
(12) United States Patent
Chapman et al.

111111111111111111111111111R111111181111111111111111111111111111111

(10) Patent No.: US 7,685,545 B2
(45) Date of Patent: Mar. 23, 2010

(54) METHODS AND DEVICES FOR
INDEPENDENT EVALUATION OF CELL
INTEGRITY, CHANGES AND ORIGIN IN
CHIP DESIGN FOR PRODUCTION
WORKFLOW

(75) Inventors: David Chapman, San Jose, CA (US);
Thomas Grebinski, Alamo, CA (US)

(73) Assignee: Oasis Tooling, Inc., Alamo, CA (US)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.

(21) Appl. No.: 12/536,413

(22) Filed: Aug. 5, 2009

(65) Prior Publication Data

US 2009/0307640 Al Dec. 10, 2009

Related U.S. Application Data

(63) Continuation of application No. 12/482,296, filed on
Jun. 10, 2009.

(60) Provisional application No. 61/131,601, filed on Jun.
10, 2008.

(51) Int. Cl.
G06F 17/50 (2006.01)

(52) U.S. Cl. 716/4; 716/5
(58) Field of Classification Search 716/1,

716/4, 5, 18; 704/7-10
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

5,937,190 A 8/1999 Gregory et al.

(Continued)

/ Design
Data
411

Partition

Parse
512

Normalize

JP

FOREIGN PATENT DOCUMENTS

2008250903 10/2008

(Continued)

OTHER PUBLICATIONS

Hans-Jorg Happel, et al., "Report describing state-of-the art in Search
Mechanism and Context Similarity ", Mar. 2007, http://www.team-
project.eu/documents/TEAM deliverable D6 spdf, accessed May
18, 2009.

(Continued)

Primary Examiner Vuthe Siek
(74) Attorney, Agent, or Firm Ernest J. Beffel, Jr.; Haynes
Beffel & Wolfeld LLP

(57) ABSTRACT

The technology disclosed relates to granular analysis of
design data used to prepare chip designs for manufacturing
and to identification of similarities and differences among
parts of design data files. In particular, it relates to parsing
data and organizing into canonical forms, digesting the
canonical forms, and comparing digests of design data from
different sources, such as designs and libraries of design
templates. Organizing the design data into canonical forms
generally reduces the sensitivity of data analysis to variations
in data that have no functional impact on the design. The
details of the granular analysis vary among design languages
used to represent aspects of a design. For various design
languages, granular analysis includes partitioning design files
by header/cell portions, by separate handling of comments,
by functionally significant/non-significant data, by
whitespace/non-whitespace, and by layer within a unit of
design data. The similarities and differences of interest
depend on the purpose of the granular analysis. The compari-
sons are useful in many ways.

)Stored
Digests

41

Summarize

Parse

Heacl
Cell

Fun12:111 roonal/
No

Z22

Layers Sortable
72

20 Claims, 20 Drawing Sheets

US 7,685,545 B2
Page 2

U.S. PATENT DOCUMENTS

5,949,993 A * 9/1999 Fritz 703/22
6,564,364 B1 5/2003 Dahl et al.
6,961,918 B2 11/2005 Garner et al.
7,096,441 B2 8/2006 Lo et al.
7,246,339 B2 7/2007 Yuan et al.
7,386,819 B1 6/2008 Yuan et al.
7,469,376 B2 12/2008 Chia et al.
7,536,289 B2 5/2009 Okabayashi et al.

2003/0149703 Al 8/2003 Corr
2003/0154061 Al 8/2003 Willis
2004/0225983 Al 11/2004 Jacques et al.
2005/0060643 Al 3/2005 Glass et al.
2006/0101428 Al 5/2006 Adke et al.
2008/0104554 Al 5/2008 Kobayashi et al.
2008/0155482 Al 6/2008 Chidambarrao et al.
2008/0165192 Al 7/2008 Finkler et al.
2008/0172645 Al * 7/2008 Finkler et al. 716/9
2008/0244482 Al 10/2008 Chang et al.
2008/0244483 Al 10/2008 Chang et al.
2008/0244493 Al 10/2008 Finkler

WO
WO
WO

FOREIGN PATENT DOCUMENTS

9308524
02095576

2007080184

4/1993
11/2002
7/2007

OTHER PUBLICATIONS

Arnold° Molina and Takeshi Shinohara, "Fast Approximate Match-
ing of Programs for Protecting Libre/Open Source Software by Using
Spatial Indexes", Seventh IEEE International Working Conferences
on Source Code Analysis and Manipulation2007, pp. 111-122.
Tommi Elo and Tero Hasu, "Detecting Co-Derivative Source
Code-An Overview", Nov. 2003, pp. 1-48.
Randy D. Smith, "Copy Dectection Systems for Digital Documents",
Aug. 1999, thesis submitted to Brigham Young University, Dept of
Computer Science, pp. 1-186.
Physical IP Products Overview-ARM Physical IP accessed at
http://www.artisan.com on Apr. 17, 2009, pp. 1-3.
Wiebe Hordijk et al, "Review of code clone articles", University of
Twente, The Netherlands, http: / /eprints.eemcs. utwente.n1/12257/
01/TR-CTIT-08-33.pdf, accessed on May 18, 2009.
Manber, Udi, "Finding Similar Files in a Large File System," 1994
Winter USENIX Technical Conference, Oct. 1993, pp. 1-10.
Lutz Prechelt et al., "Finding Plagiarisms among a Set of Programs
with JP1ag", Journal of Universal Computer Science, vol. 8, No. 11

(2002), Nov. 28, 2002. pp. 1016-1038.
Abdur Chowdury et al., "Collection Statistics for Fast Duplicate
Document Detection", ACM Transactions on Information Systems,
vol. 20, No. 2, Apr. 2002, pp. 171-191.

Ben Bonsall , "The Automatic Detection of Plagiarism", 2003/2004
3rd Year Research Project Dept. of Computer Science.
Chanchal Kumar Roy and Jame R Cordy, "A Survey on Softare Clone
Detection Research", Technoca; Report No. 2007-541, School of
Computing, Queen's University at Kingston, Ontario, Canada.
Ranier Koschke, "Survey of Research on Software Clones", Dagstuhl
Seminar Proceedings, Apr. 19, 2007, http://drops.dagstuhl.de/opus/
volltexte/2007/962, accessed May 21, 2009.
"Black Duck Software Customer Success Story", 2007, accessed @
http://www.nohau.se/products/blackduck/Intel CS-INTC-0806-
AD.pdf.
VSI Alliance, Virtual Component Identification, Soft IP Tagging
Standard, Version 2.0 (IPP 4 2.0,)Intellectual Property Protection,
Development Working Group, Released Sep. 2006.
Oasis Tooling Report from Black Duck Demo.
Martin Theobald et al., "SpotSigs: Robust and Efficient Near Dupli-
cate Detection in Large Web Collections", Porceedings of
SIGIR'08,Ju1. 20-24, 2008, Singapore.
Amelie Marian et al., "Change-Centric Management of Versions in
an XML Warehouse" In Proceedings of VLDB 2001, pp. 581-590,
accessed at http://citeseencist.psusedu/viewdoc/summaiy9doi=10.1.
1.101.229.
Sinha, S ; Mehendale, M. "Integrated IC design approach based on
software engineering paradigm" Custom Integrated Circuits, 1999.
Proceedings of the IEEE San Diego, CA, May 16, 1999-May 19,
1999, pp. 53-56, accessed at http://ieeexploresieee.org/search/
freesrchabstractj sp? arnumber=777242&isnumber=16877
&punumber=6310&k2dockey=777242@ieeecnfs.
Schindler, P. et al., "IP repository, a Web based IP reuse infrastruc-
ture" Custom Integrated Circuits, 1999. Proceedings of the IEEE
May 16, 1999-May 19, 1999, San Diego, CA, USA, 415-418,
accessed at http://ieeexploresieee.org/xpl/freeabs all.
j sp?arnumber=777316.
Katz, R. H. 1990. Toward a unified framework for version modeling
in engineering databases. ACM Comput. Surv. 22, 4 (Dec. 1990),
375-409, accessed at http://www.infufrgs.br/clesio/cmp151/
cmp15120031/Katz90.pdf.
Bernd Schurmann et al., "On Modeling Top-Down VLSI Design"
Proc. Int. Conference of Computer Aided Design, 1994, accessed at
http://citeseencist.psusedu/viewdoc/summaiy9doi=10.1.1.102.449.
Gregory Cobena et al., "Detecting Changes in XML Documents" in
ICDE, 2001, pp. 41-52, accessed at http: / /citeseerx.ist.psu.edu/
viewdoc/summaw9doi=10.1.1.2 .5474 .

Brenda S. Baker, "Deducing Similarities in Java Sources from
Bytecodes", Proceedings of the USENIX Annual Technical Confer-
ence (No. 98), 1998, pp. 179-190.
Prechelt, Lutz et al., "JP1ag: Finding plagarisms among a set of
programs," Technical Report 2000-2001, Mar. 28, 2000, pp. 1-44.
Matthias Rieger, "Effective Clone Detection Without Language Bar-
riers", Ph.D. thesis, University of Bern, Jun. 2005.

* cited by examiner

U.S. Patent Mar. 23, 2010 Sheet 1 of 20 US 7,685,545 B2

Functional
Spec
111

Logic
Design

121

Library of
Cell Designs

131

t
Foundry

Rules/Specs
141

t
Foundry

151

Logic
Synthesis

123

Ilr

Floor
Planning

133

If
Place &
Route

143

4.

Front End
Views

125

Back End
Views

145

F

F

Fabless -3 Customers
137 -A-

FIG. 1

U.S. Patent Mar. 23, 2010 Sheet 2 of 20 US 7,685,545 B2

Functional Spec
Constraints v2.1.3

211

Logic Design
Test Vlog v 1.2.0

221

Library
SPICE v1.8.9
Liberty v1.4.3a
LEF v2.6.8.2

GDSII v3.2.9.4
231

Foundry Rules
PDK v1.2.1

Interconnect v3.a.0.7
Parametics v7.3.g
Foundry IP v2.5.9

241

Foundry
151

4

Logic Synthesis
Sim Control v1.2.1.2

RTL v1.7.0
Netlist v2.1.7

223

Floor Planning
Net list v.2.1.6
DEF v1.6.5

Liberty v1.4.3a
LEF v2.1.2

233

Place & Route
Netlist v2.1.6
DEF v.1.6.5

Liberty v1.4.3a
LEF v2.1.2

GDSII
243

Front-end Views
Liberty v1.4.3b
LEF v2.1.2.1
RTL v1.7.0

Net list v2.1.7
225

Back-end Views
GDSII v.1.7.2.9

Netlist v1.6.5
245

Fab less
Customers

137

FIG. 2

U.S. Patent Mar. 23, 2010 Sheet 3 of 20 US 7,685,545 B2

Functional
Spec
111

4,

Logic
Design

121

Library of
Cell Designs

131

hi

Foundry
Rules/Specs

141

fa

Foundry
151

Logic
Synthesis - 123

I 1

Floor
Planning

133
.,

I 1

Place &

Route
143

L-

L _

4
Front End

Views
125

301

- _, Fabless
I Customers

137

Back End
Views

145

A

L _

Foundry
Audited

362

FIG. 3

U.S. Patent Mar. 23, 2010 Sheet 4 of 20 US 7,685,545 B2

Data
411

Data
431

/
Data / I/

I 451 I

/

Evaluator
433

/

/
Summary

473

\

A

FIG. 4

Digests
415

Digests
435

/

/

\

\I Digests 1

/

k 455
I

\ _ _ _ _ 1

Report
475

U.S. Patent Mar. 23, 2010 Sheet 5 of 20 US 7,685,545 B2

A
Design
Data
411

Parser
531

Normalizer Logic
533

Digester
534

Comparer
536

Reporter
537

/
Summary

473 t

\ V -__-----s%

t\

530

535

Report
475

Memory
415

FIG. 5

/

U.S. Patent Mar. 23, 2010 Sheet 6 of 20 US 7,685,545 B2

/ Design
Data \ 411

Stored
Digests

/ 415

Partition
611

Parse
612

Normalize
613

Summarize
616

Summary Report
4 473 475

Parse
712

Header/
Cell
721

Functional/
Not

Layers

722

Sortable
723 724

FIG. 7

FIG. 6

U.S. Patent Mar. 23, 2010 Sheet 7 of 20

FIG. 8A
library (name) -441- File Header Text
/* file comment */
date : sti-inu;
revision : string;
comment : string;
time unit : unit number;
leakage_power_unit : unit_number;
voltage unit unit number; File Header Text
current unit : unit number;
pulling resistance unit : unit number;
capacitive load unit (number,unit);
operating conditions (name)

lu table template (name) J.

variable_l : enum;
variable 2 : enum;
index 1 (string)
index 2 (string)

I

Cell Interface Text

US 7,685,545 B2

Annotated Sample Liberty File

LEGEND:

File header text
/*file comment text */

Cell body text
Cell interface text
/*cell comment text */

cell Lnamel j -4-Cell Body Text
/* cell comment */
area : expression;
auxiliary pad cell : enum;
cell footprint : string;
clock gating integrated cell : string;
dont use : enum;
dont touch : enum;
interface timing : enum;
is clock gating cell : enum;
is isolation cell : enum;
is level shifter : enum;
level shifter type : enum;
map only : enum;
pad cell : enum;
pad type : enum;
power cell type : enum;
P referred : enum;
retention cell : name;
timing model type : string;
use for size only : enum;
P in equal (strina.strina);
pin opposite (strina,string);
rail connection (name,name);
resource usage (name,number);
ff (name,name) }
ff bank (name,name,number) ...
generated clock (name) j ...
latch (name,name) ... I
latch bank (name,name,number) ...
tul (name) i ... I
cell leakage power : x r7;-.4-Cell Body Text

FIG. 8B

U.S. Patent Mar. 23, 2010 Sheet 8 of 20 US 7,685,545 B2

Cell Interface
Text

C
Cell Body Text

Cell Body Text

Din (name)
bit width : number;
complementary pin : string;
connection class : string;
dock : enum;
clock gate clock pin : enum;
clock gate enable pin : enum;
clock gate obs pin : enum;
clock gate out pin : enum;
clock gate test pin : enum;
direction : enum;
driver type : enum;
dont fault : enum;
fault model : string;
function : string;
has builtin pad : enum;
input map : string;
is pad : enum;
isolation cell enable pin : enum;
level shifter cell enable pin : enum;
map to logic : number;
multicell pad pin : enum;
nextstate type : enum;
pg function : string;
pin func type : enum;
power down function : string;
prefer tied : string;
primary output : enum;
Pulse clock : enum;
related ground pin : enum;
related power pin : enum;
signal type : enum;
state function : string;
std cell main rail : enum;
switch function : enum;
switch pin : enum;
test output only : enum;
three state : string;
x function : string;
power gating pin (string,enum);
retention pin (name,enum);
tlatch (string)
timing 0

Cell Interface Text

Cell Body Text

Annotated Sample Liberty File

LEGEND:

Cell body text
Cell interface text
/*cell comment text */

FIG. 8C

U.S. Patent Mar. 23, 2010 Sheet 9 of 20 US 7,685,545 B2

Cell Body Text

Cell Interface Text

Cell Body Text

Cell Interface Text

Cell Interface
Text

bus (name)
bus type : string;
direction : enum:
function : strip

I

(name)
direction : enum;
function : string;

Cell Body Text

Cell Interface Text

Cell Body Text

Annotated Sample Liberty File

FIG. 8D

Cell Interface Text

Cell Body Text Cell Body Text

bundle (n e)
members (string); Cell Interface Text
direction : enum;

Cell Interface Text function : string Cell Body Text

Cell Body Text _p..ain (name
direction : enum;

Cell Interface Text function : string;

Cell Body Te
Unrecorded Text

Cell Interface Text

Cell Body Text

scaled cell fname,name)
I

area : expression;

I
I

Cell Body Text

Cell Body Text
(name)

direction : enum;

} File header text

LEGEND:

Cell body text
Cell interface text
/*cell comment text */

U.S. Patent Mar. 23, 2010 Sheet 10 of 20 US 7,685,545 B2

Annotated Sample Verilog File

// file comment
primitive seq0(IQ,SN,nextstate,CK,NOTIFIER).,

output IQ;
input SN,nextstate,CK,NOTIFTER;
reg

table
1 0 r ? : ? O.

1 r ? : ? : 1.

end tab le
endprimitive

n attribute // comment in attribute
another attribute_*)

module XNOR2 X1

#(parameter MSB=3 LSB =O)
B, 21\1);_

a 1 *) (*2*) input A;
input 13;_

output ZNII

not(ZN, i 0);
/AL3

// a comment in a module
specify

ZAN) = (0A, 0.1);
ZNI = (0.1, 0.1);

endspecify
endmodule

FIG. 9

LEGEND:

File header text
II Comment text

Cell body text
Cell interface text

Unrecorded text

U.S. Patent Mar. 23, 2010 Sheet 11 of 20 US 7,685,545 B2

Annotated Sample VHDL File

- - Title : Standard VITAL TIMING Package
: $Revision: 1.3 $

PACKAGE VITALTiming IS
CONSTANT VitalZeroDelay : VitalDelavTvoe :=
ATTRIBUTE VITAL LevelO : BOOLEAN;
TYPE VitalTimingDataType IS RECORD

NotFirstFlaq : BOOLEAN;
RefLast : X01'

END RECORD1

comment recorded with function "minimum"
FUNCTION Minimum £ CONSTANT tl t2 : IN TIME) RETURN TIME IS

BEGIN
W tl < t2 THEN RETURN (tl); ELSE RETURN (t2); END M'.
END Minimum}

PROCEDURE VitalWireDelay L

SIGNAL OutSiq : OUT std ulogic;
SIGNAL InSiq : IN std ulogic:
CONSTANT twire : IN VitalDelayType01

VARIABLE Delay : TIME.
BEGIN

-- comment inside procedure "vitalwiredelay"
Delay VitalCalcDelay(In i InSig'LAST VALUE, twire

OutSig, <= TRANSPORT aSig AFTER Delay;
END VitalWireDelayi

END VITAL Timing;

FIG. 10A

LEGEND:

File header text
-- Comment text

Cell body text
Cell interface text

Unrecorded text

U.S. Patent Mar. 23, 2010 Sheet 12 of 20 US 7,685,545 B2

Annotated Sample VHDL File

ENTITY Latch IS
GENERIC (N : Natural := 21;_

PORT { Din : IN Word; Dout : OUT Word; Load, Clk : IN Bit
CONSTANT ,Setup : Time := 12 ns:
CONSTANT PulseWidtj Time := 50 ns:
USE Work.TimingMonitors.ALL;

BEGIN
-- even the body of the entity is recorded as interface text
ASSERT Clk='1' Q@ Clk'Delaved'Stable f.PulseWidth
CheckTiming Setup, Din, Load, Clk);

END ENTITY Latch}

ARCHITECTURE MC68000 OF Mc 68000 IS
PROCEDURE bclr d IS

PROCEDURE nestedL SIGNAL output : OUT std ulogic). IS
BEGIN

output := '0';
END nestedl

BEGIN
NULL;

END bc1r2=1:,
BEGIN --main loop

var.m(0) x"00";
END ARCHITECTURE MC 68000;

FIG. 10B

LEGEND:

File header text
-- Comment text

Cell body text
Cell interface text

Unrecorded text

U.S. Patent Mar. 23, 2010 Sheet 13 of 20 US 7,685,545 B2

Annotated Sample OASIS File

magic-bytes START

PROPERTY ...

PAD
CELLNAME string
CELLNAME string number
TEXTSTRING string
TEXTSTRING string number
PROPNAME string
PROPNAME string number
PROPSTRING string
PROPSTRING string number
LAYERNAME string number number ...

XNAME number string
CELL string

POLYGON byte layer-number datatype-number number number
number number PROPERTY

PLACEMENT byte string number number number number PROPERTY
TEXT byte string laver-number texttvpe- number number number

PROPERTY ...
XYABSOLUTE
XYRELATIVE
PAD
XGEOMETRY byte number layer-number datatype-number string

number number PROPERTY ...

