
of chassis can be combined to test a very powerful backbone 

4 
core router or switch. With this background, general outlines 
of an innovative distributed database within a chassis can be 
described. 

Prior to implementing the technology described below, it 
5 could take hours to download test statistics, from one or more 

high-volume chassis, at the end of a test. The prior strategy 
was very direct. A management level application would 
directly query processes running on the processing cards of 
the chassis. The processing cards would return all of the data 

10 that they had collected. The management application would 
successively send queries and receive results from all the 
processing cards involved. Data received would be encapsu- 
lated in objects. The objects would be passed to a database 
adapter and the database would be updated. 

15 In one embodiment, this innovative approach adds a dis- 
tributed database layer running on each processing card, with 
multiple instantiations of databases, including tables and 
database access software, per processing card. It is surprising 
that adding a database processing layer could speed up the 

20 collection of test data, at the end of a test and enables real-time 
reporting during a test. Ordinarily, one would expect that 
adding an additional, intermediate database software layer 
would only slow things down. It is further surprising that 
instantiating multiple instances of databases per processor, 

25 again including tables and database access software, could be 
efficient. In testing, the innovative approach that we disclose 
has dramatically reduced the time required to collect end-of- 
test results by about two orders of magnitude, from hours to 
minutes. 

30 The databases are embedded, in-memory databases that 
have both proprietary API and SQL interfaces. A data collec- 
tion routine retrieves statistics from counters with a predeter- 
mined or programmed resolution, such as every second or 
10th of a second. The data collection routine uses the database 

35 API to add rows of sampled values to database tables. In one 
embodiment, there is a separate database instantiated for each 
port on each processing card. Different types of traffic on the 
port can be maintained in different tables. In a high resolution 
mode, data collection in limited domains may be as frequent 

40 as every millisecond or every 100th of a second, as specified 
by a user. 

It is surprising that numerous in-memory databases can be 
practically managed with better performance than fewer data- 
bases. In practice, use of numerous databases with simple 

45 table structures and transactions that require minimal locking 
has provided strong performance. 

It is further surprising that using numerous databases with 
SQL query interfaces works well. The eXtremeDBTM embed- 
ded in-memory database has an SQL interface (eXtrem- 

50 eSQLTM) and is commercially available from McObject at 
www.mcobject.com. The SQL interface is fast and efficient 
enough to be used for real time queries during a test. 

Overall, surprisingly good results have been achieved by 
the approach disclosed, despite introduction of a new data- 

55 base layer between the management application and the 
counters maintained by hardware, despite using multiple 
instantiations of databases per processor, and despite using 
SQL queries for data retrieval. Nearly a hundred-fold 
improvement in end-of-test data retrieval has been achieved 

60 and real time reporting can be realized. 
FIG. 3 is a high-level block diagram of a test device 

coupled to a DUT, with emphasis on configuration of stream 
blocks. FIG. 3 generally depicts a two port test with test 
packets moving from port one through the DUT to port two. 

65 On logical port one (320), in this example, the emulated 
ingress device 321 is a router. It might alternatively be a 
switch or a hybrid device. In this example, including the 
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MPLS protocol, it is coupled to network connectivity object 
323 and a stack of interface definition objects 324, 325, 326. 
The network connectivity object is a Label Distribution Pro- 
tocol (LDP) router configuration 323, which relates to the 
MPLS interface 325. The interface stack depicted includes IP 
(324), MPLS (325) and Ethernet/MAC address (326) objects. 
The network connectivity and interface stack objects publish 
their data to an observer that is part of the stream block object 
322. The stream block object 322 corresponds to data streams 
that will be generated on port one (320), which is attached to 
an ingress port of the DUT. The stream block object 322 
subscribes to or observes data initially configured and later 
updated on the network connectivity and interface objects. 
Binding the stream block 322 to a source emulated object sets 
up a so-called observer pattern, as does binding the stream 
block to a destination emulated object. On port two (330), the 
emulated egress device 331 of this example also is a router. In 
other examples, it could be a switch or a hybrid device. The 
network connectivity objects and interface objects connected 
to the router 331 include an LDP router configuration 333 and 
Label Switching Protocol (LSP) information 335. These are 
network connectivity and interface objects for a downstream 
device that uses the MPLS label-based switching and routing 
protocol. When an MPLS session is initiated, the LDP gen- 
erates LSP information, which is distributed from the down- 
stream router, through the DUT to the upstream router. The 
configuration objects at the BLL layer for the ports 320, 330 
are in communication with so-called firmware at the IL layer. 
This firmware is more closely coupled to the physical ports of 
the test device than the BLL. In the upstream position, the 
configuration objects are in communication with the routing 
daemon 341 and a generator 343. The routing daemon, 
depicted here as a single daemon, may actually be imple- 
mented as a series of routing daemons for various protocols. 
The routing daemons may generate and/or receive routing 
address information. For instance, in a DHCP implementa- 
tion, routing daemon 341 may listen for updated IP address 
information as DHCP leases expire. When the routing dae- 
mon detects new address information, it publishes that infor- 
mation to other components. In one embodiment, the stream 
block or IP configuration object observes, listens to, or 
receives messages from the routing daemon with updated IP 
address information. Then, the generator 343 may observe the 
stream block 322 for updated IP information. In another 
embodiment, updated routing information may be directly 
forwarded from the routing daemon to the generator at the IL 
layer, as well is being published for the BLL objects to update 
themselves. At the firmware layer, the protocols illustrated in 
FIG. 3 use the routing daemon 351 on IL layer port two 350 
and test result analysis relies on the analyzer 353. 

In this testing configuration, only one stream block is 
depicted, corresponding to packets traveling from port one to 
port two. In actual testing, packets may be generated on each 
of the ports and sent back and forth. Then, two or more stream 
blocks would be used. In general, high-volume testing uses 
stateless generation of test packets. That is, packets generated 
for port one depend on address or control plane information 
that identifies port two sufficiently for routing, but do not 
follow a request-and-response model on the data plane. The 
data plane traffic is stateless. 