XELEMENT number string

END

FIG. 11

LEGEND:

File header text
Cell body text
Non-geometry cell body text
Unrecorded text

U.S. Patent Mar. 23, 2010 Sheet 14 of 20 US 7,685,545 B2

Annotated Sample GDSil File

HEADER version
BGNLIB(' mcd time access time

LIBDIRSIZE number
SRFNAME filename
LIBSECUR numbers...
LIBNAME name
REFLIBS filenames
FONTS filenames
ATTRTABLE filename
GENERATIONS number
FORMAT number
MASK string ... ENDMASKS
UNITS number number Comments

BGNSTR (Mcd time access time
STRNAME cell/

(STRCLASS number)11
BOUNDARY ELFLAGS number PLEX number LAYER number DATATYPE number

XY number number number number
PROPATTR number PROPVALUE striae ENDEL

BOX ELFLAGS number FLEX number LAYER number BOXTYPE number
XY number number number number
PROPATTR number PROPVALIJE string ENDEL

TEXT ELFLAGS number PLEX number LAYER number TEXTTYPE number
PRESENTATION number PATHTYPE number WIDTH number
STRANS number MAG number ANGLE number
XY number number STRING string
PROPATTR number PROPVALUE string ... ENDEL

NODE ELFLAGS number PLEX number LAYER number NODETYPE number
XY number number number number ... STRING string
PROPATTR number PROPVALUE string ... ENDEL

SREF ET,FT,AGS number PLEX number SNAME string STRANS number
MAG. number ANGLE number XY number number
PROPATTR number PROPVALIJE string ENDEL

ENDSTR

ENDLIB

FIG. 12

LEGEND:

File header text
Cell body text
Non-geometry cell body text
Unrecorded text

U.S. Patent Mar. 23, 2010 Sheet 15 of 20 US 7,685,545 B2

Annotated Sample SPICE Net list File

* a simple inverter
.global vdd
.param Ip=0.35 In=0.3 wp=0.7 wn=0.7
.options scale=lu

.subckt inverter I zn

drain gate source bulk
mpullup zn i Did ydsl. pmos w=10.0 1=lp

mpulldown zn nmos w=4.0
,ends

.end
* this .options command is not processed:
.options scale=lu

FIG. 13

LEGEND:

File header text
Cell body text
Cell interface text
Unrecorded text
* Comment text

U.S. Patent Mar. 23, 2010

a sample LEF file fragment
VERSION 5.6
NAMESCASESENSITIVE ON
BUSBITCHARS
DIVIDERCHAR "I"

UNITS
DATABASE MICRONS 2000 ;

END UNITS
MANUFACTURINGGRID 0.001 ;.

LAYER M1
TYPE ROUTING
WIDTH 0.065 ;.

SPACING 0.065 ;.

PITCH 0.14 ;.

END Ml

SITE sitel
SYMMETRY y
CLASS core ;
SIZE 0.19 BY 1.4 ;

END sitel

Sheet 16 of 20 US 7,685,545 B2

Annotated Sample LEF File

LEGEND:

File header text
Cell body text
Cell interface text
Unrecorded text
Comment text

MACRO INV X1

a fragment of a simple inverter description
CLASS core ;

ORIGIN 0 0 ;

SYMMETRY X Y ;

SITE sitel ;

SIZE 0.38 BY 1.4 ;

FOREIGN cell2 204.6 302.1 FE ;

EEQ ce113 ;

PIN A
DIRECTION INPUT ;

PORT LAYER M1 ;

POLYGON 0.04 0.465 0.14 0.465 0.14 0.6 0.04 0.6 ;

END

END A
OBS

LAYER M1 ;

POLYGON 0.05 1.015 0.115 1.015 0.115 1.09 0.43
END
DENSITY

LAYER M1 ;

RECT 0.06 0.10 0.12 1.22 75.0 ;

LAYER M2 ;

RECT 0.06 0.10 0.12 1.22 25.0 ;

END

PROPERTY propl "abc"
END INV X1

END LIBRARY

FIG. 14

1.09 ;

U.S. Patent Mar. 23, 2010 Sheet 17 of 20 US 7,685,545 B2

a small test DEF file, based in part on the sample
in the LEF /DEF manual
DESIGN DEMO4CHIP ;
TECHNOLOGY DEMO4CHTP ;
UNITS DISTANCE MICRONS 100 ;
DIEAREA k 0 0) 4286200 81362000)
ROW rovv_O CORE 400 900 FS DO 85 BY 1

ROW row _1 CORE 400 2100 N DO 85 BY 1

COMPONENTS 5 ;
- CORNER1 CORNER ;
- CORNER2 CORNER ;
- CO1 IN1X ;
- CO2 IN1 Y ;
- Z38A05 DFF3 ;

END COMPONENTS
NETS 2 ;
- VDD Z38A05 SN 1 Z3805 CN) ;
- Z38A05 Z38A05 QN) k CO1 B 1 ;
END NETS
BLOCKAGES 2 ;
- LAYER M2

+ COMPONENT cl
POLYGON 25 20) * 300) 50

- PLACEMENT
RECT 160 120) 100 320 l
RECT L 90 440) f 220 600) ;

END BLOCKAGES
SLOTS 1 ;
- LAYER ml

POLYGON k 40 30) k 90 *) k * 120) ;
END SLOTS

Annotated Sample DEF File

LEGEND:

File header text
Cell body text
Cell interface text
Unrecorded text
Comment text

STEP 300 1200 ;
STEP 300 1200 ;

)))

FIG. 15

20

U.S. Patent Mar. 23, 2010 Sheet 18 of 20 US 7,685,545 B2

Annotated Sample Structured Text File

#!,/bin/sh -f
dummy.sh - dummy shell script for testing structured file parser \
(with a continuation inside a comment)
line with a trailing 'V but with white space following it: \I-
if (Si "some \" text")ul_ # a comment in the middle of a line

multi_space_indent twice in the line
fi

completely blank lines are ignored:

'a string inside single quotes - should not reduce the spaces'

FIG. 16

LEGEND:

File header text
Cell body text
Cell interface text
Unrecorded text
Comment text
1_ Space character

U.S. Patent Mar. 23, 2010 Sheet 19 of 20 US 7,685,545 B2

Annotated Sample User-parsed File

HEADERTEXT (layl) first line of header
COMMENT first file comment line
HEADERTEXT second line of header
CELL ce112
INTERFACE (lay2) i1 first interface
HIERCELL
CELLNONGEOM(lay3) non-geometry line 1

INTERFACE (layl) i3 third interface
CELLTEXT first line of ce112

CELLNONGEOM(lay2) non-geometry line 2

INTERFACE (layl) b fourth interface - should be first when sorting
COMMENT comment in cell2
CELLTEXT second line of ce112

CELLTEXT early line of ce112 for sorting
INTERFACE (lay3) i2 second interface
HEADERTEXT third line of header - cell ended
HEADERTEXT fourth line of header - will be before third when sorted
COMMENT second file comment line
CELL celll

CELLTEXT (lay4) firstlineofceill
INTERFACE L first interface of ce111

INTERFACE j2 second interface of ce111

CELLNONGEOM non-geometry line 3, no layer number

FIG. 17A

LEGEND:

File header text
Cell body text
Cell interface text
Unrecorded text
Non-geometry cell body
text
Comment text

U.S. Patent Mar. 23, 2010 Sheet 20 of 20 US 7,685,545 B2

Annotated Sample User-parsed File

COMMENT first file comment line
CELL cell2

COMMENT comment in cell2
INTERFACE (layl) h3 fourth interface - should be first when sorting
INTERFACE (layl) i3 third interface
INTERFACE (lay2) i1 first interface
INTERFACE (lay3) i2 second interface
CELLTEXT early line of cell2 for sorting
CELLTEXT first line of ce112

CELLTEXT second line of cell2
CELLNONGEOM(lay2) non-geometry line 2

CELLNONGEOM(lay3) non-geometry line 1

COMMENT second file comment line
CELL celll
INTERFACE jl first interface of celll
INTERFACE 2 second interface of celll
CELLTEXT (lay4) first line of celll
CELLNONGEOM non-geometry line 3, no layer number
HEADERTEXT fourth line of header - will be before third when sorted
HEADERTEXT second line of header
HEADERTEXT third line of header - cell ended
HEADERTEXT (layl) first line of header

FIG. 17B

LEGEND:

File header text
Cell body text
Cell interface text
Unrecorded text
Non-geometry cell body
text
Comment text

US 7,685,545 B2
1

METHODS AND DEVICES FOR
INDEPENDENT EVALUATION OF CELL
INTEGRITY, CHANGES AND ORIGIN IN

CHIP DESIGN FOR PRODUCTION
WORKFLOW

RELATED APPLICATIONS

This application is a continuation of U.S. patent applica-
tion Ser. No. 12/482,296, which application claims the benefit
of U.S. Patent Provisional Application No. 61/131,601. The
priority provisional application is incorporated by reference.
This application is related to the PCT Application No. 2009/
046913 of the same title, filed on 10 Jun. 2009. The PCT
Application is incorporated by reference.

BACKGROUND OF THE INVENTION

The technology disclosed relates to the granular analysis of
design data used to prepare chip designs for manufacturing
and to identify similarities and differences among parts of
design data files. In particular, it relates to parsing data and
organizing it into canonical forms, digesting the canonical
forms, and comparing digests of design data from different
sources, such as chip-level designs and design template
libraries. Organizing the design data into canonical forms
generally reduces the sensitivity of data analysis to variations
in the data that have no functional impact on the design. The
details of the granular analysis vary among design languages
and data file formats used to represent aspects of a design.
Depending on the desired analysis and the design languages,
granular analysis may include partitioning and reporting
design files by header/cell portions, by separate handling of
comments, by functionally significant/non-significant data,
by whitespace/non-whitespace, and by layer within a unit of
design data. The similarities and differences of interest
depend on the purpose of the granular analysis. The compari-
sons are useful in many ways.

The design of an integrated circuit is an iterative process
involving hundreds of thousands of cell and block views,
artifacts, and their dependencies. The views, artifacts, and
their dependencies represent the developing functional, elec-
trical and physical state of an integrated circuit.

Cells and blocks proceed through the design process at
different rates, starting with internal cell-level development
and release from a design template vendor and cycling
through multiple releases or iterations. Keeping track of the
most recent version of blocks, libraries, cells, and artifacts is
difficult, at best. For example, when someone discovers a
yield problem in a product that uses a particular design tem-
plate, the company will have difficulty determining what
other projects use that design template.

The potential for use of an obsolete cell or library is every-
where. Design tools have their own configuration files, and
machines have their own search paths and disk mount points.
A design or tapeout team may not find an out-of-date file or
link until a problematic design comes back from manufactur-
ing.

Complex multi-level designs bring new problems. A frozen 60

block, which was tentatively completed by the design team,
might be using an out-of-date version of a library cell. More-
over, a designer might avoid a name conflict with another
designer's cell by simply renaming a cell, without verifying
whether the two cells are equivalent. Renaming the cell 65

decouples it from future library updates and cell tracking
mechanisms.

5

10

15

20

25

30

35

40

45

50

55

2
Designers have made unauthorized modifications to design

templates provided by vendors, which resulted in failure dur-
ing production and potentially voided a warranty otherwise
available from the design template vendor. Designers might,
for example, think that modifications would improve the per-
formance or functionality of the template, only to find out that
they produce the opposite outcome, such as failure in produc-
tion. Furthermore, third party vendors do not warrant modi-
fications to their design templates. If something does occur
like this, it becomes difficult to determine the cause and to
identify who is responsible.

When a design is ready for release to production, there can
be as many as 40,000 unique cells. With designs as complex
as they are today, there is a greater chance that some library
cells used to prepare the design are not up to date. The tapeout
team cannot determine with certainty whether the cells in the
design it is about to send to the mask shop represent the most
recent available versions. There is no way today to ensure that
a tapeout candidate uses all of the most recent data or ensure
that no one made unauthorized modifications to certified lay-
outs.

The known approaches to tracking cell data during the
design of an integrated circuit track data files that contain
collections of cells. To find cell changes within a file, design-
ers resort to a manual analysis of millions of lines of data
typically using a differencing tool. Running a difference
check is not effective across design languages or data file
formats, because differencing tools typically perform text
matches that do not consider the design language or the data
type used to represent the design. A differencing program
typically subtracts the differences between files, without
analysis of whether the changes have a functional impact on
the chip being produced or whether they are significant. Dif-
ferencing tools have a particularly difficult time with two
binary data files.

Examples of design tools that apparently include differenc-
ing tools include ClearCase, DesignSync and IC Manage,
which are described by their respective sellers. Because such
tools operate at a file level, rather than a cell level, a designer
using a differencing tool would practically need to extract the
two sections of code to be compared into new files and com-
pare the files directly. Or, the designer might rely on file
metadata, in which another designer has kept notes about the
course of design efforts. Neither of these approaches is very
robust or efficient.

Some design template suppliers add tags to their templates.
The tags identify the templates as theirs with respect to other
design templates that may be part of an integrated circuit
design that are not their. The tags are used to count the
instances of design templates used in a design and then the
users of the templates pay royalties based on the number of
instances. The standard for the industry approach to the use of
this tagging method is maintained by the by the VSI Alli-
anceTM. Version 2.0 of the standard, entitled "Virtual Com-
ponent Identification Physical Tagging Standard," accessed
on May 21, 2009, describes the way to use the tagging meth-
ods. This standard describes text tags to be embedded in
GDSII text or comment lines. The VSI Alliance includes
IBM, Intel, ARM, Freescale Semiconductor, TSMC and oth-
ers. Third party IP suppliers have developed a scanner that can
detect and report design templates if the tags remain part of
the design template data. If the tags are removed or obfus-
cated in some way, the owners of the design templates will not
be compensated in terms of royalties.

An opportunity arises to develop new tools for analysis of
design data, which facilitate granular evaluation of design
data at various junctures in the design work flow. Better, more
error free, more resilient and transparent work flows and
resulting product designs may result.

US 7,685,545 B2
3

SUMMARY/OVERVIEW

The technology disclosed relates to granular analysis of
design data used to prepare chip designs for manufacturing
and to identification of similarities and differences among
parts of design data files. In particular, it relates to parsing
data and organizing it into canonical forms, digesting the
canonical forms, and comparing digests of design data from
different sources, such as chip-level designs and design tem-
plate libraries. Organizing the design data into canonical
forms generally reduces the sensitivity of data analysis to
variations in the data that have no functional impact on the
design. The details of the granular analysis vary among
design languages used to represent aspects of a design.
Depending on the desired analysis and the design languages,
granular analysis may include partitioning design files by
header/cell portions, by separate handling of comments, by
functionally significant/non-significant data, by whitespace/
non-whitespace, and by layer within a unit of design data. The
similarities and differences of interest depend on the purpose
of the granular analysis. The comparisons are useful in many
ways. Particular aspects of the present invention are described
in the claims, specification and drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates, at a high-level, an integrated circuit
design environment.

FIG. 2 illustrates the proliferation of versions and some of
the file formats associated with the blocks in FIG. 1.

FIG. 3 illustrates junctures in the design process at which
the technology disclosed can usefully be applied.

FIG. 4 depicts an evaluator that digests canonical represen-
tations of parts of multiple data files.

A canonical cell digest or design unit digest is generated by
processing a file that contains design data, as illustrated in
FIG. 5.

FIGS. 6 and 7 provide a high-level flowchart of some
aspects of these methods.

FIGS. 8A-8D illustrate a sampling of the possible header
and cell statements in a Liberty file.

FIG. 9 is an annotated example of a Verilog.
FIG. 10A-10B illustrate an annotated sample VHDL file.
FIG. 11 is an annotated sample OASIS® file.
FIG. 12 is an annotated sample GDSII file.
FIG. 13 is an annotated version of a SPICE file.
FIG. 14 is an annotated sample LEF.
FIG. 15 is an annotated version of DEF.
FIG. 16 is an annotated version of a structured text file.
FIGS. 17A-17B are annotated examples of user parsed

files.

DETAILED DESCRIPTION

The following detailed description is made with reference
to the figures. Preferred embodiments are described to illus-
trate the present invention, not to limit its scope, which is
defined by the claims. Those of ordinary skill in the art will
recognize a variety of equivalent variations on the description
that follows.

Overview
Environment of Integrated Circuit Design
The environment of circuit design presents even more chal-

lenges and opportunities for improvements than described in
the Background section, above. A successful Integrated Cir-
cuit (IC) tapeout requires that cells and blocks of the IC

4
design are correct. Using the wrong version of a circuit,
whether a leaf cell with a few transistors or a large hierarchi-
cal design block, can cost millions of dollars and months of
delay.

5 Chip-level design template management systems, post
logic synthesis, track file-based collections of design data:
cells, versions of cells, blocks, and chip-level design blocks.
It appears that design data management systems cannot effec-
tively determine or summarize what has changed within a

10 given collection of cell and block data, found inside a file.
Chip-level design data management systems cannot track at
this level of granularity, because cells and blocks and chip-
level design blocks are created by different design tools and
different versions of design tools, and are represented using

15 different design languages and data file formats. In a compli-
cated SOC design, design blocks may come from different
design groups using different design tools and versions of
tools. The deficiencies perceived in current design manage-
ment tools leave them unable to evaluate cell equivalence at

20 the cell level or to report what has changed within individual
cells.

Existing design data management tools appear not to dis-
tinguish between text data and object data and not to sort the
data or otherwise produce a canonical representation of the

25 design data. In turn, they lack an auditing capability that
would be useful to project managers who are interested in
verifying that the cells in an IC design are of the latest
approved version, in ensuring that the cells have not been
improperly copied or imported, or in determining whether a

30 proposed cell design update will be usable in a design
approaching tapeout.

In addition, design data management systems do not pro-
vide a way to validate the final GDSII or OASIS® file
released to the mask shop. They all assume that with strict

35 enough controls, no "stray" layouts will get into the final
design.

Cells and Blocks as Units of Design
Chip design makes heavy use of cells, which are grouped

into blocks. A cell is associated with a set of data files that are
40 sometimes called cell "views." Cell views contain functional

or physical representations of the cell. Typically, there are two
or more views of a cell that present design data in design
languages such as SPICE, Extracted Netlist, GDSII, Liberty,
Vital and/or LEF. Different views specify different types of

45 information about a cell. Different electronic design automa-
tion (EDA) tools operate on different views and the data they
contain. Some tools manipulate detailed polygon data, while
others work only with simplified polygon representations.
Performance estimation tools do not work with polygons at

so all they use timing information. If the versions of a cell used
by the various tools are not consistent, there is a substantial
risk that a design using that cell will fail.

A chip-level design block may contain several cell blocks
of cells. Cell blocks may contain references to cells and to

55 sub-blocks that contain other cells and so on. References may
be nested. References to cells are eventually expanded when
the chip is fabricated. During the design process, use of ref-
erences greatly reduces the amount of memory and disk space
required to represent the design. A memory area on a chip, for

60 example, will contain the definition of one or more core bit
cells, row and column cells that read and write bit cells, and a
top-level cell that references the core bit cell, the row cells,
and the column cells. A 65,536 bit memory (a "64 K bit
memory") will typically have one bit cell definition, refer-

65 enced 65,536 times; two column driver or sensing cell defi-
nitions (top and bottom) referenced 256 times; two row driver
or sensing cell definitions referenced 256 times; and assorted

US 7,685,545 B2
5

decoding circuits. Hierarchical design can further reduce the
number of references; a row of the memory could be defined
to contain references to left and right row cells plus 256
references to the core bit cell, and then this row could be
referenced 256 times. Fewer than 1,000 nested references
could be used, instead of 65,536 cell references.

When masks (tooling for fabricating cells on chips) are
made or direct writing is used, cell references are expanded.
In the memory example above, no matter how the cell hier-
archy is specified, there will be 65,536 core bit cells printed
on the wafer, copied from the single original cell. Before
expansion, a design data file may be tens of gigabytes in size;
after expansion, the file can be many times larger. Only a few
tools need to work with the fully expanded data, including the
mask data preparation software workstation and possibly the
rule checking system that checks for design rule violations in
the chip design.

Some views use file formats that provide for multiple
"cells" called a cell collection within a single file. This adds
another dimension of complexity: the version of a cell col-
lection file in one of these formats depends on the versions of
all of the cells inside it. A new version of a library may have
a new cell collection simply because a single cell inside has
changed.

Complex design templates such as processor cores tend to
have many associated artifacts. Typically, artifacts are stored
in a separate file. These may be performance constraint files
for logic synthesis, behavioral description files for simula-
tion, or log files from the tools that constructed of the cells. All
of these files are supposed to be synchronized with the major
layout and timing views of the cell.

More subtly, some views of cells can change even when the
representation of those cells (e.g. layout) has not changed. For
example, timing models may change if a change is made to
the fabrication process at the foundry, even without changing
the physical layout of the cell, or simply because more infor-
mation becomes available about average performance of
products from the foundry.

How Canonical Cell Digests ("CCDs") and Canonical
Design Unit Digests ("CDUDs") Work

Canonical cell digests and, more generally, canonical
design unit digests, are outputs of a new tool that will be
useful in the IC design process. The canonical digest tools
disclosed in this document generate file-wide, cell-by-cell,
and layer-by-layer digests for common EDA file formats and
can be extended to other file formats. These tools can distin-
guish between trivial changes such as whitespace or comment
modifications and major changes such as new interfaces to
cells. It allows matching of cells to a repository of versioned
cell digests to detect unauthorized use of untested cells, obso-
lete cells, changes to cells, or copies of cells under different
names At a high level, FIG. 4 depicts an evaluator 433 that
digests 415, 435, 455 canonical representations of parts of
multiple data files 411, 431, 451. Digests representing two or
more files are compared. In this context, for patent purposes,
the term "file" is used generically, as two files of data might be
stored in a single database. Within the design industry, design
files are typically stored in a file hierarchy, such as a Windows
or Linux file system. The evaluator 433 compares the digests
and generates a summary 473 or report 475 of similarities
and/or differences in digests that are of interest for a particular
purpose.

A canonical cell digest or design unit digest is generated by
processing a file 411 that contains design data, as illustrated in
FIG. 5. This design data ultimately contributes to production
of a physical circuit, also called an integrated circuit or a chip.
In one embodiment, a parser 531 running on a processor 530,

6
normalizer logic 533 running cooperatively with the parser,
and a digester 534 running on the processor generated syntax
trees 532 and canonical cell digests that are stored in memory
415. The canonical organization of a cell digest depends on

5 the design language being parsed. These processors generate
at least one digest per cell. The digests, for instance, may be
32 or 64 bit codes generated from canonical output of the
parser and normalizer logic. A variety of hash functions can
be used to create the digests, such as CRC, MD5 and others.

10 The digester can generate separate digests for header and
body parts of a cell and generate digests by layer within a cell.
Comments, whitespace and functionally significant data can
be separately digested. Digests can be stored persistently for
later use. For instance, digests of an approved library can be

15 generated and stored for repeated comparison to digests of
design projects.

Comparison of canonical digests is a powerful tool that
allows a user to understand small differences between design
elements in large files. As indicated above, design files, espe-

2o cially files containing binary polygon data, can be enormous.
Thousands or hundreds of thousands of cells (or more, with
large memories, for instance) are contained in the design file.
With this much data, false alarms are a real problem. One use
of canonical cell digests is to identify and allow filtering of

25 detected changes based on their functional significance and,
sometimes, their source in the design process.

A comparer 536 running on a processor 535 and a reporter
537 running on the processor operate on digests stored in
memory 415 by the digester 534. Typically, either two or three

30 groups of files 411 are compared. For the sake of simplicity
we refer to a group of files as a "file" and expect that the reader
will understand that the actual number of files compared is
arbitrary. "Two files" means two or more files. Two files may
represent an old library of cells and a new library of cells.

35 Three files may be a design file, an approved library of cells
and a collection of rejected cell designs that will cause failure
if the rejected designs are used in a product. The comparer
checks digests for one file against digests for one or more
other files. The reporter, responsive to filtering criteria,

40 reports matches between cells in the respective files, near-
matches, or cells in one file that are not found in the other files.
These reports may be summaries to memory 473, such as a
database or other intermediate format that another program
can process, or to a report 475 that is viewable by a human

45 operator, either on a display or on paper. There are a wide
variety of use cases for comparing files to produce useful
reports.

Some of the use cases for this technology are:
Understanding an updated cell design library

50 Evaluating the impact of an updated cell library on designs
in process

Finding unapproved and/or bad cells in design data before
place and route, before tapeout and at other design mile-
stones

55 Identifying renamed cells in design data and verifying that
they match approved cell templates

Detecting cell modifications that jeopardize warranties of
the vendors who provide the templates

Counting the number of cells in a production design for
60 which royalties are owed

From these use cases, one should be able to see how powerful
the disclosed canonical digests will be as a tool for circuit
designers.

65 A prototype canonical digest tool processes the following
major published EDA design data formats, and can readily be
extended to other formats:

US 7,685,545 B2
7

Open Artwork System Interchange Standard (OASIS ®)
geometric layout files

Calma GDSII geometric layout files
Synopsys Liberty library circuit timing model files
Verilog Register Transfer Level description files
VHSIC Hardware Description Language (VHDL) Regis-

ter Transfer Level description files
Simulation Program with Integrated Circuit Emphasis

(SPICE) sub-circuit netlist files
Cadence Library Exchange Format (LEF) layout descrip-

tion files
Cadence Design Exchange Format (DEF) design descrip-

tion files
"Structured Text" scripting and control files
Unstructured (arbitrary or unknown format) text files
Unstructured (unknown format) binary files
The tool also provides an application programming inter-

face (API) for computing canonical cell digests for propri-
etary data formats ("User-parsed" files). A parser running on
a processor identifies significant design objects within the
files and generates digests for cells, interfaces to cells, cell
bodies, and file header data outside of any cell.

Comments within cells or in the file header are marked
separately so that changes in only the comments can be iden-
tified. The data within file headers, cell interfaces, and cell
bodies is furthermore separated by layer when appropriate so
that changes to individual layers are obvious. When data
within a file format is order-independent and sorting is
requested, the canonical cell digest tool sorts only the data
that is order-independent, leaving order-dependent data in its
original order.

Digest Calculation Basics
Three general classes of objects within a design data file to

which canonical cell digests can be applied are files, file
headers, and cells. File-level digests can be calculated from
all of the data in the file. Canonical cell digests are digests of
canonically reorganized data for the cells or modules of a file.
Canonical file header digests are digests of canonically reor-
ganized data that are not in any cell or module. Depending on
the design language or data file format and on user selected
options, more or less reorganization is applied before digests
are generated. In this disclosure, "canonical design unit
digests" collectively refers to digests applied to file header
and cell data. In the many examples provided, one will see
that the design data in files can generally be treated as header
or cell data, even in formats that have only one or the other
category of data.

Canonical cell digests can refer to multiple digests calcu-
lated for parts of a cell: comment data, layer data, and non-
layer data. Comment data is non-functional data (usually text)
as determined by the specification for a given file format. For
most formats, changes in comment digests can be ignored.
Layer data has a distinct layer name or number that is mean-
ingful to tools reading the file, such as first layer metal or
polysilicon. Non-layer data represents objects that do not
have a layer number, such as cell placements (instantiations)
in GDSII or OASIS®, or objects in files that are not divided
by layer number.

Layer data is further separated into geometry data and
non-geometry data. GDSII and OASIS® files have text and
node name records that are not geometric data but still have
layer numbers. Changes to node and text information are not
necessarily as significant as changes to geometric data such as
paths or polygons, so node and text digests are recorded
separately. A user may choose to treat node and text data with
the same importance as geometric data, but it is not necessary
to do so.

8
Organization of Files and Digests
For digest computation purposes, a file most generally

includes an optional header and zero or more cells. Within the
file header (which may include text between cells if that text

5 does not clearly belong to a cell, such as when a cell has a
distinct end record) there are comments plus header data,
either on specified layers or explicitly reported as "non-layer
data" such as when a file format does not have layer names or
numbers.

to Cells have an optional interface, an optional body, and
optional comments. At least one of these three classes will be
present in a cell. Cell interface data is either on named layers
or numbers, or it is explicitly reported as "non-layer data".

Cell body data is either on named or numbered layers, or it
15 is explicitly reported as "non-layer data". The cell body (but

not, in the present implementation, the cell interface or file
header) may have "non-geometric data", which for a geomet-
ric data format is information that does not specify polygons,
rectangles, wires, etc. Typically non-geometric data would be

20 properties and text records (e.g. in a GDSII or OASIS® file).
If the data format is not geometric (e.g. Liberty timing mod-
els), then all data is non-geometric even though it is not
recorded in this class-callers are expected to know. Usually
this is obvious because all data will be "non-layer". This is an

25 implementation decision and is not critical to the invention.
As examples, the reports may have general or detailed

categories. An example of general categories follows:

File:

30 file header comments

file header non-layer

file header layer . . .

cell . . .

35
Cell:

cell comments

cell interface non-layer

40 cell interface layer . . .

cell body non-layer

cell body layer . . .

45
cell body non-geometric non-layer

cell body non-geometric layer . . .

An example of more detailed categories follows:

File:
50

File

File non-whitespace

File whitespace

55 File Header (not sorted: insufficient memory)

File Header (no Sort requested)

File Header Comments

60
File Header non-layer data ((-1)

File Header layer-by-layer

Cell

Cell (Sorted)
65

Cell (not sorted: insufficient memory)

Cell (no Sort requested)

US 7,685,545 B2
9

Cell without Comments

Cell Comments

Cell Interface

Cell Interface including File Header

Cell Interface excluding File Header

Cell Interface non-layer data (-1)

Cell Interface layer-by-layer

Cell Body non-layer data (-1)

Cell Body layer-by-layer Geometry
Cell Body Layer-by-Layer Non-Geometry. GDSII

Example
As an example, consider the digest report generated by the

command-line canonical digest tool for a small GDSII file:

File "testfiles/sigtest.gds": GDS format
Arguments: -grid le-9 -mem 64 -nosort

db7be73c File
(none) File non-Whitespace
(none) File Whitespace

File Header (not sorted)
8f078078 File Header with Comments
3289c53f File Header without Comments
bd8e4547 File Header Comments
3289c53f File Header non-Layer

Cell "Structure 1" (not sorted)
a7100492 Cell with Comments
3d4d7fbf Cell without Comments
9a5d7b2d Cell Comments
7b78aab4
15546763
fda35715
aec2e57d

Cell "Structure
cd2b135d
d2c6c150
lfedd20d
0f4c0817
d4133b6c
0999f22b

Cell "Structure
a7100492
3d4d7fbf
9a5d7b2d
7b78aab4
15546763
fda35715
aec2e57d

Cell "Structure
70262033
5242eac1
2264caf2
7b78aab4
7a5bf2ld
fda35715
aec2e57d

Cell Body non-Layer
Cell Body Layer 3

Cell Body Layer 42
Cell Body non -Geometric Data Layer 3

2" (not sorted)
Cell with Comments
Cell without Comments
Cell Comments
Cell Body Layer 1

Cell Body Layer 19
Cell Body non-Geometric Data Layer 5

3" (not sorted; hierarchical)
Cell with Comments
Cell without Comments
Cell Comments
Cell Body non-Layer
Cell Body Layer 3

Cell Body Layer 42
Cell Body non-Geometric Data Layer 3

4" (not sorted; hierarchical)
Cell with Comments
Cell without Comments
Cell Comments
Cell Body non-Layer
Cell Body Layer 3

Cell Body Layer 42
Cell Body non-Geometric Data Layer 3

Processing of a reference file testfiles/sigtest.gds generated
a 32-bit file-level digest of db7be73c (hexadecimal). When
the digest for the entire file is stored in a digest repository, one
can use this digest to determine quickly whether any changes
had been made to the file since digests were last processed and
stored in a digest repository.

GDSII is a binary file format. A file containing binary data
does not contain whitespace, therefore the digests of
whitespace and non-whitespace digests are not reported.
Where applicable, non-whitespace digests can be reported as
a means to determine whether a change to a data file origi-
nated from a change in whitespace only. For Library cell
views, whitespace should not change. Symbolic data within a

10
file is often separated by whitespace (space characters, tabs,
or newlines), and typically the amount of whitespace is not
significant. To help determine whether changes to symbolic
data had been made, the prototype canonical digest tool com-

5 putes digests for all whitespace characters in the file and for
all non-whitespace characters in the file. Note that a
whitespace digest captures the amount of whitespace byte-
by-byte irrespective of its location. For instance, the same
whitespace (using a single space character) and non-
whitespace digests will be reported for the two strings "abc
der and "abcd ef."

Most data within a GDSII file is within the cells ("struc-
tures" in GDSII nomenclature), but there are some records
outside of any cell. This data is digested in file header digests.
This header data can be partitioned by type, either as file
header comments or file header non-layer data; there are no
layer numbers assigned to the data within a GDSII file header.
Details of the interpretation and recording of GDSII data are
described below.

For consistency, a common reporting format can be used or
digests can be saved in a database. In this sample, the word
"(none)" is printed in place of a digest when no data has been
recorded for that digest type. Two examples of this are seen in
the file digest block within the report.

A composite file header digest is recorded along with the
25 individual file header digests. This is computed by the com-

mand-line utility for the user's convenience; in one embodi-
ment, it is simply the exclusive-OR (XOR) of the individual
file header canonical cell digests. It is also possible to com-
pute the composite file header digest at the same time that cell

30 digests are being computed. The composite file header digest
can be used to help detect changes in file header data.

Below the file header digest block appear individual cell
digest blocks. The cell digests, as shown, include a comment
digest, geometry digests for layer and non-layer data, non-

35 geometry digests for layer and non-layer data, and composite
cell digests for the cell with and without comments. As with
the composite file header digest, the composite cell digest is
generated in one embodiment by exclusive ORing together
the other cell digests. They can be used to help detect changes

40 in cell data.
The digests for the above GSDII file were generated with-

out sorting the data. This is reported in the program argument
list printed right below the file name and along with blocks of
digests.

45 Cells Structure 3 and Structure 4 are hierarchical, mean-
ing they have SREF or AREF references to other cells in
them. Generally speaking, digests for place and route cells
and other cells high in a design database hierarchy will
change much more often than digests for the leaf cells they

50 reference. Knowledge of whether a changed cell is a leaf cell
can help one determine the significance of digest changes.

Looking at the canonical cell digests for cells Structure 1

and Structure 3, one sees that all of the digests for these cells
are identical. This indicates a match in the polygon and struc-

55 ture (cell) reference data for these two cells. The digests for
Cells Structure 2 and Structure 4 do not match those for
any other cells.

If sorting is requested, different digests are generated for
some parts of the cells:

10

15

20

60

File "testfiles/sigtest.gds": GDS format
Arguments: -grid le-9 -mem 64 -sort

db7be73c File
65 (none) File non-Whitespace

(none) File Whitespace

US 7,685,545 B2
11

-continued

File Header (sorted)
8f078078 File Header with Comments
3289c53f File Header without Comments
bd8e4547 File Header Comments
3289c53f File Header non-Layer

Cell "Structure 1" (sorted)
a7100492 Cell with Comments
3d4d7fbf Cell without Comments
9a5d7b2d Cell Comments
7b78aab4
15546763
fda35715
aec2e57d

Cell "Structure
cd2b135d
d2c6c150
lfedd20d
0f4c0817
d4133b6c
0999f22b

Cell "Structure
a7100492
3d4d7fbf
9a5d7b2d
7b78aab4
15546763
fda35715
aec2e57d

Cell "Structure
1f29b54d
3d4d7fbf
2264caf2
7b78aab4
15546763
fda35715
aec2e57d

Cell Body non-Layer
Cell Body Layer 3

Cell Body Layer 42
Cell Body non-Geometric Data Layer 3

2" (sorted)
Cell with Comments
Cell without Comments
Cell Comments
Cell Body Layer 1

Cell Body Layer 19
Cell Body non-Geometric Data Layer 5

3" (sorted; hierarchical)
Cell with Comments
Cell without Comments
Cell Comments
Cell Body non-Layer
Cell Body Layer 3

Cell Body Layer 42
Cell Body non-Geometric Data Layer 3

4" (sorted; hierarchical)
Cell with Comments
Cell without Comments
Cell Comments
Cell Body non-Layer
Cell Body Layer 3

Cell Body Layer 42
Cell Body non -Geometric Data Layer 3

The file-level digest produced from file data before parsing
is not affected by sorting. The file header digest block did not
change either, because GDSII file header data is order-depen-
dent and, therefore, is not sorted. Many cell element digests
are changed because the data was reordered by a sort. The
canonical cell digests for cell Body Layers 3 and 42 in cell
Structure 4 now match those of Structure 1 and Structure
3. This shows that Structure is the layer equivalent of
Structure 1 and Structure 3.

For some formats (e.g. GDSII and OASIS ®), sorting is so
useful for digest matching that it should be the default behav-
ior. Most cells in IC design files are small, so there is only a
limited runtime impact.

If 64-bit digests are requested, an excerpt of the report,
without sorting, would be:

File "testfiles/sigtest.gds": GDS format
Arguments: -grid le-9 -mem 64 -nosort

3670d1e4a8c8c74b File
(none) File non-Whitespace
(none) File Whitespace

File Header (not sorted)
026a2a5b01e0f6ec File Header with Comments
fd352337a1644620 File Header without Comments
ff5f096ca084bOcc File Header Comments
fd352337a1644620 File Header non-Layer

Cell "Structure 1" (not sorted)
41a9962cc923db00 Cell with Comments
a9a2d1241367de40 Cell without Comments
e80b4708da440540 Cell Comments
bb89d94bb8544e78 Cell Body non-Layer
b9ef42b48f65e40d Cell Body Layer 3

el 6d5f5cf714adc4 Cell Body Layer 42
4aa91587d342d9f1 Cell Body non-Geometric Data Layer 3

5

10

15

12

-continued

Cell "Structure 2" (not sorted)
30f8dca7d4Obb330 Cell
1db29288b51ebd16
2d4a4e2f61150e26
a80b7d0fala83fel
4bb6333790890817
fe0fdcb0843f8ae0

Cell
Cell
Cell
Cell
Cell

with Comments
without Comments
Comments
Body Layer 1

Body Layer 19

Body non-Geometric Data Layer 5

Sequentially Using Canonical Digests and DIFF Tools

Difference tools and algorithms are mentioned above. Dif-
ference tools require a pair of files, which are being compared
to calculate differences, to be present at the time of analysis.
In contrast, canonical digests can be compared without hav-
ing either file present.

One application of canonical digests in combination with
differencing tools would be to use the canonical digests to

20 identify cells that differ for further inquiry. A differencing
tool can be used to identify the details of what had changed
within the cells that differ. This well focused use of differenc-
ing tools is much more efficient than trying to compare whole
design files using differencing algorithms

25 Typical difference algorithms require that data be in more
or less the same order for comparison because they do not
know of a valid reordering. After all, they are looking for
common subsequences. The run time of differencing algo-
rithms is in the worst case exponential. To improve their run
times, most difference algorithms have a maximum window
beyond which they assume completely different data (i.e., if
there are no matches within the window.) Paul Heckel's dif-
ferencing algorithm is an exception to these limitations. See,

35 "A Technique for Isolating Differences Between Files", Com-
munications of the ACM 21 (April 1978): pp. 264-268.

Difference algorithms assume no structure (or very little
structure text lines only) in the data files they are compar-
ing. They do not in themselves understand cells, headers,

40 layers, non-layer data, or comments.
DesignSync and IC Manage are tools for the IC design

industry that appear to be based on standard file differencing
algorithms These programs do not appear to have a deep
comprehension of the functional significance of the data that

45 they manage. IC Manage (http://www.icmanage.com) uses
the Perforce source code management system underneath.
Perforce is a general purpose data management and differ-
encing tool that does not attempt to comprehend EDA data
file formats. DesignSync (http://www.3ds.com) literature

50 talks of linking together multiple related files to represent a
cell (i.e. the multiple views). More information about Design-
Sync can be found (as of May 2009) at:

http://www.3ds.com/products/enovia/industries/high-
tech/semiconductor/

http://www.3ds.com/fileadmin/PRODUCTS/ENOVIA/
PDF/SynchDesignSync-0805_PRESS_.pdf

http://www.3ds.com/fileadmin/PRODUCTS/ENOVIA/
PDF/SemiAccIPmgmt-0805_PRESS_.pdf

60 Differencing tools are useful for a detailed comparison of
cells that are identified by canonical cell digests as being
near-matches. They cannot reasonably be used to analyze
huge design files or cell libraries because of run time, lack of
understanding of EDA file syntaxes, noisy reports and limi-

65 tations on matching. They cannot report which cells have
changed and may report false differences when order-inde-
pendent data is reordered.

30

55

US 7,685,545 B2
13

With this overview of canonical cell digests and their use-
fulness in mind, we turn to an in-depth disclosure, with many
examples of how canonical representations of chip design
data are constructed.

Expanded Background and Vocabulary
Typically a chip design proceeds through three major

phases: 1) development or acquisition of standard cell and
other design template libraries (not all fabless design houses
will develop their own design template libraries); 2) front end
design the creation of RTL, then logic synthesis; and 3)
back end design floor planning, placement and routing, and
in-place optimization (IPO).

In front end design, higher level design template blocks are
incorporated ("instantiated") by designers directly, not
selected by the logic synthesis tool. Logic synthesis generally
selects only standard cells, which have simpler functionality,
as it converts the designers' RTL to a structural netlist for
back end design. In back end design, the logic is adapted to
production of masks that are used, in turn, to manufacture
chips.

An advanced integrated circuit (sometimes called a "sys-
tem on chip" or "SoC") contains high-level functional blocks
of circuitry, which may be complex design templates or com-
pleted placed-and-routed portions of the design. The latter
typically comprises standard cells selected by a logic synthe-
sis system.

Fables s chip design companies and third-party design tem-
plate suppliers create sophisticated cell blocks that contain
more than one standard cell and can perform some operation
commonly used in the design of an integrated circuit. An
ARM processor, for instance, is available as a design template
that can be incorporated in a chip.

A larger cell block that contains one or more references to
smaller cells or cell blocks is said to be hierarchical. The cell
block contained within the larger block can itself be hierar-
chical, so that there can be several levels of hierarchy within
a cell block. Because the smaller cells and cell blocks are
incorporated by reference, their views and dependencies
remain the same.

A set of cells and cell blocks together represent a design
template block library. A block library may have been pro-
vided by a third-party supplier or created by an internal
library development team. The design templates within such
a library range from relatively simple blocks such as adders
and multipliers to communications components such as USB
ports and on to complex components such as digital signal
processors (DSPs) or general purpose processors such as
those provided by ARM. All of these can be used in multiple
places within an integrated circuit design.