We refer to stream block 322 as a bound stream block, in 
contrast to the raw stream blocks of earlier products. A bound 
stream block has source and destination bindings. From the 
bindings, the stream block learns both static information used 
to construct a prototype test frame or test packets and 
dynamic address information that is generated by operation 
of the control plane. The process for learning information, 

6 
using the observer pattern, involves different data and pro- 
gram structures than the old approach of using a wizard to add 
the same data to different data structures. The observer pat- 
tern has the additional advantage that it updates dynamic 

5 address information during a test, which is a natural part of 
many test scenarios. Address updates are dynamically propa- 
gated and quickly reflected in test packet traffic. Other pro- 
cesses for learning information, such as inter-process com- 
munications via pipes, could be used instead of following the 

10 observer model. 
FIG. 4 is a high-level block diagram of a test device, with 

emphasis on software modules at levels of management logic 
and processing card logic. The management logic 410 in this 
embodiment runs on a separate computer coupled in commu- 

15 nication with a chassis that holds processing cards 440. For 
instance, the management logic can run on a laptop, desktop 
or workstation. Alternatively, the chassis of the test device 
could have a built-in processor and other resources, or the 
chassis, could accept a processor card that would run the 

20 management logic. Then, a terminal or monitor could be 
coupled to the chassis to manage data collection. The pro- 
cessing card logic of this embodiment, sometimes called 
firmware, includes components running on a general purpose 
CPU 450, and components implemented in an FPGA 470, are 

25 sometimes called hardware. As compared to FIG. 3, this 
figure reveals more of the modular programming structure 
and less of the data structure. 

The management logic 410 includes a framework 420 and 
components for routing 431, layer 2/layer 3 tests frame gen- 

30 eration 435, and a DHCP host 437. The framework is where 
the emulated devices 421A, 421B and their interfaces 422A, 
422B are modeled. These emulated devices are comparable to 
321, 331 in FIG. 3. The interfaces are comparable to 324, 325, 
326. The routing component 431 depicts support for two 

35 routing protocols, label LDP 432 (see, e.g., RFC 5036) and 
Border Gateway Protocol (BGP) 433 (see, e.g., RFC 4271). 
The routing component supports a variety of routing proto- 
cols and may use separate subcomponents or daemons to do 
so. The routing component is responsible for setting up IP 

40 routing via the DUT. The layer 2/layer 3 component 435 
includes bound stream blocks 436 that define test frames. A 
bound stream block is bound to an ingress device 421A and an 
egress device 421B. It may be updated with routing informa- 
tion through one of the emulated devices or directly from the 

45 routing component. This figure adds a DHCP component 437 
that supports a DHCP session 438. For instance, the emulated 
egress device, 421B, may serve as a DHCP client and receive 
its address from a DHCP host. Routing component 431 has a 
counterpart routing component 451. Stream block compo- 

50 nent 436 has counterpart generator 455 and analyzer 456 
components for the ingress and egress functions on a test, 
respectively. DHCP component 437 has a corresponding 
DHCP component 457. The routing, generator, analyzer, and 
DHCP components running on the processor are imple- 

55 mented, in one embodiment, by respective daemons per pro- 
cessing card. A large number of emulated devices and their 
interfaces on the processing card can be handled by a single 
routing component 451 and a single DHCP component 457. 
Alternatively, additional routing components and DHCP 

60 components could be allocated. The component IfMgr 416 is 
an internal object that manages network interfaces and vali- 
dation of interfaces. The IfMgr, routing component, and host 
component interact with the Linux kernel. The routing and 
host components generate control plane packets that the 

65 Linux kernel processes. The generator 455 and analyzer 456 
components operate in the data plane of the ingress port and 
egress port, respectively. They process test descriptions avail- 
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able from the interfaces bound to the stream block 436. In 
some embodiments, routing information learned at the rout- 
ing daemon 451 may be passed directly to the generator 
daemon 455 in addition to being propagated upwards to the 
management logic 410. The generator and analyzer demons 
interact with the streams components 473 of the FPGA. 

On the FPGA 470 control plane data is handled by a cut 
through FIFO 471 that interacts with PHY, which schedules 
transmission of the control plane packets across the port 474. 
A cut through FIFO is appropriate because the FPGA pro- 
cessing of control plane packets is minimal. On the other 
hand, data plane test frames and packets are the primary 
reason for use of an FPGA. Details of the FPGA streams 
components 473 are beyond the scope of this disclosure. The 
streams components 473 build test frames to be sent across 
PHY 472 and the port number 474 and processes test frames 
received across these components. 

Overall, from FIG. 4, one sees architectural detail around 
which the database instantiations, depicted in FIG. 5, are 
organized. 

FIG. 5 is a high-level block diagram, with emphasis on 
instantiation of multiple databases. On the processing card 
440 the message handling component 562 and the multiple 
instantiations of databases 559 are new to this figure. Other 
components of the processing card including interfaces 422, 
routes 432, stream blocks 436 and the instrument layer gen- 
erator and analyzer 470, which retain their reference numbers 
from the prior figure. The chassis 520 includes one or more 
processing cards 440. Alternatively, a server or cluster of 
servers could include processors and, to whatever extent nec- 
essary, specialized logic processors. Workstations or PCs 
might be substituted for servers. The chassis includes a least 
one communications channel for coupling the processing 
cards to management logic. 

The management logic is again represented by the BLL 
410. In this figure, the BLL is coupled in communication with 
the graphic user interface (GUI) 511, and a persistent data- 
base 515. It includes a variety of components that are further 
described below. The graphic user interface may accept con- 
figuration data for emulated devices, interfaces and routing. It 
may accept test requirements for stream blocks. During a test, 
it may accept query requests and return test data sample 
results. At the end of the test, it may accept a command to 
retrieve and persist all test data and may display results from 
persisting the data. The persistent database 515, unlike the 
in-memory databases 559, is limited by channel characteris- 
tics of persistent memory. For instance, the channel and rotat- 
ing media characteristics impact the performance of a disk 
drive used as persistent memory. Alternatively, an optical 
memory or non-rotating memory could be used. At present, 
the disk drive is the most favorably priced high speed access 
device for large volumes of test data. 

The processing card 450 includes at least one processor 
551 and solid-state memory 553 coupled in communication 
with the processor, which provide resources for operation of 
the logic. The processing card includes two or more ports 340, 
350, 474 that are adapted to be coupled to a device under test 
313. 

Distributed logic running on the processing cards includes 
a plurality of database instances. As explained above, 
eXtremeDBTM is a suitable in memory database. In a typical 
test with a dozen or more ports, numerous database instances 
may run on one or more processing cards. In one embodi- 
ment, the number of database instances will be one per port, 
with various tables for various types of data. A separate data- 
base instance could be instantiated for each port and each 
protocol handling object associated with each port, so that 

8 
different sample data statistics applicable to different proto- 
cols are stored in different database instances. With finer 
granularity, the test may be organized into a plurality of test 
data streams that emulate a multiplicity of data sessions. 

5 Database instances may be instantiated per port and per test 
data stream. Or, they may be instantiated per port, per proto- 
col handling object (for network connectivity and interfaces) 
and per test data stream. 