The views and artifacts used by the design team to design
and manufacture chips reside within a read-only block
library. There can be hundreds to thousands of design tem-
plates within dozens of libraries which together form a larger
library that serves the integrated design groups. Logic and
physical design teams use the library to create the function-
ality and the physical layout, respectively, of the integrated
circuit.

Not every design template from a library will be used in an
integrated circuit design. Logic synthesis tools often select
from a subset of standard cell types, choosing only the cells
that work well with their optimization algorithms Design
template libraries may include a class of related function
blocks or preconfigured variants, such as memory blocks, and
a design team may choose to use only a subset of those
variants.

14
For the reader who notices differences between how we

describe things in this disclosure and the nomenclature more
typically used, we point out that our "design templates" are
often referred to in the industry as "IP." We consider design

5 templates to better remind the reader of the physical relation-
ship between design data and integrated circuits.

Views and Artifacts
Cells have views and artifacts. A view is one of the physi-

cal, functional or electrical representations of a cell. The
10 views together specify how the cell works within a design,

and thus how a designer can use it to create an integrated
circuit.

An artifact is typically a file that results from the creation of
a cell view, such as the log file or datasheet for a compiled

15 RAM block, or a constraint file to be used when a design
template is incorporated into a large block. Artifacts are often
unstructured text files that might not be used directly in a tool
but convey meaning to a designer. It is useful to keep them
synchronized with the other views for the cell.

20 GDSII and OASIS® (polygon level) views represent the
physical layout of leaf cells, cell blocks, functional blocks
and the entire integrated circuit. A Liberty view represents the
timing model for a leaf cell or a complex design template.

RTL views, either created by designers or provided in lieu
25 of physical layout for design templates, describe the behavior

of a design and logical connections to any design templates
such as processor cores. An RTL view is usually in Verilog or
VHDL format. Logic synthesis uses RTL views plus con-
straint and simulation control files to generate a structural

30 netlist (usually Verilog or VHDL).
Designers use structural netlists to create a floor plan for

the integrated circuit. A view in the Design Exchange Format
(DEF) represents the floor plan to a place and route program.
The structural netlist, Liberty, LEF, and DEF views are used

35 as inputs to the place and route program. Placement is typi-
cally performed within one functional block at a time; routing
is performed both within a functional block (intrablock) and
between functional blocks and design templates (interblock).
Some views are used to create other views. For example, the

40 GDSII polygon data for a leaf cell or standard cell is sent to a
circuit extractor to determine the transistor connections and
parasitic elements. These derived views are called dependent
views. When the source view changes, it may be useful to
regenerate some or all of the dependent views.

45 Cells, Cell Interfaces, and Cell Bodies
Canonical digests for a file are computed by analyzing the

file and categorizing sections by type. Many files have a
header which may include global information about the file.
There may also be cells or modules, individual design units

so which are combined to form a design. A cell may be broken
down further into the cell name, the cell interface, and the cell
body. Nearly all file formats also have a method for specifying
comments, officially non-functional text that can still convey
some meaning to readers or certain tools.

55 The interface of a cell is the specification of the cell to the
outside world. Changes to the interface are presumed to be
significant and so they are flagged separately for review and
approval. As a design moves towards completion, the stan-
dards for approval of interface changes will increase because

60 significant rework would be required to make use of the new
cell. For example, if the placement of a pin in a layout cell
changes, the new version cannot be used as a drop-in replace-
ment without rerouting the design. This is not an issue during
logic design, but in the latter stages of physical design it could

65 cause major schedule delays.
Components that are not part of the cell interface are part of

the cell body. These aspects of the cell can change without

US 7,685,545 B2
15

automatically invalidating existing instantiations of the cell.
For example, changes to implant layers in the middle of a
layout cell will not require rerouting.

GDSII and OASIS® files have two classes of data within
the body of a cell. The second class of data is non-geometric
data such as text points and node points, so this is called cell
non-geometric body data. The distinction is arbitrary; this
class of data is simply recorded separately. It is also available
for user-parsed text files.

Some file formats can specify hierarchical data: cells that
contain references to other cells. Where this information is
available, it is returned with the digest data as a flag in the cell.

Layers
Many design files are split into layers. Different layers have

different functions, and changes to some layers are "cheaper"
than others. For example, if a logic error is found after a
design has been fabricated, a fix that requires modifications
only to one or more metal masks is cheaper than one that
requires changes to transistor layers. Digests for file headers,
cell interfaces, and cell bodies may be defined on a layer-by-
layer basis.

Internally, the digest module records digests on layers
indexed by integer, typically from -1 to a small positive
number. A layer number of -1 normally represents data not on
any layer, such as cell references in a layout file such as GDSII
or OASIS®, or all data for a format that does not have layers.

Parsers with text-based layer names return a mapping of
layer numbers to layer names, so that digests may be reported
by name. Parsers may assign layer numbers themselves, so it
is useful to retrieve this list and record or print numbers with
the digests.

Sorting
Some portions of data in some formats are order-indepen-

dent, meaning that the interpretation of the file does not
depend on the order of appearance of objects (e.g. polygons)
within a header or cell. An option to sort these portions of files
is provided. For example, a VHDL module may be instanti-
ated using an association list in which wires are associated by
name with ports. These may be listed in any order. Sequential
statements within the module, however, should not be reor-
dered and so they are not sorted even if a sort option is
selected.

If file data is held in memory until all of it can be sorted, a
significant amount of memory may be required. If the
memory usage limit passed to the program is exceeded, the
stored data (usually the cell data) may be sent immediately to
the digest module in the same order in which it was read from
the file, or a file-based sort may be used. Details of the sort
routines are disclosed in the descriptions of the individual file
formats.

File header and cell digests may change when memory
usage limits are changed or if program memory usage
improves. A flag denoting whether a cell was sorted is avail-
able through the Applications Programming Interface (API)
and may be saved in a digest database along with the digests
for the file header or cell. Using this flag a program can
determine whether a digest change is due to an actual change
in the data or is caused only by a change in sorting.

Comments
For most formats, comments are sent immediately to the

digest module without sorting or further interpretation. Com-
ments within a cell are added to the comment digest for that
cell; comments outside of any cell are added to the file header
comment digest. In VHDL, comments may contain synthesis
directives, so they are associated with specific token
sequences and thus may be sorted.

16
Comments do not have layer names or numbers.
Design Data File Formats Reviewed
Many views of chip design data use specialized file for-

mats. Some of these are binary and some are text (symbolic).
5 The files tend to be large, however, and hard to view even

when they are human-readable. They are created by library
and design template vendors and used by Electronic Design
Automation (EDA) tools, but a typical design house has not
had the ability to interpret the files and make judgments about

10 those files on its own.
GDSII and OASIS® views contain the physical layout of

leaf cells and hierarchical cells. Leaf cells contain only geom-
etry (polygons, wires, rectangles, circles, etc.). Hierarchical
cells contain references to other cells and may also contain

15 geometry. There may also be design template blocks, cells of
possibly complex function such as a processor core that are
imported from vendors. Designers are supposed to use leaf
cells and design template blocks without modification.

A GDSII or OASIS® view is contained in a single file and
20 contains geometric data for a number of cells. Such a view

may define a library of geometric data to be referenced within
a chip or it may define the geometric data for a chip.

A Library Exchange Format (LEF) view contains a simpli-
fied version of the physical layout of one or more leaf cells or

25 design template blocks for presentation to a place and route
tool.

A Liberty view contains timing information for one or
more cells, which may be leaf cells, complex design tem-
plates, or a mix of each.

30 Register Transfer Level (RTL) views contain behavioral
descriptions of cells. Typically RTL views are specified in the
Verilog or VHDL language formats. Logic synthesis converts
RTL views to structural netlists, which are views that contain
references to leaf cells, design template blocks, or other struc-

35 tural netlists. Structural netlists are often in a very restricted
version of the Verilog or VHDL language formats, containing
only lists of referenced cells and not any behavioral descrip-
tions. A structural netlist is suitable for entry to a place and
route tool. Once the structural netlist is placed and routed, its

40 performance can be evaluated and if suitable can be released
to fabrication.

A Design Exchange Format (DEF) view contains a
description of a floor plan, a coarse representation of a chip. It
defines the placement of large design template blocks and

45 blank areas, into which the place and route tool puts standard
cells. It is possible to create a DEF file for a block within a
chip, run placement and routing for that block, and then use
the block within a higher-level DEF view. The placed and
routed block is then treated the same as a design template

so block.
When creating a library of standard cells, circuit extraction

is performed on the physical layout. An electrical represen-
tation of the devices and interconnections in the physical
layout, including any parasitic components such as capaci-

55 tances and resistors, is created and put into a format usable by
a circuit simulator such as SPICE. A SPICE view may repre-
sent data for a leaf cell or a hierarchical cell.

The SPICE view is used as input to a circuit characteriza-
tion program, which typically uses SPICE or another electri-

60 cal simulator to evaluate the circuit under a particular stimu-
lus or set of stimuli, then estimate the delays within the
circuit. These delays are then stored within the Liberty view.
The logic synthesis and place and route tools use the Liberty
views to estimate the performance of a design or portion of a

65 design.
As can be seen from the descriptions above, certain views

contain data that is used to generate other views. For example,

US 7,685,545 B2
17

the GDSII or OASIS® layout view is used to create the LEF
and extracted netlist views, and the extracted netlist view is
used to generate the Liberty view. The created views are
known as dependent views, and there may be a complex
relationship between the independent views, such as layout,
and the dependent views.

Standard cells typically implement relatively simple func-
tions, from an inverter (two transistors) to a flip-flop (20-40
transistors) or adder (10-100 transistors). Their functions are
simple enough for a logic synthesis tool to manipulate
directly. There may be several thousand standard cells in a
single standard cell library, and three to perhaps several dozen
standard cell libraries available for a single design.

Design template blocks typically implement more com-
plex functions such as processor cores, read-write memory
(RAM), read-only memory (ROM), or input/output sub-
systems. Their functions are too complex for a logic synthesis
tool to manipulate directly. Instead designers explicitly ask
for instances of design template blocks to be inserted into
their design, then specify the connections to the design tem-
plate blocks. For convenience, the instances are usually
placed into the RTL views. There may be hundreds of indi-
vidual design template blocks placed in a single SoC design.

Memories are typically created using compilers written by
the design template providers. These allow designers to gen-
erate custom memory configurations (e.g. word width, num-
ber of words) that are warranted by the design template pro-
viders as long as they are not modified once the compilers
complete. To this end, designers are supposed to treat the
output of a memory compiler as a design template block.

A memory block may be contained in a hierarchical GDSII
or OASIS® view. This view is incorporated into the design
during final assembly. The compiler also generates timing
views (typically Liberty) and physical abstractions (typically
LEF) so that automated tools can analyze designs which use
the memories.

When all standard cell libraries and design template blocks
available to a design team are considered, there may be tens of
thousands of distinct cells. Not all of these cells may be used
in a given design. For example, a design team might have had
bad experiences with a logic synthesis tool using exclusive-
OR (XOR) gates, and so they may tell the logic synthesis tool
not to use any XOR gates. Some cell functions may be present
in multiple drive strengths-current capacities for handling
varying amounts of attached circuitry and parasitic compo-
nents and the design tools might not use all of the drive
strengths in a given design.

WORKING EXAMPLES OF CANONICAL
DIGESTS FOR CELL VIEWS

In this section, we describe and analyze many of the design
languages and file formats used for IC design. We provide
more than a dozen examples of preparing canonical versions
of design data used in an IC design flow.

FIG. 1 illustrates, at a high-level, an integrated circuit
design environment. Of course, there are many variations on
this environment and many details that are not shown. In this
variation, most of the blocks illustrate the process that a
developer of cell design templates might follow to provide the
templates to fabless customers 137 who rely on a foundry 151
to produce chips and act on feedback from the foundries.
From this diagram, one should understand that the fabless
customer's release of a design for manufacture by the foundry
includes the so-called "tapeout" for mask production. At the
beginning of the design process, the designer develops a
functional specification 111 and performs logic design to

18
produce RTL 121, which may provide new functionality not
found in competitors' devices or at a lower price. The
designer has available information from the foundry that
includes foundry rules and electrical information 141. The

5 foundry information is reflected in a library of cell design
templates 131 that are combined with the RTL during logic
synthesis 123. RTL is sometimes offered to the fabless cus-
tomers as front-end views 125. The output of logic synthesis
is used in floor planning 133; the output of floor planning is

io used in place and route operations 143 that produce back-end
views 145. Not shown, but readily understood, the place and
route operations are subject to physical constraints. Back-end
views are released to fabless customers 137. Back-end and
front-end views may be compiled into libraries by or for the

15 fabless customers. These back-end views are in the form of
fixed blocks that customers should not modify.

FIG. 2 illustrates the proliferation of versions and some of
the file formats associated with the blocks in FIG. 1. Parallel
numbering between the figures associates the blocks in the

20 two figures. Functional specifications may be expressed in a
design language. The functional specification constraints will
have a version. The RTL created in logic design 221 may be
expressed in Verilog or VHDL, which will have its own ver-
sion. The foundry rules 241 may be expressed in languages

25 such as PDK, Interconnect, Parametrics or a foundry propri-
etary language. A reference cell library may include a number
of views for design data. Languages for expressing these
views include SPICE, Liberty, LEF and GDSII. During logic
design 221, outputs may include simulation control and RTL

30 (Verilog or VHDL). Results of logic design may be published
directly as front-end views 225 expressed using Liberty, LEF,
and RTL; or they may be sent to logic synthesis 223. The
results of logic synthesis 223 are combined with physical
specifications 253 and used as input to floor planning 233 and

35 to place and route 243. These processes utilize views such as
structural netlist, DEF, Liberty, LEF and GDSII. Results of
these processes may be published as backend views 245.
Fabless customers 137 may use front end and/or back end
views of design data. Note that the version numbers included

40 in FIG. 2 are merely illustrative and should not be taken as
references to past, current or future versions of languages or
libraries. The file formats referenced in FIG. 2 are explained
in the following section.

Classification of File Types
45 For this discussion, files are classified as unstructured text,

structured text, unstructured binary, or structured binary.
Unstructured files have no particular format; they are either
auxiliary files such as documentation or else they do not have
cells and layers. The digests computed for these files are very

50 limited. Structured files have a defined syntax which may
include comments, layer names or numbers, and cells. These
require parsers to distinguish the sections of the file and mark
them by type.

Except for GDSII and OASIS® files, digests generated for
55 files in one format are generally not compatible with digests

generated for files in any other format. That is, comparison of
digests across file types is usually meaningless. If no object
properties are present, it is possible to compare GDSII and
OASIS® data because it is first translated to an internal rep-

60 resentation that supports comparison across these file types.
Generally speaking, object properties in OASIS® are incom-
patible with object properties in GDSII, except that S_GDS_
PROPERTY properties in an OASIS® file are converted to
the equivalent GDSII properties.

65 Detailed descriptions of the file types and their interpreta-
tions follow. Details for file interpretation, digest calculation,
and sorting behavior are described below. Sections are self-

US 7,685,545 B2
19

contained so that they may serve as an independent reference.
Thus some information may be repeated.

In the descriptions that follow, language keywords appear
in Courier font, e.g. HEADERTEXT or scaled_cell.

File-Level Digests
Parsers compute at least one file-level digest, for all of the

bytes in the file in order with no interpretation or sorting.
Parsers for text-based formats also compute file-level digests
for all whitespace characters (spaces and horizontal tabs) and
for all non-whitespace characters. These are not canonical
cell digests; they are not format-specific and can be used only
to determine quickly whether a file has been changed at all.

Canonical Digests
When recording canonical digests, files are broken down

into file units, coupled with a recording type. A file unit is a
portion of the file as defined by the language specification,
typically one or more tokens (words or punctuation), and a
recording type is one of file header, comment, cell name, cell
interface, cell body, or cell non-geometry body. Cell non-
geometry body data is simply a separate class of cell body
data. Currently this class is used only in the GDSII and
OASIS® parsers to denote non-geometric data that has layer
numbers, such as NODE and TEXT records.

The definition of how digests are computed for a file format
can be complex, as illustrated by FIGS. 8-17. The description
of various formats includes an overview, detailed specifica-
tions for the processing of file units, and the examples.

Example 1

Liberty Formatted Files

The Liberty library file format provides a way to describe
the function and timing of circuits to logic synthesis tools. It
is defined by Synopsys and is widely used because Synopsys
has published a specification. It is a text-based format that can
be viewed easily, but due to the volume of data in Liberty files,
they are normally created by software.

In this first example, we walk through the digesting of a
Liberty design language file. Some parts of a Liberty file are
unrecorded. "Unrecorded" refers to canonical digesting.
Generally speaking, cell names are not digested because
doing so would prevent matching of otherwise equivalent
cells with different names. Some parsers also skip tokens that
are required and provide no additional information, such as
fixed-place keywords or layer names (since digests are sepa-
rated by layer anyway).

In some formats, the "text" being recorded is actually non-
printable binary data, and the descriptions use keywords from
the language specifications.

Canonical cell digests typically have 32 or 64 bits. Both
types are computed using Cyclic Redundancy Checks
(CRCs). Thirty-two-bit digests are computed using the ISO
3309 CRC polynomial and method specified for OASIS®
files in SEMI Standard P0039-1105:

x32+x26+x23+x22+x16+x12+x11+x10+x8+x7+x5+x4+x2+

x+1

Sixty-four-bit digests are computed using the CRC polyno-
mial specified for Ecma International's Standard ECMA-
182:

x64+x62 +x57 +x55+x54+x53+x52+x47 +x46+x45 +x40 +x39+
x38+x37+x35+x33 +x32+x31 +x29 +x27+x24+x23 +x22+x21

X19 +X17 +X13 +X12 +X10 +X9 +X7 +X4 +xl

File Content Digests for Liberty (.lib) Files
The details of this example, applied to Liberty (.lib) files,

depend on whether scaled_cell records are in the same file as

20
cell records. The first part of the discussion that follows
assumes that the two kinds of records are in the same file. The
later part allows for the two to be found in different files.

Liberty files have content digests for some or all of the
5 following file elements:

File

File Header

Comment Text Inside the Header (Optional)

Header of the Cell

Body of the Cell exclusive of file header information (Op-
tional)

Body of the Cell with file header information merged into
15 the Cell (Optional)

Comment Text Inside of Cells (Optional)

The file is scanned to find the cell names inside. For cell in
the file, the tool returns a digest for the header of the cell

20
(input and output specifications) and a digest for the body of
the cell.

As an option, separate digests are computed for comment
text in the header and inside the cells, and differences in
whitespace (number of spaces, tabs vs. spaces, blank lines)

25 are ignored.

Digests are computed and returned for the header of the file
(information before any cell definitions) and for the file as a
whole. By default, the digest for the header of the file (exclud-
ing comment text, the file date, and the revision) is merged
with the digest for a cell to avoid problems resulting from (for
example) changes in unit definitions or logic thresholds that
would affect all cells in the library. As an option, the file
header may be excluded from cell body digest calculation

35 when it is known that the file header has changed but cell
comparisons are still desired.

All cell and scaled_cell group statements are put in order
before recording any digests, regardless of whether sorting of
the file is requested. The digest for the cell includes all scaled_

40 cell timing definitions as well. The cell group is first, and the
scaled_cell groups follow in sorted order based on the oper-
ating conditions group name

Because scaled_cell records may appear anywhere in the
file, even before the unscaled cell, no "all text including

45 whitespace" digests are computed for the cells. This digest is
computed only at the file level.

Because sorting is required to group scaled_cell records
with cell records, the entire file is loaded into memory regard-

50
less of the memory limit specified on the command line. Note,
however, that cell and scaled_cell group statements may
appear in separate files, in which case they are handled as
described below instead of being put in order, as they can be
if they appear in the same file.

55 Only the pin names are recorded in the cell header digest.
This means, for example, that if the direction of a pin changes
the header digest will not change.

Because of the run time that would be required, sorting of
group statements in one embodiment is shallow: only one

60 child level of a group statement is considered when sorting a
list of group statements. Alternatively, multiple child levels
could be sorted. Note that the statements inside a group are
sorted (again, using one child level). All sorts are stable, so
when the limits of the comparisons are exceeded, statements

65 that were previously in a specific relative order will remain in
that relative order. For example, sorting the following yields
the results shown in Table 1 below:

10

30

US 7,685,545 B2
21

TABLE 1

Sorting of File Group Statements

Before Sort

gl (B) {

gb (A) {

p: Z;
p: X;

ga (c) {

p: E;
p: F;

ga (G) {

p: D;
p: E;

ga (c) {

p: E;
p: D;

After Sort

G1 (B) {

ga (C) {

p: E;
p: F;

ga (C) {

p: D;
p: E;

ga (G) {

p: D;
p: E;

gb (A) {

p: X;
p: Z;

The group statement gb is moved after all of the ga groups
because keyword gb comes after ga, even though the param-
eter A would come before C. Also note that the two ga state-
ments with the parameter C remain in the same relative order
because their low-level p statements are not considered dur-
ing the sort. The p records themselves are sorted within the ga
records, and the G parameter for one of the ga records causes
it to be moved to the end of the set of ga records.

Liberty Library Description Files

Layout designers often use the same cell name for cells in
different libraries (e.g. high performance vs. high density), so
to help distinguish cells in different libraries, the library name
in the Liberty file is prepended to all cell names. For example:

library (demo) {

cell (INV X1) {

area : 0.032;

The cell name associated with this cell would be demo.
INV_Xl .

The Liberty format specifies a number of scaling param-
eters designed to help extrapolate timing and power coeffi-
cients to all expected process corners. This may not be suffi-
cient for some cells, so additional scaled cell records can be
defined for those cells using the scaled_cell statement instead
of the normal cell statement. The cell names for the scaled cell
records are additionally marked with the scaled cell name,
which is particularly useful to distinguish between the cell
types when both types appear in the same file. For example:

library (demo) {

scaled cell (AND2 X2, slow slow) {

area : 1.064000;

The cell name associated with this cell would be
demo.AND2_X2.slow_slow.

22
A Liberty file also contains an extensive header specifying

parameters that apply to cells. Inadvertent changes to the
header can thus have significant consequences, so by default
the digest for the at least some of the parameters in the header

5 to be merged into the digest for cells in the file. When a header
will not be changed accidentally (such as converting to a
smaller voltage or time unit) without corresponding changes
to all of the cells, one can disable header merging using the
-noheader command-line option.

10 The statements in a Liberty file are order-independent, so
by default the statements are sorted unless the user specifies
the -nosort flag.

There are no layers in a Liberty file, so all of the digests for
a cell are reported as non-Layer data, as in the following

15 sample report:

20

File "testfiles/tstlibpar2.Iib": Liberty format
Arguments: -mem 64 -sort

728fb5e7 File
451c31ec File non-Whitespace
00a03577 File Whitespace

File Header (sorted)
164c9eaf File Header with Comments
lccO3fe0 File Header without Comments

25 0a8cal4f File Header Comments
lccO3fe0 File Header non-Layer

Cell "demo.AND2 Xl" (sorted)
be7930d6 Cell with Comments
be7930d6 Cell without Comments
(none) Cell Comments

30 fe7aeb77 Cell Interface non-Layer
4003dbal Cell Body non-Layer

Here header merging is enabled; otherwise the argument
line below the file name would have reported -noheader.

35 Details of Handling Liberty Format Files: Definitions
The prototype Liberty parser follows the definition of the

Liberty format found in Synopsys' Liberty Reference Manual
(Version 2007.03).

Syntax Interpretation
The Liberty reference describes three statement types,

which can be summarized as follows:

40

keyword: value;

45 keyword-value;

keyword (value . . .);

keyword (value . . .) {statement . . .

The first two forms are known as simple attributes. The
50 third form is known as a complex attribute, and the fourth is

known as a group statement. The group statement may in turn
contain any combination of simple attributes, complex
attributes, or group statements. Note that the semicolon at the
end of the second form of a simple attribute and the paren-

55 thesized list of a group statement are optional.
Although the first token of a statement is supposed to be a

keyword (i.e. a reserved word), the Liberty format allows
library vendors to define new simple attributes and so only
limited checking of keywords is performed. The parser

60 ensures that a Liberty file contains one or more library group
statements and that any cell or scaled_cell statements are
within the library. It also looks for cell-level statements that
can be considered part of the cell's interface. Otherwise any
statement that follows the above general syntax is allowed.

65 There are no layer names in Liberty format files, so all
digests are recorded with a default layer number of -1 for
non-layer data.

US 7,685,545 B2
23

The reference specifies C-style comments, beginning with
the token /* and ending with the token */. Comments are
assumed not to nest. Comments inside cells are recorded as
part of the digests of the cells. Comments that appear outside
of any library or that appear within a library statement but
outside of any cell are recorded as file header comments.

The Liberty format provides a means to specify scaled
versions of cells that are characterized at differing operating
points. In one embodiment, these scaled_cell statements are
treated as independent cells because they may appear in dif-
ferent Liberty files than the unscaled versions of the cells.

Because the same cell names may appear in multiple librar-
ies, one parser embodiment qualifies a cell name with its
library name and scaled_cell name if any, e.g.
cmos 90 nm.andx2 for a cell or cmos 90 nm.
andx2.slow_slow for a scaled_cell. If any component of the
name includes `.' characters, that component is quoted:
"cmos 90 nm.v2".andx2."slow.slow".

The top-level statements in a library include many param-
eters that affect the interpretation of all cells within the
library. For example, the delay or power values within the
cells may be measured in units of nanoseconds or picowatts.
A Liberty file that was hand-edited, or assembled from file
fragments by a script, might have a header that does not
correspond with the cells. To help detect this kind of error,
most of the library-level attributes are collected into a header
block that can then be merged into the cells for digest record-
ing. Attributes that are very likely to change from version to
version, e.g. date or version, are excluded from this header
block.

Many of the attributes and group statements within a cell or
scaled_cell statement specify the interface of the cell, mean-
ing that any changes to these statements imply that the func-
tion of the cell has changed in a meaningful way. See the
section "Annotated Sample Liberty File" for a complete list.

Some of the attributes within pin, bus, and bundle group
statements also specify the interface of the cell. Some of the
data within these statements, however, can reasonably be
expected to change from one version of a library to the next.
For example, timing group statements will change whenever
process parameters are updated or some portion of the layout
is changed, even if the cell is still functionally the same.

Sorting of Liberty Files
Liberty files are not order-dependent; statements within a

cell or a group statement within a cell may appear in any
order. To allow comparisons between libraries which may
have had statements reordered, the statements within cells
may be sorted. The primary sort key is the keyword which
begins the statement. If both keywords are user-defined
attributes (vs. predefined Liberty keywords,) a string com-
parison is performed and the statement with the keyword
which comes first alphabetically is first in the statement list. If
the keywords of the two statements are identical then the
secondary sort key is the list of parameters in a statement.
Parameters are compared as a string, and if there is a differ-
ence the statement with the parameter that comes first in
alphabetical order is first in the statement list. If all param-
eters are equal except that one parameter list is shorter, the
statement with the shorter parameter list comes first.

If the parameter lists are identical then the statements are
considered to be identical. To limit runtime during sorting,
some embodiments do not compare the statements inside of
group statements. A stable sort is used, so that statement
ordering is changed only if there are obvious differences.

Limitations of the Prototype Liberty Parser
Most tokens in Liberty files, including library, cell, and

scaled_cell names, are assumed to be case sensitive. The

24
exceptions are true and false, which are case-insensitive in the
reference Synopsys parser implementation.

The parser assumes that the memory usage limit will be
high enough to store all of the statements of a single cell or

5 scaled_cell plus all of the file header statements.
Only limited syntax checking is done beyond verification

of statement structure. For example, multiple top-level library
statements are allowed. If the structure of the library does not
follow the Liberty statement syntax, or if there are no library

10 statements at the top level, an error is reported and no digests
are computed.

Header statements that appear between cells are merged
into only the digests that follow them in the file. For the most
complete digest recording, all library header statements

15 should appear before any cell or scaled_cell statements.
Because the search path for include files is not available

(and may change over time), include file directives are not
processed.

Values inside strings are not interpreted. It is assumed that
20 the same tools will be creating Liberty files and that these

tools will not, for example, reformat numbers unless the
numbers have actually changed.

The lists of keywords to be excluded from the library
header or included in the cell interface should be fixed and

25 changed after careful deliberation, as many digests may need
to be recalculated when key word lists change.

Unit numbers in the file header are supported either as
explicit tokens, e.g. 1 ns, or as strings, e.g. "1 mV". It is
assumed that new versions of a file will not switch between

30 the two representations.
Annotated Sample Liberty File
FIGS. 8A-8D illustrate a sampling of the possible header

and cell statements in a Liberty file. Most header and cell
statements are processed in the manner illustrated. In particu-

35 lar, when an entire group statement is recorded as the same
digest type, only the keyword, parameters (if any), and curly
braces are shown in FIG. 8. Attributes and statements outside
of cells are added to the file header digest. Within a cell, only
the attributes and group statements identified are recorded as

40 part of the cell interface. Some attributes and group state-
ments highlighted, as indicated, are recorded as part of the
cell body.

By default, most file header statements (excluding com-
ment tokens) are recorded as part of the interface of cells; this

45 is not shown here. The date, revision, and comment attributes
are not recorded as part of the interface of cells because they
are likely to change when a Liberty file is modified.

Many simple cell and pin attributes are considered to be
part of the cell interface; they are listed in the example above.

so Anything that is double underlined or not shown here is
considered to be part of the cell body.

Note that bus and bundle group statements may include any
of the simple attributes of a pin statement as well as nested pin
statements. The attributes of bus and bundle statements are

55 recorded as if they were in a pin statement; the contents of the
nested pin statements are recorded as if they were standalone
pins.

In the Synopsys reference parser, simple attributes may use
either :' or `-' to separate the variable name from the expres-

60 sion which follows, so the following are equivalent:

area=5;

area: 5;
The documentation uses `:', so all `-' are converted to `:'

65 before being sent to the digest engine.
Verilog is a simulation and Register Transfer Logic (RTL)

language widely used in integrated circuit design. It is a

US 7,685,545 B2
25

text-based format commonly created by designers and com-
piled by logic synthesis tools. It allows designers to specify
designs as interconnected modules. Circuit functionality is
specified in modules recorded as cells, with input and output
ports recorded as cell interfaces. Hints to the logic synthesis 5

tools are put into attributes associated with module headers or
statements.

Semicolons for simple and complex attributes are not
recorded because the Synopsys reference parser does not
always require them, effectively making them optional. 10

Example 2

Verilog File Type

In this example, Verilog files have content digests for the
following file elements:

File
File Header
Cell Module Port Definitions
Body of the Cell Module
The file is scanned to find the module names inside. Sepa-

rate digests are computed for the port definitions and the body
of the module. These are based on the individual Verilog
tokens excluding any whitespace.

Digests are computed and returned for the header of the file
(information outside of any module definitions) and for the
file as a whole. These include any whitespace.

Verilog 2005 syntax is presumed, even if a `begin_key-
words is present. Because only the module structure of the file
is being parsed, this should not impact digest calculation for
the file (keywords are not interpreted differently than sym-
bols, for example). The file is assumed to be syntactically
correct.

Compiler directives, including macro substitutions, are not
interpreted. It is assumed that the file is valid Verilog without
macro substitution. Generally speaking, it is assumed that
macros are used only for constant definitions and that they do
not create syntactic structures such as module headers or
Verilog statements.

Include file directives are not interpreted, since the include
path at the time of digest calculation may be different than the
include path at compilation time.

In one embodiment, synthesis directives are assumed to be
within Verilog attributes ("(*" and "*)"), not comments. If
there is an attribute immediately before a module or macro-
module declaration, its digest is added to that of the module.
Comments outside of module declarations are considered
part of the "header" (non-module text) of the source file, not
part of the modules themselves. Because the characters of a
preceding attribute are scanned before the parser knows about
the module declaration, they are added to the "all text" digest
for the header, not the module itself. Comments outside of
modules are added to the file header digest. Modules and
macromodules are treated as equivalent objects. In one
embodiment, functions, UDPs, and generate blocks are con-
sidered part of the "header" of the source file, not as modules
themselves. It is also possible to treat these as special forms of
modules, recording them as cells in a manner similar to the
handling ofVHDL constructs such as procedure and function
declarations. Port names in a list_of ports will not be sorted
properly if any of the ports use "." or "{ }" notation.

Digests are not computed for whitespace within cells. Only
file-level whitespace digests are computed. Within cells, the
digests are based only on the tokens of the file (including
comments when appropriate).

15

26
Verilog RTL Files
Much of the body of a Verilog module is order-dependent,

so only the module parameters can be sorted. Even then,
modules are not always instantiated using order-independent
argument specifications, so digest matches found after sorting
might not represent true equivalence between module defini-
tions. Thus sorting of Verilog files should be done with cau-
tion. By default Verilog files are not sorted unless the user
specifies the -sort flag.

There are no layers in a Verilog file, so all of the digests for
a cell are reported as non-Layer data:

File "testfiles/verilog test.v": Verilog format
Arguments: -mem 64 -nosort

5404c699 File
7c2a352d File non-Whitespace
219b1881 File Whitespace

File Header (not sorted)
b290d605 File Header with Comments
(none) File Header without Comments

20 b290d605 File Header Comments
Cell "DFF Xl" (not sorted)

ca436d2f Cell with Comments
ca436d2f Cell without Comments
(none) Cell Comments
c102a525 Cell Interface non-Layer

25 Ob41c80a Cell Body non-Layer

Verilog Format Files: Definitions
The Verilog language specification is an IEEE standard; the

prototype Verilog parser follows the definition of the lan-
30 guage in IEEE Standard 1364-2005. This does not yet include

Verilog-A (analog) extensions, but it can readily be extended
to do so.

Although Verilog RTL descriptions are used in logic syn-
thesis, the language itself is not sufficient to determine the

35 intent of a designer. Logic synthesis tools provide means for
guiding optimization through the use of attributes. These are
comment-like token sequences which precede or are embed-
ded within Verilog modules and statements. The text within
the attributes forms synthesis directives. The prototype Ver-

40 flog parser parses Verilog attributes, assigns them to the
appropriate language constructs, and sends them to the digest
engine, but it does not interpret the text inside.

Prior to the addition of attributes to the Verilog language,
synthesis directives were specified using Verilog comments.

45 The parser does not currently support the use of comments for
synthesis directives, but it can be readily extended to do so.

Syntax Interpretation
A Verilog file is a sequence of declarations and modules. A

module is a cell in the canonical cell digest tool; everything
50 else is recorded as part of the file header.

A module may have an interface specified by parameters.
There are two styles of parameter definition: a list of ports and
a list of port declarations. A list of ports has only the port
names present in the module statement, while a list of port

55 declarations also has the port types.

module a(b,c,d); // list of ports

60 module a(input [7:0] b,output [8:0] c,reg d); // port
declarations

When the interface to a module is specified using a list of
ports, the declarations are embedded in the module body. The

65 parser looks for them and sends them to the digest engine as
cell interface data. Everything else in the module body is sent
to the digest engine as cell body data.

US 7,685,545 B2
27

When the interface to a module is specified using a list of
port declarations, everything in the module body is sent to the
digest engine as cell body data.

The parser assumes that module and macromodule are
equivalent. macromodule is converted to module before
being sent to the digest engine.

Macro definitions are not interpreted. Because macro defi-
nitions may be in included files which are not available to the
parser or may change over time, no attempt is made to expand
macro references. It is assumed that macros do not contain
syntax constructs, so that it is possible to parse a Verilog file
by assuming that a macro reference is equivalent to an iden-
tifier or number.

Library declarations and include statements are recorded
as file header data. Include files are not read; the include file
search path is not available to the canonical cell digest pro-
gram. It may also change over time, invalidating any file
digests already computed.

Functions, User-Defined Primitive (UDP) definitions, gen-
erate blocks, and configuration declarations may be added to
the file header digest without further interpretation, or may be
treated as in VHDL files.

Attributes immediately preceding a module keyword or
within a module body are recorded as cell body text. All other
attributes are recorded as file header text.

Sorting of Verilog Files
Many of the statements in Verilog are order-dependent and

thus cannot be sorted. The parser does not attempt to deter-
mine which portions of module bodies are order-indepen-
dent it sorts only the parameters of module definitions.
Because module instantiations might not use order-indepen-
dent argument specifications, digest matches found after sort-
ing might not represent true equivalence between module
definitions. Thus sorting of Verilog files should be done with
caution.

Module input and output declarations may be specified one
by one or, if the types are the same, in lists. For example, the
following sets of declarations are equivalent:

input signed [4:0] RN,CK,D,SE;

and
input signed [4:0] RN;
input signed [4:0] CK;
input signed [4:0] D;
input signed [4:0] SE;
The parser expands input and output parameter declara-

tions from the first form to the second form. They can then be
sorted according to the name of the parameter.

The parser assumes that the memory usage limit will be
high enough to store all of the port definitions for a module,
since there will be only a few hundred at most.

Limitations of the Prototype Verilog Parser
The parser does not attempt to sort argument lists in mod-

ule instantiations, even when all of the ports are connected by
name (e.g..Out (topB)).

Variable declarations within the body of a module can be
used to modify the meaning of a port declaration when it is
specified in a list of ports. The parser does not attempt to
locate these additional declarations. For example:

module a(b);
input b;
wire signed [7:0] b;

endmodule

28
Here the type of input port b is modified by the wire

declaration but the wire declaration is not added to the cell
interface digest.

The parser does not attempt to assign a "port name" when
5 a port declaration uses external names with a .' or concatena-

tions with "{ }". Normally the port name is located within the
declaration and used as the interface record name when
recording the digest for the port. When there are external
names or concatenations, the first token of the declaration is

10 used as the "name" for sorting the port.
Parameter declarations in module port lists (specified using

`#') are added to the cell body digest.
Macro definitions are sent to the digest engine when they

are found in the file. This may be within the file header or
is within a cell. Macro references are not expanded because the

macro definition might be in another file which is either not
available to the canonical cell digest tool or may change over
time.

Compiler directives are not interpreted either.
20 Numeric literals are sent to the digest engine without inter-

pretation. In particular they are not converted to a canonical
form first. For example, a plus sign in an exponent is optional,
so le10 will be different than 1e +10. The numbers are not
reprinted, so 1 e10 will also differ from 1.0e10.

25 The parser does not attempt to determine when a Verilog
module can be considered hierarchical.

Annotated Sample Verilog File
FIG. 9 is an annotated example of a Verilog file that illus-

trates application of the parsing rules described above.
30

Example 3

Structured Binary File Type

35 In this example, structured binary file types, without a
custom parser, are treated as Unstructured Binary Files.

VHDL is a simulation and Register Transfer Logic (RTL)
language widely used in integrated circuit design. It is a
text-based format commonly created by designers and com-

40 piled by logic synthesis tools.
Generally, without knowing the structure of the binary file,

a digest is assigned for all bytes. To assign digests to specific
content within a structured binary file, the data structure
needs to be known and a parser written for it.

45
Example 4

VHDL File Type

so In this example, VHDL Files have content digests for at
least the following file elements:

File
File Header
Entity Block

55 Architecture Block
This file is scanned to find the entity and architecture

blocks for modules. For the modules, separate digests are
computed for the entity and the architecture. Alternatively,
more (or less) granular digests can be computed, as described

6o in the explanation of VHDL "cells," below. These digests may
be based on the individual VHDL tokens (including com-
ments, since synthesis directives may be included in com-
ments) excluding any whitespace.

Digests are computed and returned for the header of the file
65 (information outside of any module definitions) and for the

file as a whole. These include any whitespace. Included files
from USE directives are not examined or added to the digests.

US 7,685,545 B2
29

VHDL RTL Files
Many VHDL language constructs can be considered to

meet the definition of a "cell", including entities, configura-
tions, architectures, procedures, functions, components,
types, and subtypes. A change to any one of these could have
far-reaching impacts to a design. From a parsing standpoint,
these and other VHDL declaration types are also first-class
objects within a library. Thus the parser creates cells for the
following VHDL language constructs (using production
names from Annex A of IEEE Standard 1076-2002):

subprogram_declaration (a procedure or a function)
subprogram_body (a procedure or a function)
type_declaration
subtype_declaration
constant_declaration
signal_declaration
shared_variable_declaration
file_declaration
alias_declaration
component_declaration
attribute_declaration
attribute_specification
disconnection_specification
use_clause
group_template_declaration
group_declaration
Hints to the logic synthesis tools are put into comments

associated with object headers or statements. Thus the com-
bined "Cell with Comments" digests are probably more use-
ful than the "Cell without Comments" digests.

Many of the statements VHDL are order-dependent, so
only the parameters in declarations can be sorted. Even then,
architectures and components are not always instantiated
using order-independent argument specifications, so digest
matches found after sorting might not represent true equiva-
lence. Thus sorting of VHDL files should be done with cau-
tion. By default VHDL files are not sorted unless the user
specifies the -sort flag.

There are no layers in a VHDL file, so all of the digests for
a cell are reported as non-Layer data:

File "testfiles/timing b.vhd": VHDL format
Arguments: -mem 64 -nosort

b116b16a File
Ocafc4la File non-Whitespace
704d8ab4 File Whitespace

File Header (not sorted)
9f2lalef File Header with Comments
d279ff8a File Header without Comments
4d585e65 File Header Comments
d279ff8a File Header non-Layer

Cell "vital timing.constantedgesymbolmatch" (not sorted)
63c5ce8d Cell with Comments
63c5ce8d Cell without Comments
(none) Cell Comments
63c5ce8d Cell Interface non-Layer

Cell "vital timing.ffinction.vitalcalcdelay.1" (not sorted)
cd370359 Cell with Comments
cd370359 Cell without Comments
(none) Cell Comments
be204681 Cell Interface non-Layer
731745d8 Cell Body non-Layer

As seen above, the reported cell names include the library
in which the object is defined (if any); the type of the object
(constant, function, entity, architecture, etc.), the object
name, and a disambiguating number used for overload reso-
lution. Functions, for example, may be overloaded, meaning
that the same name is used for a set of functions with different

30
parameter types. The logic synthesis tool chooses the proper
function by examining all possible matches.