In one of the alternative embodiments, a plurality of data- 
lc) base instances run on a particular processing card to support 

a corresponding plurality of ports. Database instances sup- 
port different tables for different protocol handling objects or 
for different categories of information. Instead of having a 
separate database instance each protocol supported by the 

15 port, there may be a separate table within a database instance 
associated with a port. Similarly, the number of database 
instances may be reduced by including a stream number in 
each table row and storing test data samples from multiple 
inbound streams in a single table. This alternative may be 

20 used with separate database instances for different protocol 
handling objects or it may be combined with use of different 
tables for different protocol handling objects, within a single 
database instance for the port. 

In FIG. 5, the BLL 410 includes a data selection component 
25 512 that translates user requests into queries for responsive 

data. It also includes a messaging component 514 that iden- 
tifies a plurality of database instances to which queries should 
be addressed. The messaging component 514 sends the query 
is to the identified database instances. In one embodiment, a 

30 particular query is sent in a series of unicast messages, one per 
database instance from which data is requested. Alternatively, 
a multicast-like messaging scheme could be developed to 
reduce the number of messages. Preferably, the messaging 
component sends out successive queries to successive data- 

35 base instances without waiting for responses. Then, it 
receives responses in parallel as they become available, with- 
out waiting for completion of database operations. The BLL 
410 further includes a response segregation component 516 
that combines the selected sample data from the responses 

40 and an output component 518 that either persists the com- 
bined data in the persistent database 515 or makes the com- 
bined data in some form perceptible to the user, for instance 
via the GUI 511. 

FIG. 6 is a block diagram of that features the analyzer 
45 daemon as the central component. The analyzer daemon 353 

consists of an upper firmware application layer 630 and a 
lower level FPGA driver layer 650. It is sometimes referred to 
simply as the analyzer. The analyzer application layer 630 is 
a hardware independent layer that is mainly responsible for 

so communication with the BLL 410 via the message passing 
service 562. It abstracts the interface to the FPGA driver 650, 
which is the lower layer component of the analyzer daemon. 
It is a hardware dependent layer that is mainly responsible for 
translating configuration and statistics retrieval requests from 

55 the application layer into hardware specific operations. It is 
also responsible for extending 32-bit hardware counters into 
64-bit database counters. The analyzer and FPGA 675 con- 
trols the hardware based, line rate capable receive packet 
analysis functionality. 

60 FIG. 6 is a high level presentation of the analyzer daemon 
and its relationship with other entities that reside on the pro- 
cessing card. The analyzer daemon is configured to reflect the 
specific hardware that it is controlling. 

The in-memory database, as will be shown in FIG. 7, is part 
65 of the stats framework. Statistics visible to the BLL 410 are 

stored in the in-memory embedded database of the stats 
framework 640. The BLL can thus use messages to perform 
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SQL queries on any of the tables in the database, using either 
synchronous or asynchronous mechanisms. In addition, the 
BLL can register for asynchronous notifications of any time 
that a row in the table is added, deleted, or modified. In one 
embodiment, the in-memory database is instantiated, along 
with the entire stats framework, for each port on the process- 
ing card. In this embodiment, there are multiple tables in the 
database for port statistics, differential service statistics (re- 
lated to different types of service required by various IP 
packets), and test stream statistics. Alternatively, there could 
be separate instantiations of the database four each port and 
each of the six tables. Yet alternatively, separate tables or 
separate instantiations of the database can be maintained for 
routing packets, host packets, and layer 2/3 packets, all on a 
per port basis. 

The support for various statistics, maintained as columns in 
the table, may depend on test modules that run on the test 
device. In some embodiments, rather than having different 
sets of attributes or columns reached test module, the data- 
base may support a single superset of statistics. In a test that 
does not use a particular column, the value in that column may 
be set to zero. If this trade-off between memory and ease of 
programming proves too taxing on memory, alternative solu- 
tions such as optional columns or alternative schemas that 
reuse attributes in the table may be applied. 

In one embodiment, a port statistics are maintained for 
each sample taken. The quantity of rows depends on the 
sampling rate established by the BLL 410. Typically, rate 
columns do not appear in this table, because a sufficient 
number of rows are maintained to allow computation of rates 
after data collection. To accommodate calculation of rates, it 
may be desirable to capture one sample more than the number 
of requested samples, thereby establishing a baseline for cal- 
culation of the first rate sample. 

The differential service statistics table has rows for each 
type of service allowed for IP packets. The type of service 
(e.g., 0 to 255) can be used as an index to table rows. Calcu- 
lation of rates may be explicitly enabled for the table or 
particular rows in the table. This table supports real-time rows 
that are sampled and recorded at a predetermined rate. This 
allows rates to be calculated after data collection, thereby 
reducing computing overhead and table size. 

The test stream statistics table contains statistics for each 
stream. The streams may be learned by the analyzer from the 
stream block 463 or by listening to received streams 473. 
Rows may be added to the table during a test as a listening 
process detects new test streams. Rates may be calculated in 
this table either as rows are updated or in a real time data 
sampling mode. In the real-time mode, rows are sampled at a 
predetermined rate and added to the table as they are sampled. 
Again, this allows calculation of rates after data collection. 
This table may include more columns for data than the hard- 
ware collects at any given time. In some embodiments, the 
hardware can only track a subset of potential statistics at any 
given time. Different subsets of statistics may be grouped into 
stream statistic groups. For counters that are not supported in 
a currently enabled statistics group, the counter value should 
be set to zero. 

As will be described later in this disclosure, one mecha- 
nism for communication between the FPGA and user space is 
for the FPGA to write values via a direct memory access 
("DMA") channel During data collection, it may be neces- 
sary to latch memory so that statistics of some counters are 
not updated by the FPGA as the vector of counters is read. 

Returning to FIG. 6, the analyzer application layer 630 is 
the upper half of the analyzer daemon. It is responsible for 
interaction with the BLL 410 via messages. It validates mes- 

10 
sage parameters and translates messages into calls to the 
analyzer driver 650 and the stats framework 640. The appli- 
cation 630 populates statistics read from the driver into the 
embedded in-memory database tables. It provides a consis- 

5 tent and user friendly interface for the BLL 410. In one 
embodiment, the analyzer application layer is multithreaded 
and uses an adaptive communications environment (ACE) 
reactor to serialize all timer events, message events and sig- 
nals. In that embodiment, most operations are performed 

10 under the main thread. Additional threads may be spawned by 
the analyzer application layer 630 to perform high resolution 
port statistics sampling, as described below. 