The canonical cell digest tool does not implement a full
VHDL parser. In particular, it does not maintain symbol

5 tables, so it simply records the digests in cells with names
based only on the object name. Because the disambiguating
numbers could change if overloaded objects are added to or
removed from a file, the user's matching software will have to
select the proper cell based on digests.

io VHDL Format Files: Definitions
The VHSIC Hardware Description Language (VHDL) was

defined for the Department of Defense in the 1980s as a
hardware system definition language. It is now also used as a
Register Transfer Language for logic synthesis.

15 VHDL is a text-based language that allows designers to
specify designs as interconnected entities implemented with
architectures. It is a very complex language with many lan-
guage constructs that impact the specification of a design. All
of these are recorded as distinct cells whose names are quali-

2o fled with their type, e.g. entity.full_adder.
The VHDL language specification is an IEEE standard; the

prototype VHDL parser follows the definition of the language
in IEEE Standard 1076-2002. This does not include VHDL-
AMS (analog) extensions.

25 Although VHDL RTL descriptions are used in logic syn-
thesis, the language itself is not sufficient to determine the
intent of a designer. Synthesis directives embedded in com-
ments are often added to the VHDL text to guide optimiza-
tion. These are recorded with the language constructs that

30 follow them. There is no equivalent to Verilog attributes.
Comments outside of a package are added to the file header

digest.
Syntax Interpretation
As described above, many VHDL language constructs can

35 be considered to meet the definition of a "cell", including
entities, configurations, architectures, procedures, functions,
components, types, and subtypes.

VHDL supports name overloading, meaning that a given
name may map to multiple objects. The compiler selects the

40 proper object using context and type information.
The language definition relies very heavily on these two

concepts, to the point that it is error prone to parse a VHDL
file fully without having its included files available. Because
the prototype canonical cell digest parser is not designed for

45 logic synthesis and because the context in which it works (e.g.
the include files) may change over time, it uses a slightly
simplified language specification that allows context-free
parsing.

VHDL also supports operator overloading, meaning that
so there may be multiple versions of the same object with dif-

ferent types and parameters. For example, there may be sev-
eral multiply operators.

Finally, for a given design entity there may be multiple
architectures. These are meant to be interchangeable; the

55 designer specifies which architecture to use when instantiat-
ing a module.

Generating canonical cell digests for all aspects of a VHDL
design thus requires disambiguation. An encoded name with
two to four parts is assigned to objects recorded as cells:

60 a package name, for objects stored in packages
the object type, e.g. architecture or function
the object's name as specified by the designer
a number suffix, for objects overloaded by name
For example, vital_ timing.constant.edgesymbolmatch

65 represents the constant edgesymbolmatch in the package
vital_timing and vital_timing.procedure.vitalerror.1 repre-
sents the second procedure named vitalerror in this package.

US 7,685,545 B2
31

Because canonical cell digests are computed on a file-by-file
basis, the user's software may have to disambiguate the
names further when storing the digests into a database. This is
especially true for procedures and functions that have sepa-
rate specifications and bodies the parser does not know until
very late (after the parameter list) whether it has a specifica-
tion or a body, and by that time the cell name has been passed
to the digest engine.

The VHDL specification also provides for nested object
definitions, e.g. a function inside a procedure. Because these
may be nested infinitely and because their scope is limited to
the containing object (making them invisible to the outside),
separate cells are not created for these objects. They are
recorded as part of the cell body of the containing object.

The VHDL specification uses the eight-bit character set
defined in the ISO/IEC 8859-1 standard. The parser has full
support for all valid eight-bit characters.

VHDL is case-insensitive except for extended identifiers;
the parser converts all tokens except extended identifiers to
lower case before sending them to the digest engine.

Sorting of VHDL Files
Many of the statements in VHDL are order-dependent and

thus cannot be sorted. The parser does not attempt to deter-
mine which portions of architecture or subprogram bodies are
order-independent it sorts only the parameters in their dec- 25

larations. Because instantiations might not use order-inde-
pendent argument specifications, digest matches found after
sorting might not represent actual matches. Thus sorting of
VHDL files should be done with caution.

Parameter declarations may be specified one by one or, if
the types are the same, in lists. For example, the following sets
of declarations are equivalent:

X,Y,Cin: in Bit;
Cout,Sum: out Bit;

32
Parameter lists in procedure cells and function cells are not

sorted; the parser may not know the names of the parameters
in the procedure or function because their declarations may
be in another file. This applies even if the parameters are in an

5 association list that uses =>.
Numeric literals are sent to the digest engine without inter-

pretation. In particular they are not converted to a canonical
form first. For example, a plus sign in an exponent is optional,
so le10 will be different than 1e +10. The numbers are not

10 reprinted, so 1 e10 will also differ from 1.0e10.
The parser does not attempt to determine when a VHDL

object can be considered hierarchical.
Annotated Sample VHDL File
FIGS. 10A-10B illustrate an annotated sample VHDL file.

15 Note that in architecture MC68000, the name of the first-
level nested function (bclr_d) is recorded as interface text,
though the name of the second-level nested function (nested)
is not. This is because bclr_d is considered to be an interface
variable, like the variable Delay in the procedure VitalWire-

2o Delay. Neither nested procedure is recorded as a separate cell;
both are considered to be part of architecture MC68000.

and
X: in Bit;
Y: in Bit;
Cin: in Bit;
Cout: out Bit;
Sum: out Bit;
The parser expands parameter declarations from the first

form to the second form. They can then be sorted according to
the name of the parameter.

Because an entity is the specification of an interface to one
or more architectures, everything in an entity is considered
part of the interface, even entity statements after the word is.

Names of top-level objects (cells) are not sent to the digest
engine so that matching of equivalent cells with different
names is possible. Names of variable declarations (including
subprogram declarations) within top-level objects are
recorded as cell interface text but the names of any declara-
tions inside those variables are not. See the annotated sample
file, FIGS. 10A-10B, for an example.

Limitations of the Prototype VHDL Parser
Vertical tab and form feed characters are converted to line

feed characters even before they are added to the file-level
digests. Carriage return/line feed pairs are converted to a
single line feed character before being added to the file-level
digests.

The parser does not attempt to combine constants. For
example, string literal concatenation is not performed. "abc-
def' will not have the same digest as "abc" & "def'.

Include file directives (library and use clauses) are not
interpreted, since the include path at the time of digest calcu-
lation may be different than the include path at compilation
time.

Examples 5-6

OASIS® and GDSII File Types

In this example, OASIS® and GDSII file types, having
identical file elements, will be described together. These file
types have content digests for the following file elements:

30 File
File Header
Layer-by-Layer Geometric Objects
Layer-by-layer Non-geometric Objects
References to Lower-level Cells

35 Boolean Flags Referring to Other Lower-level Cells
The database is scanned to find the cell names inside. For

the cells present, the following is computed:
Layer-by-layer digests of all geometric objects (polygons,

rectangles, etc.);
40 Layer-by-layer digests of all non-geometric objects (text

points, etc.);
A digest for all other objects such as references to lower-

level cells; and
A Boolean flag indicating whether the cell has references

45 to lower-level cells.
As an option, the data in small and medium size cells is

sorted prior to digest computation so that data ordering dif-
ferences do not cause digest differences. The user can set the
memory usage limit for this option.

so OASIS® repetitions and GDSII array references are
expanded prior to digest computation so that differences in
repetition analysis do not cause digest differences.

Digests are computed and returned for the header of the file
(information before any cell definitions) and for the file as a

55 whole. For GDSII files, the file is assumed to be syntactically
correct.

Structure (cell) creation and modification times are stored
as comments; if they differ in two cells that are otherwise
identical, the cell digests and comment digests will differ but

60 all layer digests will be identical.
None of the data in a GDSII or OASIS® cell is considered

to be part of the "header" (the interface to the cell). That is
assumed to be generated by external tools and stored else-
where (e.g. LEF). No "whitespace" digests are computed for

65 GDSII or OASIS® files. Structure references (SREF and
AREF) are reported as part of the digest for non-layer data
with index -1. GDSII or OASIS® polygon sorting and GDSII

US 7,685,545 B2
33

or OASIS® polygon merging (overlap removal) can also be
performed prior to digest computation.

OASIS® Layout Files
OASIS® files are structured binary files used for specify-

ing layout. The format has many different methods for reduc-
ing the space required for the file such as repetitions and
compressed data blocks. These can change the order in which
data appears in a cell or even the data constructs used to
represent the data (RECTANGLE vs. CTRAPEZOID, for
example). Internally, to ensure a consistent representation all
geometric constructs are converted to POLYGON records
and repetitions are expanded.

Where appropriate, OASIS® file data is sorted by default if
sufficient memory or disk space is available. Data is grouped
by layer and then by position, so that the same digests are
generated no matter how the data was ordered originally
within the cell. As long as the data is sorted and there are no
OASIS® properties in a cell, the user's software should be
able to match digests between OASIS® cells and their
equivalent GDSII representation.

To avoid floating point roundoff error, digests are com-
puted based on the integer coordinates of layout data within
the cell. Because the user's preferred design grid may change
over time, canonical cell digests are computed based on a
smaller grid that the user specifies using the -grid command-
line option. The user should choose this grid carefully to
ensure that all future design grids are an integral multiple of it.
By default this grid is 1 nanometer (1.0e-9 meter); it may be
best to set an even smaller value such as 0.5 nanometer or 0.25
nanometer. If the grid is too small, however, the user may get
integer arithmetic overflows on 32-bit machines.

Because all repetitions are expanded to ensure a consistent
representation, runtime performance for canonical cell digest
calculation may vary considerably even for files of the same
size.

Here is a portion of a digest report for an OASIS® file:

Cell "Structure 1" (not sorted)
f64ce851
f64ce851
(none)
20b84e54
e03bf9d2
fda35715
cb6c08c2

Cell with Comments
Cell without Comments
Cell Comments
Cell Body non-Layer
Cell Body Layer 3

Cell Body Layer 42
Cell Body non-Geometric Data Layer 3

In this example, sorting was not requested, and this is
reported after the cell name. Nothing in an OASIS® cell is
recorded as cell comment data, so the digest is reported as
"(none)". There are some structure references recorded as
non-layer data and some geometry on layers 3 and 42. Finally,
there is some non-geometric data (one or more TEXT
records) on layer 3.

OASIS® Format Files: Definitions
The Open Artwork System Interchange Standard (OA-

SIS®) format was developed by a committee of Semiconduc-
tor Equipment and Materials International (SEMI) as a
replacement for GDSII. It removes 16- and 32-bit restrictions
on numeric values and improves layout file sizes by up to a
factor of 10. The prototype OASIS® parser follows the speci-
fication described in SEMI Standard P39-1105 (November
2005). Name tables are supported.

OASIS® is a binary format, so for clarity this description
uses the record names listed in the OASIS® specification.

Syntax Interpretation of OASIS® Files

34
The OASIS® specification provides for arbitrary-preci-

sion integers and floating point numbers. Arithmetic pack-
ages for arbitrary-precision arithmetic are slow, however, and
not in wide use in the design automation community. The

5 prototype parser uses native integers (32 bits when compiled
in 32-bit mode, 64 bits when compiled in 64-bit mode) and
IEEE double-precision floating point numbers (64 bits). An
error will be logged if numbers exceeding these limits are
present in a file.

10 The specification also provides for several different num-
ber representations, such as unsigned integer, signed integer,
ratio, reciprocal, and floating point. All numbers are con-
verted to canonical form for comparisons native integers
for integral values and double precision floating point num-

15 bers for floating point values. This allows matching of num-
bers written by different tools, e.g. 5/2 and 2.5.

In like manner, all point lists (e.g. 1-delta lists) are fully
expanded to X/Y coordinate pair lists before digests are com-
puted.

20 Design tools have considerable freedom to choose the
OASIS® elements used to represent the geometry of a layout
cell. Although a layout editor will generally preserve the
designer's choice of, for example, a PATH vs. a POLYGON,
the final output might have an equivalent POLYGON in order

25 to reduce the ambiguity inherent in the definition of a PATH
at a bend. Such a tool might also change the "winding direc-
tion" of a POLYGON from counterclockwise to clockwise.
To avoid these issues, all geometric elements are converted to
a canonical representation for canonical cell digest calcula-

30 tion:
RECTANGLE, PATH, TRAPEZOID, CTRAPEZOID,

and CIRCLE elements are converted to equivalent
POLYGON records

POLYGON point lists are reversed if the resulting polygon
35 has a counterclockwise winding direction

the first point in the list is chosen to be the lowest, leftmost
point

If there is a flip in a PLACEMENT record, it is stored as if
it were a GDSII STRANS record (a bit array).

40 If a PLACEMENT object uses a numeric cell reference, the
number is replaced by its corresponding cell name, and only
the cell name is sent to the digest.

The OASIS® specification provides for repetitions of all
constructs. Different tools might choose different methods of

45 optimizing repetitions. The data is equivalent no matter how
it is arrayed, so for canonicity all repetitions are expanded into
single-object references (e.g. rectangles or PLACEMENT
records). For this reason, runtime performance as a function
of file size cannot be guaranteed a small file with a repeti-

50 tion that expands to a billion polygons will require a great deal
of CPU time.

OASIS® files also coexist with older GDSII format files.
OASIS® uses a different method of describing repeated
object references, so unless repetitions are expanded, it will

55 not be possible to match repeated PLACEMENT objects with
GDSII AREFs.

Note that in some embodiments, digests are computed
based on the objects in the OASIS® file, not the underlying
geometry. No overlap removal is performed before comput-

60 ing the digest.
The OASIS® format was designed to remove the need for

"extensions" to the specification. If the OASIS® file does not
comply with the specification, the parser will return an error.

OASIS® layers are primarily indexed by number (all geo-
65 metric constructs use layer numbers, not layer names); the

mapping of layer names (if any) to numbers is not currently
returned by the parser.

US 7,685,545 B2
35

Coordinates in an OASIS® file are specified using a grid,
e.g. 1 nanometer (1.0e-9 meter), at the front of the file. Within
the cells, all coordinates are defined in terms of this grid so
that they can be integral. The file grid can change, however,
without affecting the final mask data. For example, imported
design template blocks could be specified using a grid of 5

nanometers even though the standard grid is 1 nanometer. The
user's software would then convert all imported data to use
the smaller grid, scaling the integer coordinates in the cells by
a factor of 5.

To ensure canonicity, all geometry in OASIS® files is
scaled to use an internal canonical cell digest grid. The user
should choose this grid carefully so that the OASIS® file grid
used in all future designs will be compatible. For example, if
the current design grid is 5 nanometers, it may be best to use
a digest grid of 1 nanometer or even 0.5 nanometer.

The canonical cell digest grid value is passed to the
OASIS® parser and an error is returned if the OASIS® file
grid is not an integral multiple of the canonical cell digest grid
value.

Structures with PLACEMENT records are marked as hier-
archical for digest reporting.

Sorting of OASIS® Files
As mentioned, OASIS® files use a different method to

specify arrayed structure references than GDSII files. Differ-
ent vendors might also choose different repetition optimiza-
tion methods. Finally, the geometric objects within a cell can
be reordered at any time without changing the meaning of the
file. Effective comparison of OASIS® layouts, or GDSII
layouts versus OASIS® layouts, thus requires sorting. For
this reason, sorting of GDSII and OASIS® layouts is enabled
by default.

After a geometric object is converted to canonical form, it
can be compared to another object for sorting purposes as
follows:

the layer name is the primary key; lower layer numbers are
first

the element type (using GDSII record types) is the second-
ary key; lower element types come first

the XY coordinates of the element, if any, are the tertiary
key; coordinates are compared one by one and the ele-
ment with the lowest, leftmost point for a given entry
comes first

if a placement transform (i.e. flip) is present, the bit vector
converted to an integer is compared and the "lowest" one
comes first

next, the DATATYPE values are compared, and the lowest
one comes first

if the records are placements, the cell name values are
compared alphabetically and the lowest one comes first

next, the MAG values, if any, are compared and the lowest
one comes first

next, the ANGLE values, if any, are compared and the
lowest one comes first

finally, the PROPERTY values are compared one by one
It is expected that only the first three comparisons (layer

name, element type, and XY location) will be used, so that the
order of the other comparisons can be more or less arbitrary.

The sorting criteria are actually the same as those used for
GDSII; fields that do not apply to OASIS® have been omitted
from the above description. Use of GDSII fields that have no
analog in OASIS® (e.g. PLEX) or are different in OASIS®
(e.g. properties) will prevent matching of cells across for-
mats.

If sorting is requested, the records in a cell are collected
until the end of the cell is reached or until so much cell data is
stored in memory that the usage limit is exceeded. Should that

36
occur, the stored cell records are sent to the digest module in
their original order or may be sorted using a disk sort, at a
substantial performance penalty. The memory test is per-
formed on a cell-by-cell basis, so some cells may be sorted

5 and some may be unsorted. Cells are marked as to whether
they have been sorted; this information is available in digest
reports and through the API.

File header objects are not sorted.
Limitations of the Prototype OASIS® Parser

10 The OASIS® file is assumed to be compliant with SEMI
P39 syntax and semantics. No errors are tolerated. Only one
error is reported; the parser does not attempt to continue past
the first error.

Currently XELEMENT, XGEOMETRY, and XNAME
15 records are discarded without being recorded (except in file-

level digests).
PAD records are discarded without being recorded (except

in file-level digests).
The memory used by name tables in the file is not mea-

2o sured; this can cause actual memory usage to exceed the
requested limit.

The properties of an element are recorded as the same type
(geometric data) as the element itself. The definition of
PROPERTY records in OASIS® differs significantly from

25 PROPATTR records in GDSII and it will be impossible to
match cells that have elements with properties (other than the
compatible S_GDS_PROPERTY) in them.

The LAYERNAME table, if any, is not returned by the
OASIS® parser, so only layer number information is avail-

30 able for use with digests.
Zero-area polygons are not reversed if their points are

drawn in the "wrong" order. This can make it difficult to
compare GDSII and OASIS® files containing zero-area poly-
gons.

35 Annotated Sample OASIS® File
FIG. 11 is an annotated sample OASIS® file. Because

OASIS® is a binary file format, OASIS® record names are
used and some portions of individual elements are abbrevi-
ated for simplicity. All of the fields within an element have the

40 same recording type, so there is no loss of generality.
For canonicity, RECTANGLE, PATH, TRAPEZOID,

CTRAPEZOID, and CIRCLE elements are converted to
equivalent POLYGON elements with a clockwise wrap.
Thus, none of these element types is shown in the figure. The

45 first point in the point list is chosen to be the lowest, leftmost
point. The GDSII BOUNDARY record number is used so that
OASIS® cells can be matched against GDSII cells.

TEXT elements are recorded using the GDSII TEXT ele-
ment number so that OASIS® cells which use only TEXT can

so be matched against GDSII cells. Note that there is no analog
in OASIS® to the GDSII NODE element.

CBLOCK records are expanded before computing digests,
so they do not become part of the canonical cell digests. The
canonical cell digests will be the same regardless of whether

55 CBLOCK records are present.
The file-level digest is computed without expanding

CBLOCK records.
Names and other strings are recorded as if they were

present with the record for which they are used, whether or
60 not name tables are present in the file. The name and other

string tables themselves are not added to any canonical cell
digests. Properties associated with name records (e.g.
CELLNAME) are added to the file header non-Layer Geom-
etry digest.

65 All geometric records are fully expanded before being sent
to the digest engine; no implicit use of modal variables is
made. This is useful for sorting as well as for matching with

US 7,685,545 B2
37

GDSII files. For this reason, XYRELATIVE and XYABSO-
LUTE records are not part of any canonical cell digest; they
merely determine how XY coordinates are interpreted (rela-
tive to the previous object or absolute coordinates).

Properties are recorded with the object that immediately
precedes them. If that object has a layer number, they are
recorded on that layer number. Properties at the front of the
file (and thus outside of any cell) are not sorted; they are
recorded as they occur.

Before being sent to the digest engine, PLACEMENT
objects of type 17 (orthogonal rotations) are converted to
PLACEMENT objects of type 18 (arbitrary rotations) to
match the definition in GDSII.

There is no industry standard for structure interfaces (e.g.
bounding boxes, abutment boxes, and router pickup points),
so nothing is recorded as cell header data.

Example 6 (cont.)