FIG. 7 is a more detailed block diagram of interaction of the 
analyzer daemon 353 with the stats framework 640. The 

15 analyzer application 630 handles interaction of the analyzer 
daemon 353 with the stats framework 640. This includes 
interaction with the embedded database 742. Several interac- 
tions are involved. The analyzer application handles instan- 
tiation of the stats framework objects at initialization time, 

20 such as table descriptors, rate computers, message servers 
and database instances for ports, etc. It handles look-up and 
updating of counter values within a row on behalf of the rate 
computers. It configures the rate computers in compliance 
with messages from the BLL. It modifies database entries as 

25 directed by messages. For instance, it clears rows, deletes 
rows or makes sure the rows are up-to-date. The analyzer 
application modifies the database entries per driver mainte- 
nance requirements. For instance, it has streams and makes 
sure that streams are up-to-date, as they change over the 

30 course of a test. It hands messages off to the message server, 
which in turn instantiates and utilizes other stats framework 
objects. It also performs SQL queries on the database, as 
necessary. 

Components of the stats framework 640 include notifiers 
35 733, message adapters 741, the rate computer 735 and the 

database instantiations 742. The analyzer application 630 
includes message handlers for configuration 731 and queries 
1 732. It also includes a row updater 734. The query message 
handler 732 interacts with the stat frame 640 through the 

40 notifiers 733 and the message adapters 741. The configuration 
message handler interacts with the stats framework 640 and 
the driver layer 650. It interacts with the framework through 
the rate computer 735. The analyzer application 630, rate 
computer 735 and message adapter 741 interact with the 

45 database instances 742. 
The PortSampler object has a message queue so that: 1) the 

Sampler Thread can initiate method calls on the PortSampler 
object which are executed within the context of the main 
thread; and 2) the main thread can defer method calls on the 

so PortSampler object until after the Start( )/Stop( ) methods 
have returned (ex. in order to send async notifications to the 
BLL after the response to a Start/Stop PHX-RPC message has 
been returned). The entries on this message queue are simply 
functors. Upon instantiation, the PortSampler associates a 

55 notification strategy with the message queue such that any 
push onto this queue schedules an event in the main thread's 
Reactor, for which the PortSampler has registered itself as a 
handler. In the handler method, the PortSampler simply pops 
the functors from the message queue and executes them. 

60 FIG. 8 is a block diagram that provides more detail of one 
embodiment of the analyzer driver. The analyzer driver 650 is 
the bottom half of the analyzer daemon 353. It is responsible 
for interaction with the analyzer FPGA, abstracting FPGA 
implementation so that the analyzer daemon need not be 

65 aware of module-specific variations, extending 32-bit FPGA 
counters to 64-bit values, and performing counter mainte- 
nance to avoid wraparound on 32-bit FPGA counters. The 
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analyzer driver runs in user space 610. With assistance from 
the hardware extraction layer 655, it maps to FPGA registers 
into the analyzer daemon 353 memory space and uses direct 
memory access (DMA) to retrieve counters maintained by the 
FPGA. In one embodiment, the driver is instantiated on a 
driver-per-port basis. 

One feature illustrated in the figure is to translate incre- 
mental counts into cumulative counts. That is, when the 
FPGA counters provide a delta count since the last read, the 
driver adds that delta count to a previous cumulative counter. 
To provide current cumulative counters to the application 
layer, the driver needs to have access to the previous counter 
total values. In most cases, rather than rely on the application 
layer to retrieve these values from the database, which would 
create a risk of the driver being blocked if another thread is 
holding the databases transaction lock, the analyzer driver 
650 caches a copy of the last counter values using non- 
database structures 823, 829. This is particularly useful dur- 
ing high-resolution sampling with millisecond resolution. 

Since multiple threads may attempt to get current counters 
simultaneously, each type of counter (for instance or statistics 
differential service statistics, etc.) has a pthread mutex 821, 
827, 833 associated with it. This protects the integrity of a 
given counter type while still allowing concurrent access to 
different counter types. For instance, a thread accessing port 
statistics will not be blocked by another thread accessing 
differential service statistics. Even though counters for 
streams sampled at normal resolution are not cached in the 
driver, there still is a mutex associated with stream operations 
to protect other stream related information in hardware 
accesses. 

The maintenance thread builds on the Adaptive Commu- 
nications Environment active object pattern. The lifetime of 
the maintenance thread is equal to the lifetime of the process, 
as it is spawned when the driver is created and joined when the 
driver is destroyed. Each type of statistic requires mainte- 
nance as its own timeout handler that is scheduled for periodic 
callbacks from a timer in the context of the maintenance 
thread. The exception to this is for test stream statistics, as 
explained below. The period between timeouts depends on 
the handler type, as well as test module type. This design 
allows maintenance to occur only as frequently as necessary 
for each data type. Operation of the port driver in the context 
of the maintenance thread minimizes the likelihood that 
maintenance will be blocked by something that the main 
thread is doing, such as large SQL queries. Large SQL queries 
have no effect on maintenance, except during stream mainte- 
nance, when the stream counter maintenance includes read- 
ing current cumulative counters from the database. Using the 
pthread model, the maintenance thread consumes no CPU 
time unless it is actively updating some counters. 

Since FPGA counters can only be updated from incoming 
packets while in a "running" state, there is no need to prevent 
counter rollover while it is in the "stopped" state. Therefore, 
the analyzer driver unschedules the maintenance timers 
whenever a stop command is received and reschedules them 
when a start command is received. Consequentially, the main- 
tenance thread consumes no CPU when the analyzer is 
stopped. 

Some of the FPGA functionality requires the Analyzer 
Driver to DMA information to/from the FPGA. The Analyzer 
Driver uses one of the DMA Data Movers that are part of the 
BCM1125 to do this. This single data mover is shared by the 
threads within the Analyzer. Thus, a semaphore 833 is used to 
protect access to DMA operations 835. 

An independent HAL 655 DMA object is allocated for 
each of these, per-port. For each object, the HAL must allo- 

12 
cate and map contiguous pages of RAM to support the largest 
DMA for which each object will be used. 

FIG. 9 is more detailed block diagram of the Stats Frame- 
work. The eXtremeDB in-memory database requires a sig- 

5 nificant framework and adapters for implementation, as this 
figure depicts. The underlying database components are in the 
right-hand columns of the figure (917, 937, 967, 938, 948, 
958). Most of the remaining components are part of the stats 
framework, except the message passing system 562, and the 
application and driver layers of the analyzer daemon 630/650. 

The underlying database components include two APIs: a 
proprietary API in fixed 917 and variable 937 parts and a SQL 
API 967. The proprietary fixed API 917 is for table indepen- 

15 
dent operations, such as create, commit, etc. The proprietary 
variable API 937 is automatically generated from schema 
files and is for table dependent operations, such as create, find 
row, get or set column value. The proprietary API in general 
is used for updating tables as the statistics change. The SQL 

20 API is used mainly for running queries received from the BLL 
410 via the message passing system 562. This API supports 
much of the SQL-89 specification. A database instantiation 
exists within the address space of the process that created. A 
Database Management component 913 in the stats frame- 

25 work is responsible for handling generic database-related 
configuration and maintenance tasks and also for acting as a 
central point for accessing framework objects. It instantiates 
a single, independent database per port, as is reflected by the 
"statsdbX" (938, 948, 958) components in the drawing. 