GDSII Layout Files

GDSII files are structured binary files used for specifying
layout. Depending on the tool used to write a GDSII file, the
order in which data appears in a cell may change and some
constructs (especially PATH) may be converted to a less-
ambiguous representation (BOUNDARY). Internally, to
ensure a consistent representation all geometric constructs
are converted to BOUNDARY (polygon) records and array
references (AREFs) are expanded into equivalent sequences
of structure references (SREFs).

Where appropriate, GDSII file data is sorted by default if
sufficient memory or disk space is available. Data is grouped
by layer and then by position, so that the same digests are
generated no matter how the data was ordered originally
within the cell. As long as the data is sorted and there are no
GDSII NODE records or properties in a cell, the user's soft-
ware should be able to match digests between GDSII cells and
their equivalent OASIS® representation.

To avoid floating point roundoff error, digests are com-
puted based on the integer coordinates of layout data within
the cell. Because the user's preferred design grid may change
over time, canonical cell digests are computed based on a
smaller grid that the user specifies using the -grid command-
line option. The user should choose this grid carefully to
ensure that all future design grids are an integral multiple of it.
By default this grid is 1 nanometer (1.0e-9 meter); it may be
best to set an even smaller value such as 0.5 nanometer or 0.25
nanometer. If the grid is too small, however, the user may get
integer arithmetic overflows on 32-bit machines.

Because all AREFs (arrayed structure references) are
expanded to ensure a consistent representation, runtime per-
formance for canonical cell digest calculation may vary con-
siderably even for files of the same size.

Here is a portion of a digest report for a GDSII file:

Cell "Structure 1" (sorted)
a7100492 Cell with Comments
3d4d7fbf Cell without Comments
9a5d7b2d Cell Comments
7b78aab4 Cell Body non-Layer
15546763 Cell Body Layer 3

fda35715 Cell Body Layer 42
aec2e57d Cell Body non-Geometric Data Layer 3

In this example, the cell was small enough to be sorted, and
this is reported after the cell name. The cell modification and

38
access time are recorded as comments, there are some struc-
ture references recorded as non-layer data and some geom-
etry on layers 3 and 42. Finally, there is some non-geometric
data (one or more NODE or TEXT records) on layer 3.

5 GDSII Stream Files: Definitions
GDSII is an early layout database format, originally speci-

fied in the 1980s by Calma Corporation and now owned by
Cadence. The prototype GDSII parser follows the specifica-
tion described in the Cadence Virtuoso Design Data Transla-

io tors Reference with Y2K additions.
GDSII is a binary format, so for clarity this description uses

the record names listed in the GDSII specification.
Syntax Interpretation of GDSII Files
Lacking an industry standard specification, tool vendors

is have "extended" the GDSII format over the years. For
example, the GDSII documentation notes that the maximum
layer number for a node point, text point, or geometric object
is 255, but some tools allow up to 32,767 layers (the maxi-
mum possible signed 16-bit integer). Similarly, the GDSII

20 documentation limits boundaries (polygons) and paths
(wires) to 200 points, but some tools allow up to 4,094 points
(the maximum number of points that can fit into a 65,535-byte
record). To support these extensions while still providing
some level of checking, the parser accepts a "variances"

25 record that specifies limits for the following:
structure name length (default 32, maximum 32,750)
additional characters allowed in structure names (beyond

"A-Za-z0-9_?$")
maximum layer number, data type, or text type (default 64,

30 maximum 32,767)
maximum property attribute number (default 64, maxi-

mum 32,767)
maximum BOUNDARY or PATH point count (default

200, maximum 4,094)
35 maximum node point count (default 50, maximum 4,094)

maximum property value length (default 128, maximum
32,767)

whether the lattice vectors in an AREF may be rotated or
whether they are orthogonal and in the first quadrant

40 whether a rotation in an AREF means that the lattice is
rotated rigidly or that the instances are rotated in place
within the lattice as it is specified

Other than modifications to these aspects, if the GDSII file
does not comply with the specification the parser will return

45 an error.
Design tools have considerable freedom to choose the

GDSII elements used to represent the geometry of a layout
cell. Although a layout editor will generally preserve the
designer's choice of, for example, a PATH vs. a BOUND-

so ARY, the final stream output might use an equivalent
BOUNDARY instead, to reduce the ambiguity inherent in the
definition of a PATH at a bend. Such a tool might also change
the "winding direction" of a BOUNDARY from counter-
clockwise to clockwise. To avoid these issues, all geometric

55 elements are converted to a canonical representation for
canonical cell digest calculation:

PATH elements are converted to equivalent BOUNDARY
records

the last point in a BOUNDARY point list is removed if it
60 coincides with the first point

BOUNDARY point lists are reversed if the resulting poly-
gon has a counterclockwise winding direction

the first point in the list is chosen to be the lowest, leftmost
point

65 GDSII files also coexist with newer OASIS® format files.
OASIS® uses a different method of describing repeated
object references. For canonicity, AREF (arrayed structure

US 7,685,545 B2
39

reference) objects are expanded to the equivalent sequence of
individual SREF (structure reference) objects. The same
thing is done in the OASIS® parser (repetitions are
expanded), so that it is possible to compare digests for layout
in GDSII files vs. OASIS® files. For this reason, runtime
performance as a function of file size cannot be guaran-
teed a small file with an AREF that expands to a billion
SREFs will require a great deal of CPU time because SREFs
are added to digests one at a time.

The GDSII specification calls for AREF lattices to be
orthogonal and in the first quadrant (i.e. the first lattice vector
along the positive X axis and the second lattice vector along
the positive Y axis), then mirrored or rotated rigidly if mir-
roring or rotation, respectively, is specified. Few CAD tools
actually use this definition; instead the lattice vectors are
rotated and/or mirrored and the instances placed within the
transformed lattice. By default the prototype GDSII parser
uses this definition; there is an option in the API to use the
original definition.

Note that digests are computed based on the objects in the
GDSII file, not the underlying geometry. No overlap removal
is performed before computing digests.

Coordinates in a GDSII file are specified using a grid, e.g.
1 nanometer (1.0e-9 meter), at the front of the file. Within the
cells, all coordinates are defined in terms of this grid so that
they can be integral. The file grid can change, however, with-
out affecting the final mask data. For example, imported
design template blocks could be specified using a grid of 5

nanometers even though the standard grid is 1 nanometer. The
user's software would then convert all imported data to use
the smaller grid, scaling the integer coordinates in the cells by
a factor of 5.

To ensure canonicity, all geometry in GDSII files is scaled
to use an internal canonical cell digest grid. The user should
choose this grid carefully so that the GDSII file grid used in all
future designs will be compatible. For example, if the current
design grid is 5 nanometers, it may be best to use a canonical
cell digest grid of 1 nanometer or even 0.5 nanometer.

The canonical cell digest grid value is passed to the GDSII
parser and an error is returned if the GDSII file grid is not an
integral multiple of the canonical cell digest grid value.

Structures with SREF or AREF records are marked as
hierarchical for digest reporting.

Sorting of GDSII Files
As mentioned, GDSII files use a different method to

specify arrayed structure references than OASIS® files.
OASIS® file writers have a great deal of freedom to cluster
geometric objects or structure references through the use of
repetitions. Different vendors might choose different repeti-
tion optimization methods. Finally, the geometric objects
within a cell can be reordered at any time without changing
the meaning of the file. Effective comparison of GDSII lay-
outs, or GDSII layouts vs. OASIS® layouts, thus requires
sorting. For this reason, sorting of GDSII and OASIS® lay-
outs is enabled by default.

After a geometric object is converted to canonical form, it
can be compared to another object for sorting purposes as
follows:

the layer name is the primary key; lower layer numbers are
first

the element type (using GDSII record types) is the second-
ary key; lower element types come first

the XY coordinates of the element, if any, are the tertiary
key; coordinates are compared one by one and the ele-
ment with the lowest, leftmost point for a given entry
comes first

40
if a STRCLASS is present, the bit vector converted to an

integer is compared and the "lowest" one comes first
if an ELFLAGS is present, the bit vector converted to an

integer is compared and the "lowest" one comes first
5 if a PRESENTATION is present, the bit vector converted to

an integer is compared and the "lowest" one comes first
if an STRANS is present, the bit vector converted to an

integer is compared and the "lowest" one comes first
next, the PLEX values (default 0) are compared, and the

10 lowest one comes first
next, the DATATYPE values are compared, and the lowest

one comes first
next, the PATHTYPE values, if any, are compared and the

lowest one comes first
15 if the records have STRING values, those values are com-

pared alphabetically and the lowest one comes first
if the records are STRANS (structure transformation), the

SNAME values are compared alphabetically and the
lowest one comes first

20 next, the MAG values, if any, are compared and the lowest
one comes first

next, the ANGLE values, if any, are compared and the
lowest one comes first

finally, the PROPATTR values are compared one by one
25 It is expected that only the first three comparisons (layer

name, element type, and XY location) will be used, so that the
order of the other comparisons can be more or less arbitrary.

Some of these sorting criteria are also used for OASIS®
files.

30 Use of fields that have no analog in OASIS® (e.g. PLEX)
or are different in OASIS® (e.g. properties) will prevent
matching of cells across formats.

If sorting is requested, the records in cells (GDSII struc-
ture) are collected until the end of the cell is reached or until

35 so much cell data is stored in memory that the usage limit is
exceeded. Should that occur, the stored cell records are sent to
the digest module in their original order. The memory test is
performed for the cells, so some cells may be sorted and some
may be unsorted. Cells are marked as to whether they have

40 been sorted; this information is available in digest reports and
through the API.

File header objects have a specified order, so they are not
sorted.

Limitations of the Prototype GDSII Parser
45 The GDSII file is assumed to follow the Cadence specifi-

cation for GDSII with the exception that some numeric limits
may be relaxed, as described above. AREF lattices can also be
specified in a rotated orientation. Other than these variances,
no exceptions or errors are tolerated. Only one error is

so reported; the parser does not attempt to continue past the first
error.

There is currently no way to change numeric limits and
behavioral flags from the command line. The API has the
ability to define variances for all of the items described above.

55 PROPATTR records have a different structure in GDSII
than PROPERTY records in OASIS®. Use of PROPATTR
records will prevent matching of GDSII cells to OASIS®
cells unless the OASIS® PROPERTY records use the
S_GDS_PROPERTY format.

60 Zero-area BOUNDARYs and BOXes are not reversed if
their points are drawn in the "wrong" order. This can make it
difficult to compare GDSII and OASIS® files containing
zero-area polygons.

BOX records are not converted to BOUNDARY records
65 under the assumption that they are not equivalent; they are no

more efficient than BOUNDARY records and so it is pre-
sumed that they are intentionally drawn differently.

US 7,685,545 B2
41

Annotated Sample GDSII File
FIG. 12 is an annotated sample GDSII file. Because GDSII

is a binary file format, GDSII record names are used and some
portions of individual elements are abbreviated for simplicity.
All of the fields within an element have the same recording 5

type, so there is no loss of generality.
The modification and access times of structures are

recorded as cell comments. Structure class records are also
recorded as cell comments. There is no industry standard for
structure interfaces (e.g. bounding boxes, abutment boxes, 10

and router pickup points), so nothing is recorded as cell
header data.

Layers in GDSII are numeric; no list of layer names is
returned.

PATH elements are converted to BOUNDARY elements 15

using the path type and any BGNEXTN or ENDEXTN
records before they are sent to digest generation. Path type 1

(round ends) is converted to path type 2 (square ends half the
width beyond the endpoints).

If a PATH element has acute angles, the outer corners of 20

any such bends are truncated at a distance equal to half the
wire width away. The outside of the PATH is traced in a
clockwise direction; the lowest, leftmost point is chosen as
the first. The last point in the list is not coincident with the
first; instead there is an implied edge. 25

Negative PATH widths are silently converted to positive
path widths, thereby removing their "absolute path width"
property. This conversion is not recorded in the digests.

The point lists of BOUNDARY elements are reversed if
they have a counterclockwise wrap; afterwards the lowest, 30

leftmost point is chosen as the first. The final point, which
according to the GDSII specification overlaps the first, is
removed so that there is an implied edge.

The point lists of BOX elements are reversed if they have a
counterclockwise wrap; afterwards the lowest, leftmost point
is chosen as the first. The final point, which according to the
GDSII specification overlaps the first, is removed so that there
is an implied edge. BOX elements are not converted to
BOUNDARY elements under the assumption that they are
intended for different purposes. 40

Array references (AREF elements) are expanded to
equivalent lists of SREF elements before they are sent to
digest generation.

The attributes of an element are recorded as the same type
(geometric data) as the element itself. It is also possible to 45

record them as non-geometry data, as the definition of
attributes in OASIS® differs significantly and it will other-
wise be impossible to match cells that have elements with
attributes in them.

Bit arrays in GDSII records (e.g. STRANS) are converted
to integers before being sent to digest calculation.

42
The command line options -mergewhite, -reportwhite, and

-discardwhite control the reporting of file-level whitespace
digests for text-based file formats. Whitespace includes
spaces, tabs, and newlines. The -mergewhite option is the
default; when it is active a single file-level digest is reported,
including both whitespace and non-whitespace. When the
-reportwhite option is active, digests for whitespace and non-
whitespace are reported separately. When the -discardwhite
option is active, whitespace is ignored and a single file-level
digest excluding whitespace is reported.

For example, if the sample file testfiles/verilog_test.v is
treated as an unstructured text file, the following results will
be obtained:

otismartsig -txt -mergewhite testfiles/verilog test.v
File "testfiles/verilog test.v": unstructured text
format

File CRC 5404c699
otismartsig -txt -reportwhite testfiles/verilog test.v
File "testfiles/verilog test.v": unstructured text
format

File CRC 5404c699
File non-whitespace CRC 7c2a352d
File whitespace CRC 219b1881

otismartsig -txt -discardwhite testfiles/verilog_test.v
File "testfiles/verilog test.v": unstructured text
format

File CRC 7c2a352d

Note that the merged file digest in the first example
matches the full-file digest in the second example, and that the
non-whitespace digest in the second example matches the file
digest in the third example.

35 Whitespace and non-whitespace digests are not computed
for individual cells in cell-based formats such as Liberty or
Verilog; they are computed only at the file level.

The three whitespace reporting options may be used for
structured text file formats as well. For example:

Example 7

Unstructured Text File Type

Unstructured text files are text files which do not have a
specification known to the canonical cell digest tool. For
example, log files or human-readable descriptions of design
template blocks would be unstructured text files. Text files are
line-oriented, however, so they can still be sorted. If sorting is
requested, the file header data digest will change to reflect the
sorting. Otherwise it will match the file digest.

In this example, unstructured text files have content digests
for the file Byte by Byte. A byte-by-byte digest is computed
for unstructured text files. The digest is independent of new-
line style. As an option, differences in whitespace are ignored.

otismartsig -discardwhite -ver
testfiles/verilog test2.v
File "testfiles/verilog test2.v": Verilog format

File CRC 07f87fb9
File header CRC 6ef229e6
File comment CRC 6ef229e6

Cell "OAI21 Xl"
Interface CRC dae46517
Contents CRC c73aceaf

50 Cell "0AI21 X2"
Interface CRC 01391569
Contents CRC c73aceaf

55
Syntax Interpretation
File-level (all file data, non-whitespace data, and

whitespace data) and file header digests are computed for
unstructured text files. File header digests are computed for
all of the data in the file, sorting lines alphabetically if

60
requested. If the file has DOS-style (CR-LF) line endings,
they are converted to UNIX-style (LF only) line endings
before any digests are computed.

Sorting of Unstructured Text Files

If sorting is requested and the memory usage limit is high
65 enough, the lines of the file are sorted before computing the

file header digests. All data is recorded as non-layer, non-
comment file header data.

US 7,685,545 B2
43

Limitations of the Prototype Unstructured Text File Parser
Currently there is no option to convert whitespace to a

canonical form (e.g. tabs to spaces or removing repeated
spaces).

Example 8

Unstructured and Structured Binary Files

The digest for an unstructured binary file (or a structured
binary file without a parser) is simply the CRC of all of the
bytes in sequence with no interpretation. A digest for the
example GDSII file testfiles/sigtest.gds can be computed as
follows:

otismartsig -bin testfiles/sigtest.gds
File testfiles/sigtest.gds: unstructured binary format

File CRC d0b40760

44
SPICE Subcircuit Files
Extracted layouts are generally written into subcircuits

within SPICE input files, and these are recorded as cells by
the canonical cell digest software. The text within a subcircuit

5 is order-independent and can be sorted, but it might not be
instantiated using order-independent argument specifica-
tions, so digest matches found after sorting might not repre-
sent true equivalence. Thus sorting of SPICE subcircuit files
should be done with caution. By default SPICE subcircuit

10 files are not sorted unless the user specifies the -sort flag.
There are no layers in a SPICE subcircuit file, so all of the

digests for a cell are reported as non-Layer data:

15

20

This is the same digest as the file-level digest computed by
the GDSII parser.

Unstructured Binary Files
Unstructured binary files are non-text files which do not

have a specification known to the canonical cell digest tool.
For example, object code or executable programs would be
unstructured text files. Because these files have no known
structure, canonical cell digests cannot be computed for them.
Only a file digest is computed. There is no syntax interpreta-
tion or sorting of unstructured binary files.

Example 9

SPICE Format Netlist File Type

Transistor level designs are often analyzed using the Simu-
lation Program with Integrated Circuit Emphasis (better
known as SPICE), developed in the 1970s at the University of
California Berkeley campus. SPICE and its derivatives are
still the gold standard numerical solver for integrated circuits,
though capacity and runtime issues limit its use to subcircuits
(dozens to hundreds of transistors, plus associated parasitic
circuit elements) instead of entire designs. SPICE input files
are text and can be created by designers but are generally
written by circuit extractors reading layout from GDSII or
OASIS®. Typically, the SPICE simulations which read these
files are then used to generate timing models for Liberty
format files.

In this example, SPICE format netlist files have content
digests for the following file elements:

File
File Header
Port Definitions for Subcircuits
Body of the Subcircuit
The file is scanned to find the subcircuit names inside. For

subcircuits, separate digests are computed for the port defi-
nitions and the body of the subcircuit. These are based on the
individual SPICE netlist tokens excluding any whitespace or
comments.

Digests are computed and returned for the header of the file
(information outside of any subcircuit definitions) and for the
file as a whole. These include any whitespace and comments.

Include file directives are not interpreted, since the include
file reference at the time of digest calculation may be different
than at simulation time (e.g. if the path name is relative).

25

File "testfiles/testl.spi": Spice format
Arguments: -mem 64 -nosort

e4c0e613 File
7a041fe8 File non-Whitespace
07415f83 File Whitespace

File Header (not sorted)
c8954a7d File Header with Comments
fa8f8413 File Header without Comments
321ace6e File Header Comments
fa8f8413 File Header non-Layer

Cell "nand2" (not sorted)
59fa7fl0 Cell with Comments
bdda89ec Cell without Comments
e420f6fc Cell Comments
5f4226ed Cell Interface non-Layer
e298af01 Cell Body non-Layer

Syntax Interpretation
30 There is no standard SPICE format, as variants have their

own directives (especially device model parameters), but all
of the programs use the same line-oriented netlist structure in
which subcircuits (cells) start with .subckt and end with .ends.
The prototype canonical cell digest SPICE parser creates a

35 cell for subcircuits and records all other text as part of the file
header.

Comments begin with `*' and continue to the end of the
current line. The `*' may have whitespace in front of it; this is
removed. Any whitespace after the `*' is recorded without

40 further processing. Comment lines inside a subcircuit are
added to the cell body digest.

Any line may be continued to the next line if the next line
begins with +' in the first column. The +' is removed before
merging the lines together, so that the following two line

45 sequences are equivalent:

50
and

+a
+b
+c

.subckt a b c

.subckt

55
No spaces are added when continuation lines are merged, so
the following two line sequences are equivalent:

60 .subckt a b c

and
.sub

+ckt a b c

65 Sequences of multiple whitespace characters in non-com-
ment lines are converted to single space characters before
sending the lines to the digest engine.

US 7,685,545 B2
45

Dot command names (e.g..subckt) are assumed to be case-
insensitive. Cell names are converted to lower case before
being recorded, but otherwise the text is recorded without
case conversion.

Nets specified on .global lines are recorded as pins in the
cell interface.

.options and .param lines are added to the body of the cells
under the assumption that they will affect the cells.

Lines after a .end statement are recorded as file header data
without any interpretation. The .end command is regarded as
optional; no error is printed if it is missing.

Dot commands other than .global, .options, .param, .sub-
ckt, .ends, and .end are recorded as file header data without
interpretation.

Any subcircuit with an 'X' (subcircuit instantiation) com-
mand is marked as hierarchical.

Sorting of SPICE Netlist Files
Because SPICE subcircuit netlists specify only connectiv-

ity, they can be in any order. If sorting is requested, the lines
in the file header and in the subcircuit are sorted alphabeti-
cally. Repeated spaces in lines are removed before sorting is
performed.

The pin names for the subcircuit are sorted as well even
though connections are positional (order-dependent), so the
results from sorting should be used with caution.