30 Remote procedure call (RPC) messages from the message 
passing system are offloaded by a Message Server for statis- 
tics-related messages 562. The Message Server executes que- 
ries on the database as specified by the RPC messages and 
returns the result set to the caller. Additionally, at the request 

35 of RPC messages, it may configure the Periodic Query 
Executer and Table Observer 955 to either: periodically 
execute queries on the database and return the result set to the 
caller each time; or send periodic notifications to the caller 
regarding changes that have been made to the contents of the 

40 database. 
An RPC Message to Database SQL API Adapter 965 com- 

ponent is used to take the SQL query string that is contained 
in an RPC message and call the proper functions in the data- 
base's SQL API in order to execute that query. It then takes the 

45 database objects representing the result set of the query and 
parses their contents into a format suitable to be contained in 
an RPC message response. 

A Generic Table Descriptor to Table Specific API Adapter 
935 component is used to translate general database opera- 

s() tions that some stats framework components need to perform 
on database tables into the specific database API functions 
that perform those operations. This is done so that the stats 
framework components can remain generic, and thus operate 
on any database table, yet are still capable of performing those 

55 operations which require specific knowledge of the schema of 
the tables being operated on. 

A Periodic Rate Computer 932 component periodically 
reads configured counter column values from the database 
tables, computes a "per second" rate for these counters, and 

60 updates corresponding rate column values in the given data- 
base table. Use of the stats framework involves several steps. 
First, create a database schema file. Appropriately modify a 
schema constructor script. Configure the database factory. 
Implement the message set. Offload messages from the mes- 

65 sage processing system. Optionally, configure the rate com- 
puter. Also optionally, enable table event notifications. Then, 
proceed with populating the tables. With these steps and the 
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framework detailed by FIGS. 7-8 in mind, one can understand 
how an in-memory database can be used in a test device. 

Next, we provide some examples of real time data access 
that is enabled by the disclosed stats framework. These 
examples show how relevant statistics can be retrieved during 
a test, taking advantage of distributed processing of SQL 
queries by the independent database instantiations running on 
the processing cards. Keep in mind that a query that may find 
its answer in more than one database instantiation is passed to 
all of the relevant database instantiations and the results 
returned are combined. The first example shows retrieving 
only the "page" worth of streams that the user is currently 
looking at, rather than pulling back all streams and only 
displaying the ones on the current page: 

SELECT Stream Index, Frame Count, Sig Count, FCSErrCount, 
MinXFerDelay, MaxXFerDelay, SeqRunLength, LostPacketCount, 
InOrderPacketCount, ReorderedPacketCount, DuplicatePacketCount, 
LatePacketCount, PRBSBitErrCount, PRBSFillByteCount, 
IPv4XSumErrCount, TCPUDPXSumErrCount, Frame Rate, Sig Rate, 
FCSErrRate, LostPacketRate, InOrderPacketRate, 
ReorderedPacketRate, DuplicatePacketRate, LatePacketRate, 
PRBSBitErrRate, IPv4XSumErrRate, TCPUDPXSumEnRate, 
Comp32, Comp16 1, Comp16 2, Comp16 3, Comp164, InSeqCount, 
TotalXFerDelay, Total Jitter, TotallnterArrivalTime, Byte Rate, 
Stream Index 
FROM StreamStats 
WHERE Stream Index BETWEEN 25 AND 49 

A sample response showing the contents of one of the rows 
that matches the criteria is: 

"int64Values" {array {int64 t 25 int64 t 144 int64 t 144 int64 t 0 

int64 t 9 int64 t 10 int64 t 144 int64 t 0 int64 t 144 int64 t 0 

int64 t 0 int64 t 0 int64 t 0 int64 t 0 int64 t 0 int64 t 0 int64 t 0 

int64 t 0 int64 t 0 int64 t 0 int64 t 0 int64 t 0 int64 t 0 int64 t 0 

int64 _t 0 int64 _t 0 int64 _t 0 int64 _t 65561 int64 _t 0 int64 _t 0 int64 _t 
0 int64 t 0 int64 t 0 int64 t 1435 int64 t 0 int64 t 0 int64 t 0 

int64 _t 25 } 

Subsequent pages of streams data are retrieved on demand. 
The next example shows retrieving the summation of stats 

of streams that are in an associated group (in this case the 
summation of the streams in a given stream block), rather than 
pulling back all streams in the group and aggregating the 
counters in the BLL: 

SELECT SUM(FrameCount), SUM(ByteRate) 
FROM StreamStats 
WHERE StreamIndex BETWEEN 3 AND 102 

A response includes one row, since it aggregates many 
rows: 

"int64Values" {array {int64 4120 int64 01} 
Using this approach, message traffic is greatly reduced. In 

all likelihood, resources required data reduction on the pro- 
cessing cards are more than offset by the reduced message 
traffic. 

Another example shows retrieving streams that meet a 
user-generated query (in this case only the top 50 streams, 
displayed in order of increasing maximum latency, where 
more than 50000 packets have been received and the maxi- 
mum latency is greater than 50 ms.) Again, the database 
instances reduce the data before messaging, rather than pull- 
ing back all streams and displaying only the ones that meet the 
criteria: 

5 
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SELECT StreamIndex, FrameCount, SigCount, FCSErrCount, 
MinXFerDelay, MaxXFerDelay, SeqRunLength, LostPacketCount, 
InOrderPacketCount, ReorderedPacketCount, DuplicatePacketCount, 
LatePacketCount, PRBSBitErrCount, PRBSFillByteCount, 
IPv4XSumErrCount, TCPUDPXSumErrCount, FrameRate, SigRate, 
FCSErrRate, LostPacketRate, InOrderPacketRate, 
ReorderedPacketRate, DuplicatePacketRate, LatePacketRate, 
PRBSBitErrRate, PRBSFillByteRate, IPv4XSumErrRate, 
TCPUDPXSumErrRate, Comp32, Comp16 1, Comp16 2, Comp16 3, 

0 Compl6 4, InSeqCount, TotalXFerDelay, TotalJitter, 
TotallnterArrivalTime, ByteRate 
FROM StreamStats 
WHERE (FrameCount > 50000) AND (MaxXFerDelay > 5000) 
ORDER BY MaxXFerDelay ASC 
LIMIT 50 

15 

20 

A sample response showing the contents of one of the rows 
that matches the criteria is: 

"int64Values" {array {int64 t 51 int64 t 65225 int64 t 65225 int64 t 0 

int64 t 253 int64 t 6341 int64 t 65225 int64 t 0 int64 t 65225 
int64 _t 0 int64 _t 0 int64 _t 0 int64 _t 0 int64 _t 0 int64 _t 0 int64 _t 
0 int64 t 0 int64 t 0 int64 t 0 int64 t 0 int64 t 0 int64 t 0 int64 t 

0 int64 _t 0 int64 _t 0 int64 _t 0 int64 _t 0 int64 _t 0 int64 _t 65587 
25 int64 t 0 int64 t 0 int64 t 0 int64 t 0 int64 t 0 int64 t 26210000 

int64 _t 0 int64 _t 0 int64 _t 0 } 

The corresponding end of test queries are very broad. In 
addition to the query examples, we provide a few rows of 

30 returned data and corresponding translation of the returned 
data directly into add-row commands for the persistent data- 
base 515. 

35 

SELECT StreamIndex, Comp32, Comp16 1, Comp16 2, Comp16 3, 
Comp164, FrameCount, ByteCount, SigCount, FCSErrCount, 
AvgXFerDelay, MinXFerDelay, MaxXFerDelay, TotalXFerDelay, 
SeqRunLength, ExpectedSeqNum, LostPacketCount, InOrderPacketCount, 
ReorderedPacketCount, DuplicatePacketCount, LatePacketCount, 

40 MinFrameLength, MaxFrameLength, PRBSFillByteCount, 
PRBSBitErrCount, IPv4XSumErrCount, TCPUDPXSumErrCount 
FROM StreamStats 
WHERE StreamIndex BETWEEN 0 AND 8191 AND 
FrameCount > 0 

45 

50 

Additional blocks of data can be collected in a succession 
query (or could be part of the initial query); 

SELECT StreamIndex, Comp32, Comp16 1, Comp16 2, Comp16 3, 
Comp164, FrameCount, ByteCount, SigCount, FCSErrCount, 
AvgXFerDelay, MinXFerDelay, MaxXFerDelay, TotalXFerDelay, 
SeqRunLength, ExpectedSeqNum, LostPacketCount, InOrderPacketCount, 
ReorderedPacketCount, DuplicatePacketCount, LatePacketCount, 
MinFrameLength, MaxFrameLength, PRBSFillByteCount, 

55 PRBSBitErrCount, IPv4XSumErrCount, TCPUDPXSumErrCount 
FROM StreamStats 
WHERE StreamIndex BETWEEN 8192 AND 16383 AND 
FrameCount > 0 

60 Here is a sample row of response data: 

"int64Values" { 

array { 

65 int64 _t 0 int64 _t 131072 int64 _t 0 int64 _t 0 int64 _t 0 int64 _t 0 

int64 t 146997 int64 t 18815616 int64 t 146997 int64 t 0 int64 t 10 
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-continued 

int64 t 10 int64 t 11 int64 t 1489447 int64 t 146997 int64 t 146997 
int64 t 0 int64 t 146997 int64 t 0 int64 t 0 int64 t 0 int64 t 128 
int64 _t 128 int64 _t 0 int64 _t 0 int64 _t 0 int64 _t 0 

Some Particular Embodiments 

The technology disclosed can be practiced as a device or a 
method the runs on a device. The technology disclosed may 
be practiced as an article of manufacture such as storage 
media impressed with logic. 

One embodiment is a device reporting results from testing 
of a system under test or device under test, which are collec- 
tively referred to as a "DUT". The test device includes a least 
one chassis and a plurality of processing cards mounted in the 
chassis. Multiple chassis can be combined into a single sys- 
tem, using inter-chassis communications. A chassis could 
hold a single processing card, but it preferably holds multiple 
cards. In one embodiment, a chassis holds a dozen cards. 
Alternatively to a chassis, a conventional server, workstation 
or PC could be fitted with processing cards. The chassis is 
more versatile, because its form factor can accommodate 
exposure of more ports than would fit on a typical PCI card. A 
processing card integrates at least a processor, solid-state 
memory coupled in communication with the processor, and 
two or more test ports coupled in communication with the 
processor that are adapted to be coupled to the DUT during a 
test. A variety of test ports, many of which are identified 
above, may be used. In some configurations a dozen test ports 
are found on a single processing card. 

Ports may optionally be organized into port groups. For 
instance, in one embodiment, a twelve port processing card 
includes six processors. The processors are separate chips. 
The processors run their own instances of Linux and control 
two ports. The processing card includes six port groups, each 
group sharing processing and memory resources among one 
or more ports (two ports in this example). In another embodi- 
ment, a single high speed port (1 Gb) is coupled to a Linux 
instance and multiple processor cores. The single high speed 
port is a port group of one, because of the resources needed to 
service the port. In the architecture described, it is readily 
practical to include up to eight ports in a group, which may be 
useful when multiple ports are being aggregated into a single 
communications channel When we use the term "port 
group," we refer to a group of ports commonly controlled by 
shared hardware and software resources. A port group may 
include one to eight ports, depending on how the supporting 
hardware and software resources are organized. 

The device further includes distributed logic running on the 
processing cards. The distributed logic includes a plurality of 
database instances at least one per port or port group. A 
particular database instance includes at least a unique identi- 
fier that distinguishes it from other database instances for 
messaging, such as receiving queries. The database instance 
includes one or more tables of sample data collected during 
the test, the tables residing in the solid-state memory on the 
processing card. Optionally, if a pooled memory space were 
available, the database instances could share the pooled 
memory space. Solid-state memory is specified to avoid the 
latencies of rotating memory that are experienced during 
database access and transaction locking A particular database 
further includes two interfaces: an API interface that updates 
and adds to the tables during the test; and a query processing 
interface. The query processing interface can be used either 
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during or after the test. It receives queries, for instance, SQL 
queries. It selects the sample data responses to the queries and 
returns the selected sample data. The device further includes 
at least one communications channel on the chassis coupled 

5 in communication with the distributed logic. This communi- 
cations channel distributes the queries, both queries from 
users and automatic, end-of-test queries. The communica- 
tions channel returns the selected sample data responsive to 
the queries. 

In some embodiments, the processing cards further include 
a specialized logic device to processes test frame data to send 
to or to receive from the DUT during the test. The specialized 
logic device is coupled in communication between the pro- 
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cessor and the ports. It updates counters during the test frame 
data processing. The distributed logic periodically collects 
the sample data from the counters and adds the sample data to 
the tables or updates the tables via the API interface. 

In one variation, the port groups are supported by a plural- 
20 ity of protocol handling modules running on the processing 

cards that support a multiplicity of devices in device-sessions. 
In this variation, the device further includes database 
instances per port group per protocol handling module, 
whereby different sample data statistics applicable to differ- 

25 ent protocols are stored in different database instances. Alter- 
natively, a single database per port group may have separate 
tables for various protocol handling modules. These separate 
tables allow different sample data statistics applicable to dif- 
ferent protocol sources to be stored in separate tables. 

30 In another variation, the test is organized into a plurality of 
test data streams emulate a multiplicity of data sessions. 
Device further includes database instances per port per data 
test string. Alternatively, a single database per port group may 
have a table for all data streams that interact with that port. A 

35 data stream identifier can be attached to each row in the data 
streams table. In yet another alternative, the ports emulate a 
plurality of sessions and a plurality of protocols in the ses- 
sions. In this other alternative, database instances are running 
per port group per test data stream per protocol. 

40 In any of the particular embodiments described, the query 
processing interface may be SQL compatible. Anywhere 
these port groups are specified as the unit of database orga- 
nization, single port databases can be used. 

The test device embodiment can be extended into a system 
45 for real-time data collection. The real-time system further 

includes management logic running on at least one additional 
processor that is coupled to the communications channel 
This additional processor may be on a separate system, inte- 
grated into the chassis, or hosted on a chassis card. The 

so management logic of this real-time system includes at least a 
user interface, such as a scripting command line or GUI 
interface, through which a user requests are received. It 
includes a data selection component or module that translates 
the user requests into queries for responsive sample data. It 

55 further includes a messaging component or module that iden- 
tifies a plurality of database instances to which the query 
should be directed, that sends the queries the identified data- 
base instances without waiting for responses before sending 
successive queries to successive database instances, and 

60 receives responses from the identified database instances as 
they become available. A response aggregation component or 
module combines the selected sample data from the 
responses. This combined data may be aggregated into a 
collection, summed or otherwise reduced into a desired form. 

65 An output component or module either persists the combined 
data to nonvolatile memory or makes the combined data 
perceptible to the user. 

10 
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Alternatively, the test device embodiment can be extended 
into a system for end-of-test data collection. Of course, the 
real-time data collection and end of test data collection sys- 
tems are compatible and may be combined into an overall 
system. In the end-of-test data collection system, manage- 
ment logic running on an additional processor and coupled to 
the communications channel and persistent memory includes 
a least a data collection component or module issues queries 
for return of substantially all of the sample data collected by 
the database instances for at least one segment of the test or, 
preferably, for the whole test. The data collection module 
preferably sends successive queries to successive database 
instances without waiting for completion of query responses. 
It receives responses from the identified database instances as 
they become available. The management logic further 
includes persistent memory coupled in communication with 
the additional processor and at least one persistent database 
component or module that maintains a persistent test result 
database on the persistent memory. The system further 
includes at least one data translation module that translates 
the responses directly into update commands and queues the 
update commands to the persistent database module without 
waiting for an update confirmations before issuing successive 
update commands. 

The device embodiments above have method counterparts. 
One method embodiment provides real time results from 
testing of a system under test or device under test, which are 
collectively referred to as a "DUT." One environment in 
which it is useful is a test device that includes at least one 
chassis and a plurality of processing cards mounted in the 
chassis. Multiple chassis can be combined into a single sys- 
tem, using inter-chassis communications. A chassis could 
hold a single processing card, but it preferably holds multiple 
cards. In one embodiment, a chassis holds a dozen cards. 
Alternatively to a chassis, a conventional server, workstation 
or PC could be fitted with processing cards. The chassis is 
more versatile, because its form factor can accommodate 
exposure of more ports than would fit on a typical PCI card. A 
processing card integrates at least a processor, solid-state 
memory coupled in communication with the processor, and 
two or more test ports coupled in communication with the 
processor that are adapted to be coupled to the DUT during a 
test. A variety of test ports, many of which are identified 
above, may be used. In some configurations a dozen test ports 
are found on a single processing card. 

The method itself includes instantiating a plurality of data- 
base instances, at least one per port group, and associating 
them with ports. A particular database instance includes at 
least a unique identifier that distinguishes it from other data- 
base instances for messaging, such as receiving queries. The 
database instance includes one or more tables of sample data 
collected during the test, the tables residing in the solid-state 
memory on the processing card. Optionally, if a pooled 
memory space were available, the database instances could 
share the pooled memory space. Solid-state memory is speci- 
fied to avoid the latencies of rotating memory that are expe- 
rienced during database access and transaction locking A 
particular database further includes two interfaces: an API 
interface that updates and adds to the tables during the test; 
and a query processing interface. The query processing inter- 
face can be used either during or after the test. It receives 
queries, for instance, SQL queries. It selects the sample data 
responses to the queries and returns the selected sample data. 
The method further automatically retrieving sample data 
related to the associated ports during the test and using the 
API interfaces to add the retrieved sample data to the tables. 
The method further includes receiving at a plurality of the 
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database instance at least one query via the query processing 
interfaces, selecting the sample data responsive to the query, 
and returning the selected sample data during or after the test. 

In some embodiments, the processing cards further include 
5 a specialized logic device to process test frame data to send to 

or to receive from the DUT during the test. The specialized 
logic device is coupled in communication between the pro- 
cessor and the ports. It updates counters during the test frame 
data processing. The method further includes periodically 

10 collecting the sample data from the counters and adds the 
sample data to the tables or updates the tables via the API 
interface. 

In variations on the number of databases instantiated, any 
of the organizations described with respect to the device 

15 embodiments also may be applied to the method embodi- 
ments. Moreover, the query received at the database instance 
may be SQL compatible. 

The method embodiment can be extended into a method for 
real-time data collection. The real-time method further 

20 includes receiving a user request during a test at a user inter- 
face, such as a scripting, command line or GUI interface. The 
user request is translated into queries for responsive data, 
which are sent to identified database instances. Preferably, the 
queries are sent the identified database instances without 

25 waiting for responses before sending successive queries to 
successive database instances, and receives responses from 
the identified database instances as they become available. 
Alternatively, the queries could be issued sequentially and 
processed synchronously. The method includes receiving 

30 responses and combining the selected sample data from the 
responses. This combined data may be aggregated into a 
collection, summed or otherwise reduced into a desired form. 
The method proceeds by either persisting the combined data 
to nonvolatile memory or makes the combined data percep- 

35 tible to the user. 
Alternatively, the method embodiment can be extended 

into a method for end-of-test data collection. Of course, the 
real-time data collection and end-of-test data collection meth- 
ods are compatible and may be combined into an overall 

40 system. In the end-of-test data collection method, queries are 
issued for return of substantially all of the sample data col- 
lected by the database instances for at least one segment of the 
test or, preferably, for the whole test. Queries to successive 
database instances may be issued without waiting for comple- 

45 tion of query responses or they could be issued sequentially 
and processed synchronously. Responses from the identified 
database instances are received as they become available. The 
method further includes queuing update commands to a per- 
sistent database module. As with the requests, these update 

so commands can be sent the database module without waiting 
for update confirmations or they can be handled sequentially 
and synchronously. 

Articles of manufacture are alternative embodiments. The 
devices for and method of providing real time data collection 

55 and the extended methods of providing real time and end-of- 
test results are all practiced as computer readable storage 
media including program instructions that, when loaded on 
appropriate hardware, either produce one of the devices 
described or carry out one of the methods described. 

60 Another method involves transmitting programs of com- 
puter instructions to be combined with appropriate hardware 
to manufacture one of the devices described. 

While the present invention is disclosed by reference to the 
preferred embodiments and examples detailed above, it is 

65 understood that these examples are intended in an illustrative 
rather than in a limiting sense. Computer-assisted processing 
is implicated in the described embodiments. Accordingly, the 
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present invention may be embodied in methods for generating 
test frames, systems including logic and resources to carry out 
automated generation of test frames, computer readable stor- 
age media impressed with logic to carry out automated gen- 
eration of test frames, or a method of delivering data streams 
impressed with logic to carry out automated generation of test 
frames. It is contemplated that modifications and combina- 
tions will readily occur to those skilled in the art, which 
modifications and combinations will be within the spirit of 
the invention and the scope of the following claims. 

We claim as follows: 
1. A test device reporting results from testing a system or 

device under test (referred to as a "DUT"), the test device 
including: 

at least one chassis; 
a plurality of processing cards with memory mounted in 

the chassis, wherein the processing cards include ports 
or port groups; 

distributed logic running on the processing cards that 
includes a plurality of database instances, at least one per 
port or port group, wherein said database instances 
include at least: 
one or more tables of sample data collected during the 

test, the tables residing in memory on the processing 
card, 

an API interface that updates and adds to the tables 
during the test, and 

a query processing interface that receives queries, 
selects the sample data responsive to the queries, and 
returns the selected sample data during and after the 
test; and 

at least one communications channel on the chassis 
coupled in communication with the distributed logic that 
distributes the queries to the processing cards. 

2. The device of claim 1, wherein the processing cards 
further include a specialized logic device that processes test 
frame data to send to or received from the DUT during the test 
and updates counters during the test frame data processing, 
the specialized logic device coupled in communication with 
the ports, and the distributed logic periodically collects the 
sample data from the counters and adds the sample data to the 
tables via the API interface. 

3. The device of claim 1, wherein the ports or port groups 
are supported by a plurality of protocol handling modules 
running on the processing cards that emulate a multiplicity of 
devices in device-sessions, further including database 
instances per port group per protocol handling module, 
whereby different sample data statistics applicable to differ- 
ent protocols are stored in different database instances. 

4. The device of claim 1, wherein the test is organized into 
a plurality of test data streams that emulate a multiplicity of 
data sessions, further including database instances per port or 
port group per test data stream. 

5. The device of claim 1, wherein the ports or port groups 
emulate a plurality of sessions and a plurality of protocols in 
the sessions, further including database instances per port 
group per test data stream per protocol. 

6. The device of claim 1, wherein the query processing 
interface is SQL compatible. 

7. An end of test data collection system including the 
device of claim 1, further including management logic run- 
ning on at least one additional processor that is coupled to the 
communications channel, wherein the management logic 
comprises: 

a data collection module that the issues queries for return of 
substantially all of the sample data collected by the 
database instances for at least one segment of the test 
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without waiting for query responses before sending suc- 
cessive queries to successive database instances, and 
receives responses from the identified database 
instances as they become available; and 

5 at least one persistent database module coupled to the data 
collection module that maintains a persistent test result 
database. 

8. A method of providing real time results using a test 
device to test a system or device under test (referred to as a 
"DUT"), wherein test device includes a plurality of proces- 
sors driving a plurality of ports, the method including: 

instantiating a plurality of database instances, at least one 
per port group, and associating them with the ports, 

15 
wherein said database instances comprise at least: 
one or more tables of sample data collected during the 

test, the tables residing in memory coupled to the 
processor, 

an API interface that updates and adds to the tables 
20 during the test, and 

a query processing interface that receives queries, 
selects the sample data responsive to the queries, and 
returns the selected sample data during and after the 
test; and 

25 automatically retrieving sample data from the associated 
ports during the test and using the API interfaces to the 
database instances to add the retrieved sample data to the 
tables. 

9. The method of claim 8, further including receiving at a 
30 plurality of the database instances at least one query via the 

query processing interfaces, selecting the sample data respon- 
sive to the query, and returning the selected sample data 
during or after the test. 

10. The method of claim 8, further including instantiating 
35 a plurality of protocol handling objects for a plurality of the 

ports or port groups, wherein the instantiation of the database 
instances further includes instantiating database instances per 
port or port group and per protocol handling object, whereby 
different sample data statistics applicable to different proto- 

40 cols are stored in different database instances. 
11. The method of claim 8, further including organizing the 

test into a plurality of test data streams associated with the 
ports or port groups, wherein the plurality of test data streams 
emulate a multiplicity of data sessions, further including 

45 instantiating database instances per port or port group and per 
test data stream, whereby sample data statistics applicable to 
different test data streams are stored in different database 
instances. 

12. The method of claim 8, wherein the queries received at 
so the query processing interface are SQL compatible. 

13. The method of claim 8, wherein test device includes 
processing cards that include at least one of the processors 
and a plurality of ports, further including instantiating a plu- 
rality of database instances to run on a particular processing 

55 card to support the plurality of ports, whereby sample data 
statistics applicable to different ports are stored in different 
database instances. 

14. A real time test data reporting method, including the 
method of claim 13, further including: 

60 receiving a user request via a user interface; 
translating the user request into the queries for responsive 

sample data; 
identifying a plurality of database instances to which the 

queries should be directed; 
65 sending the queries to the identified database instances 

without waiting for responses before sending successive 
queries to successive database instances; 
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receiving responses from the identified database instances 
as they become available; and 

combining the selected sample data from the responses and 
either persisting the combined data or making it percep- 
tible to the user. 5 

15. An end of test data reporting method, including the 
method of claim 8, further including: 

issuing queries from a data collection module for return of 
substantially all of the sample data collected by the 
database instances during the test for at least one type of 10 

protocol handling object without waiting for query 
responses before sending successive queries to succes- 
sive database instances; 

receiving responses from the identified database instances 
as they become available; 15 

translating the responses directly into update commands; 
and 

queuing the update commands to a persistent database 
module without waiting for update confirmations before 
issuing successive update commands. 20 