Limitations of the Prototype SPICE Netlist Parser
The parser assumes that no SPICE subcircuit will be so

large that the memory usage limit will be exceeded. It also
assumes sufficient room to store all lines outside of any sub-
circuit so that they may be sorted and recorded at the end of
the file.

.include statements are not processed because the file
search path is not known to the parser and might change over
time anyway.

Parameters from .param lines are not substituted. Thus the
following two blocks of text are not equivalent:

.param 1p=0.35

mpullup zn i vdd vdd pmos w=10.01=lp

and

mpullup zn i vdd vdd pmos w=10.01=0.35

.param and .options lines are recorded without further inter-
pretation. Thus the following two sequences are not equiva-
lent:

.param 1p=0.35 ln=0.3 wp=0.7 wn=0.7

and
.param 1p=0.35 ln=0.3
.param wp=0.7 wn=0.7
Annotated Sample SPICE Netlist File
FIG. 13 is an annotated version of a SPICE file that illus-

trates the parsing rules above.

Examples 10-11

LEF/DEF File Types

Library Exchange Format (LEF) files provide a way to
describe routing layer design rules and physical layouts from
GDSII or OASIS® files for use in Place and Route (P&R)
tools. They provide router-oriented wire and via construction
rules plus abstractions of the cells to be placed and routed.
Coupled with Design Exchange Format (DEF) files, they
provide the specification for placement and routing of com-
plete integrated circuits.

46
In these examples, LEF/DEF files have content digests for

the following file elements:
File
File Header

5 Header Comment Text
Cell Comment Text
Layer-by-Layer Geometric Objects
Layer-by-Layer Non-geometric Objects
All Other Objects: Cell Size, Site Type etc.

10 Boolean Flags Referring to Other Lower-level Cells
The database is scanned to find the cell names inside. For

cells present, layer-by-layer digests are returned for all:
1. Geometric objects such as polygons, rectangles, etc.;

and
2. Non-geometric objects such as text points, etc.
A digest is assigned for all other objects such as the cell

size, site type, and symmetry information. Digests are com-
puted and returned for the header of the file (information

20
before any cell definitions) and for the file as a whole.

As an option, separate digests are computed for comment
text in the header and inside the cells, and differences in
whitespace (number of spaces, tabs vs. spaces, blank lines)
are ignored.

25 Library Exchange Format (LEF) Files
LEF files are text-oriented but they are generally written by

automated tools, not designers. Descriptions of the process-
ing technology (i.e. design rules) are typically stored in one
LEF file, while cell information is specified in macros stored

30 within another file. The technology information is recorded as
file header data, while macros are recorded as cells. Nearly all
of the information in a macro specifies the interface of the
macro to the place and route tools, so it is recorded as cell
interface data. Only the properties of a macro, if any, are

35 recorded as cell body data.
Like GDSII and OASIS®, much of the data in a LEF file is

order-independent, so it is sorted by default unless the user
specifies the -nosort flag. Information in the file header is
sorted where appropriate, as is the data within the macro.

40 Note that LEF files specify layers by name, not by number
like GDSII or OASIS® files:

5

45
File "testfiles/parsetest.ler: LEF format
Arguments: -mem 64 -sort

c5eb5fff File
1c18cc01 File non-Whitespace
eb7f52d1 File Whitespace

File Header (sorted)
30dbab35 File Header with Comments

50 25a292d4 File Header without Comments
157939e1 File Header Comments
b450539c File Header non-Layer
316de219 File Header Layer Ml
a8fd3343 File Header Layer V1
ff7eda09 File Header Layer M2

55 1b691e80 File Header Layer V2
ec75d49b File Header Layer M3

Cell "AND2 Xl" (sorted)
1ed769e0 Cell with Comments
1ed769e0 Cell without Comments
(none) Cell Comments

60 818dbac9 Cell Interface non-Layer
cbeeal9a Cell Interface Layer M1
54b472b3 Cell Body non-Layer

Library Exchange Format Files: Definitions
65 The prototype LEF parser uses the definition of the LEF

data file format in the Cadence LEF/DEF Language Refer-
ence Manual, version 5.6 (September 2004). This document

US 7,685,545 B2
47

has some ambiguities and typographical errors; these were
resolved in the same manner as the reference parser supplied
with the manual.

Syntax Interpretation
Cell descriptions in LEF are called macros; all information

within a macro such as blockage and pin information is
recorded as part of the cell interface. Blockages are regions
which the router avoids when routing over the cell. Pins mark
the locations to which the router draws wires to connect to the
cell.

Design rule information in a technology LEF file is
recorded as part of the file header.

Layers in a LEF file are indexed by name, so the parser
creates a string layer name table and assigns indexes within
that table as layer numbers. The table is available via the API.

Lines are truncated to 2,048 characters per the LEF speci-
fication.

SITE statements are recorded in the file header; they do not
form cells per se.

Everything in a MACRO block except for properties is
recorded as cell interface text, since a LEF file is meant to
specify the interfaces of cells to a place and route tool.

LEF keywords are matched in a case-insensitive fashion.
The LEF 5.6 specification is silent on this matter except for
&ALIAS and &ENDALIAS, which are explicitly case-insen-
sitive. Currently, the canonical cell digests are based on the
original case of the keywords. This applies to layer, macro,
and pin names even if NAMESCASESENSITIVE is set to
OFF. However, this is readily changed.

Sorting of LEF Files
Generally, objects in a LEF file can appear in any order,

with two exceptions:
object references come after their definitions
the width of a PATH is determined by the most recent

WIDTH statement
Within individual objects, some information is order-inde-

pendent and some (e.g. PATH points or ITERATE values) is
order-dependent. The parser segregates order-independent
fields from order-dependent fields to ensure that sorted data is
still valid.

When file sorting is requested, statements in the file header
and within the macro are ordered alphabetically based first on
the statement name and second on the statement parameters.
Order-independent fields within statements are also sorted.
To ensure canonicity, the WIDTH that applies to a given
PATH is added to that PATH record prior to sorting.

Limitations of the Prototype LEF Parser
Many of the limitations of the LEF parser arise from the

fact that it is parsing a single file, while tools that use LEF files
can load multiple LEF files in sequence. The values from an
earlier LEF file can be used in a later LEF file. Lacking access
to those other files, the LEF parser relies on values passed to
it.

NAMESCASESENSITIVE, BUSBITCHARS, and
DIVIDERCHAR statements are not interpreted. The parser
gets the divider character from the top-level driver (which
does not yet have the capability of setting it from the com-
mand line, so a default value is used). If the parser were to rely
on the value that it retrieved from the current file, it could get
different results than the place and route tools when multiple
LEF files are loaded.

The file is assumed to be syntactically correct even if ref-
erences to ALIAS names are treated as identifiers. The
ALIAS statements themselves could be in another file and 65

could include arbitrary amounts of syntax, making a file
impossible to parse independently.

5

10

15

20

25

30

35

40

48
Sorting of LEF files is alphabetic, not numeric, so canoni-

cal cell digests currently rely on the LEF generation software
continuing to use the same number format as before.

The parser does not check to ensure that the technology
LEF file (containing design rules) is separate from the cell
library LEF file (containing macro descriptions).

SITE block references to previously defined SITE blocks
are not checked to ensure they exist; the older SITE blocks
might be in another file and only one file is parsed at a time. It
is assumed that changes to SITE objects will not change the
MACRO objects that reference them.

It is assumed that the technology information and other file
header data will not exceed the memory usage limits and that
no single MACRO will exceed the memory usage limits.

Annotated Sample LEF File
FIG. 14 is an annotated sample LEF file that illustrates

application of the parsing rules above.

Example 11 (cont.)

Design Exchange Format (DEF) Files

Design Exchange Format (DEF) files provide a way to
describe design floor plans and netlists for use in Place and
Route (P&R) tools. Coupled with Library Exchange Format
(LEF) files, they provide the specification for placement and
routing of complete integrated circuits.

DEF files are text-oriented and may be written by auto-
mated tools or designers. High-level design information, such
as the die area and region specifications, may be created by
hand while detailed blockage information and pre-routed nets
are generally written by software. Because the DEF file might
not include placement regions and they do not correlate with
design hierarchy, all data in a DEF file is recorded in the file
header digests.

Like GDSII and OASIS®, much of the data in a DEF file is
order-independent, so it is sorted by default unless the user
specifies the -nosort flag.

Note that DEF files specify layers by name, not by number
like GDSII or OASIS® files:

File "testfiles/simple.def': DEF format

45 Arguments: -mem 64 -sort
a832fb91 File
807bad9c File non-Whitespace
280fe544 File Whitespace

File Header (sorted)

50

55

60

b8d02902
c6810a4d
7e51234f
6d026f6f
1d4870e4
74aecb 62
feafad9c
6a00eeb9
eeb61028

File Header with Comments
File Header without Comments
File Header Comments
File Header non-Layer
File Header Layer ml
File Header Layer vl
File Header Layer m2
File Header Layer v2
File Header Layer m3

Design Exchange Format Files: Definitions
The prototype DEF parser uses the definition of the DEF

data file format in the Cadence LEF/DEF Language Refer-
ence Manual, version 5.6 (September 2004). This document
has some ambiguities and typographical errors; these were
resolved in the same manner as the reference parser supplied
with the manual.

Syntax Interpretation
A DEF file describes a design (or a block of a design) as a

flat entity with no real hierarchy. Region grouping, even if

US 7,685,545 B2
49

used, does not reflect the design hierarchy. As a result, all DEF
data is recorded as part of the file header.

Layers in a DEF file are indexed by name, so the parser
creates a string layer name table and assigns indexes within
that table as layer numbers. The table is available via the API.

Lines are truncated to 2,048 characters per the DEF speci-
fication.

DEF keywords are matched in a case-insensitive fashion.
The DEF 5.6 specification is silent on this matter except for
&ALIAS and &ENDALIAS, which are explicitly case-insen-
sitive. The canonical cell digests are based on the original
case of the keywords.

To reduce DEF file size, reused coefficients (e.g. in a
POLYGON within a BLOCKAGE statement) may be repre-
sented as an asterisk (`*'). The parser does not currently
expand asterisks to the numbers they represent, because any
such value could in theory be an &ALIAS replacement and
thus would not be a numeric token anyway.

Sorting of DEF Files
Most objects in a DEF file can appear in any order, except

that object references come after their definitions. Within
individual objects, some information is order-independent
and some (e.g. POLYGON points) is order-dependent. The
parser segregates order-independent fields from order-depen-
dent fields to ensure that sorted data is still valid. For example,
in a BLOCKAGE statement, the blockages for a layer are kept
together when sorting. The objects within a layer can be
sorted, however.

When file sorting is requested, statements in the file are
ordered alphabetically based first on the statement name and
second on the statement parameters. Order-independent
fields within a statement are also sorted.

Limitations of the Prototype DEF Parser
Many of the limitations of the DEF parser arise from the

fact that it is parsing a single file, while tools that use DEF
files can load multiple DEF files in sequence. The values from
an earlier DEF file can be used in a later DEF file. Lacking
access to those other files, the DEF parser relies on values
passed to it.

The file is assumed to be syntactically correct even if ref-
erences to &ALIAS names are treated as identifiers. The
&ALIAS statements themselves could be in another file and
could include arbitrary amounts of syntax, making a file
impossible to parse independently.

The counts in BLOCKAGES, COMPONENTS, FILLS,
GROUPS, NETS, NONDEFAULTRULES, PINS, PIN-
PROPERTIES, PROPERTYDEFINITIONS, REGIONS,
SCANCHAINS, SLOTS, SPECIALNETS, STYLES, and
VIAS sections are not verified against the actual number of
items within these sections.

NAMESCASESENSITIVE, BUSBITCHARS, and
DIVIDERCHAR statements are not interpreted. The parser
gets the divider character from the top-level driver (which
does not yet have the capability of setting it from the com-
mand line, so a default value is used). If the parser were to rely
on the value that it retrieved from the current file, it could get
different results than the place and route tools when multiple
DEF files are loaded.

It is assumed that the UNITS command is either not present
or will always be the same; coefficients in the file are currently
not scaled by the design unit value.

Asterisks in data point coefficients are currently not
expanded to numbers.

The memory used by comments is not always counted
when determining whether the memory usage limit has been
exceeded.

50
Annotated Sample DEF File
FIG. 15 is an annotated version of DEF file that illustrates

application of these rules.
Not all possible statements are shown since everything

5 except comments is sent to the file header digests anyway.
The following types of DEF object are sortable:
objects within the PROPERTYDEFINITIONS section
ROW definitions
TRACKS definitions

o VIAS definitions; RECT and POLYGON objects within
layers of a via

STYLES definitions (but not the polygon points within
styles)

objects within the NONDEFAULTRULES section (but not
15 the parameters within rules)

objects within the REGIONS section (but not the param-
eters within regions)

layers within BLOCKAGE definitions; RECT and POLY-
GON objects within layers

20 PLACEMENT objects within BLOCKAGE definitions;
RECT and POLYGON objects within PLACEMENT
objects

layers within the SLOTS section; RECT and POLYGON
objects within layers

25 layers within the FILLS section; RECT and POLYGON
objects within layers

objects within the COMPONENTS section (but not the
parameters within components)

objects within the PINS section (but not the parameters
30 within pins)

nets in NETS or SPECIALNETS sections (but not the
parameters or connections within a net)

nets in the SCANCHAINS section (but not the parameters
or connections within a net)

35 objects within the GROUPS section

Example 12

Structured Text File Type
40

In this example, Structured Text files have content digests
for the following file elements:

File
File Header

45 Comment Text
Non-comment Text
A byte-by-byte digest is computed for script files and other

structured text files. The digest is independent of newline
style. As an option, differences in whitespace are ignored. An

50 optional comment marker may be passed in; if it is present,
separate digests are computed for comment and non-com-
ment text. An optional line continuation character may be
passed in; if it is present, lines ending with this character are
merged before digest computation.

55 Structured Text (Script) Files
Structured text files are line-oriented human-readable files

with identifiable comments and possibly a continuation char-
acter which signifies that a succeeding line is logically part of
the current line. Shell, Perl, and Python scripts are typical

60 examples of structured text files.
All data in a structured text file is recorded as file header

data, either file header comments or file header non-layer
data. Leading whitespace is removed and repeated
whitespace characters are merged to a single space. Com-

65 ments begin with a user-specified comment character
sequence, e.g. `#', and continue to the end of the line. If a line
ends with a user-specified continuation character, e.g. ' \', it is

US 7,685,545 B2
51

merged with the next line; the continuation character and the
end of the line character are removed.

Structured text files may have string constants enclosed in
single or double quotes. Within a string constant, the quote
character may appear if it is escaped with 'V Whitespace
within a quoted string is not merged.

Syntax Interpretation
All data in a structured text file is recorded as file header

data, either file header comments or file header non-layer
data.

For canonicity, repeated whitespace characters in a line are
merged into a single space character. By default, all leading
whitespace (indentation) is removed from the lines. Because
indentation is significant in some languages (e.g. Python);
there is a flag to retain leading whitespace as is. Even if this
flag is set, repeated whitespace characters elsewhere in the
line are still merged into a single space character.

Empty lines (only a line ending with no other characters)
are recorded only in the file-level digests; they are not
recorded in the file header digests.

If the file has DOS-style (CR-LF) line endings, they are
converted to UNIX-style (LF only) line endings before any
digests are computed.

String constants, whether surrounded by single quotes or
double quotes, are treated as single words; they are recorded
as is with no interpretation or white space merging. The
backslash character (T) can be used to escape quotes inside
string constants:

"This is a string constant with \" an embedded quote in it"
The backslash character and enclosing quotes are recorded

as part of the string constant.
Lines ending with a user-specified continuation character

(e.g. 'V) are merged with the following line prior to any other
line processing, including identification of string constants.
The continuation character is the last character before the end
of the line with no white space following. It and the line
ending character are removed when the two lines are merged.
Any number of lines in a row may be merged this way.

Comments begin with a user-specified character sequence
(e.g. "#" or "- -") and continue to the end of the line. The
comment character may be anywhere within the line. Com-
ment characters within string constants do not begin a com-
ment. Continuation character processing is performed before
comment processing, so if a continuation character appears at
the end of a comment line the line afterward will also be
recorded as part of the comment. Thus the following two
blocks of text are equivalent and are recorded as a single
comment line:

this is a multi -\

line comment

and

this is a multi-line comment
The continuation character cannot be quoted; if the last

character in a line is a continuation character, the line is
merged with the next line even if it is preceded with, for
example, 'V or is inside a string constant.

Sorting of Structured Text Files
Structured text files are generally order-dependent, so they

cannot be sorted.
Limitations of the Prototype Structured Text File Parser
Currently there is no way to block removal of leading white

space using the command line interface. The API has this
capability.

52
Currently there is no way of specifying the comment char-

acter sequence using the command line interface. The API has
this capability.

Currently there is no way of specifying the continuation
5 character using the command line interface. The API has this

capability.
There is no way to specify the quoting character within

strings; it is fixed as `V.

Annotated Sample Structured Text File
0 FIG. 16 is an annotated version of a structured text file.

In this example, leading white space is not retained. If
leading white space were retained, then all of the spaces at the
front of the fifth line would have been recorded as file header
text.

15

Example 13

File Types Parsed by Outside Tools

20 For file types parsed by outside tools, content digests are
provided for at least the following file elements:

File
File Header Text
Cell Name

25 Interface Object Name, Flag, etc.
Comment Text
Cell Body Text.
Any outside parser tool can be used that is compatible with

30
the canonical digest generating process. In one embodiment,
an outside file parser returns to the digest calculation code a
file using line-oriented syntax as follows:

35

40

HEADERTEXT <header text>
CELL <cell name>
INTERFACE <interface object name> <interface flag>...
COMMENT <comment text>
CELLTEXT <cell body text>

There may be more than one HEADERTEXT record per
file. There may be more than one CELL per file. There may be
more than one INTERFACE record per cell.

The text of the line is added to the appropriate file or cell
45 digest. Comment lines after a CELL record are added to the

digest for that cell.
User-Parsed Text Files
There may be proprietary data file formats for which the

user wants to record canonical cell digests. If so, the user can
so write parsers for these formats and translate the data inside

into the User-Parsed Text File format shown below:

55
HEADERTEXT header text
HEADERTEXT(layer) header text
CELL cell name
INTERFACE interface object name interface object text
INTERFACE(layer) interface object name interface object text
HIERCELL
CELLTEXT cell body text

60 CELLTEXT(layer) cell body text
CELLNONGEOM cell body text
CELLNONGEOM(layer) cell body text
COMMENT comment text

65 This is a simple line-oriented syntax that provides com-
plete access to all canonical cell digest types. Generally, file
header data is indicated by HEADERTEXT lines, the begin-

US 7,685,545 B2
53

ring of a cell is indicated by a CELL line, cell interface
records are indicated by INTERFACE lines, cell body records
are indicated by CELLTEXT or CELLNONGEOM lines, and
comments are indicated by COMMENT lines. A HIERCELL
line indicates a hierarchical cell, i.e. one that contains refer-
ences to other, lower-level cells. Data within a cell continues
to the next CELL or HEADERTEXT line or the end of the file.
All file header, cell interface, and cell body data may have
layer names or numbers specified. The data may be sorted
(grouped by layer, then alphabetically within the layer) if the
-sort option is specified. The text for which digests are to be
computed can have any format meaningful to the user.

Because the syntax is text-oriented and line-oriented, it is
not possible to compare digests of files with this format to
digests from any other file format. Binary file digests are
computed using the binary data, and the parsers which com-
pute digests for text files separate the lines into tokens first.

User-Parsed Text Files: Definitions

This format is provided for parsing proprietary format files.
The user would write parsers that read file formats and gen-
erate files in this simple format, then pass the generated files
to the canonical cell digest utility. It in turn would compute
the full range of digests.

The description of the user-parsed file format is imple-
mented by an Applications Program Interface (API) to the
low-level digest engine. The interpretation of all file formats
can be described as a series of calls to this API, so understand-
ing this format will help the reader understand how the other
formats are interpreted.

In a second embodiment, which is more sophisticated than
the embodiment above, the user-parsed file format is again a
line-oriented format. Records appear on a single line that
begins with a keyword such as HEADERTEXT, COM-
MENT, CELL, INTERFACE, HIERCELL, or CELLTEXT.
The HEADERTEXT, INTERFACE, and CELLTEXT lines
may optionally have a layer name, in parentheses immedi-
ately following the keyword. The record on the remainder of
the line is then recorded on that layer name. If no layer name
is provided, a numeric layer number of -1 for non-layer data
is used.

It is expected that these files will be generated only by
computer software, so a strict format can be used:

all keywords in upper case

the keyword on a line is not be preceded by any characters
on the line

if no layer name is specified, a single space follows the
keyword, even if the text to be recorded is empty

If a layer name is specified, it is enclosed in parentheses
immediately following the keyword with no spaces in
between. The text between the parentheses, including any
white space, is stored as the layer name without interpreta-
tion. As a result, the layer name may not include a closing
parenthesis. There is a space character after the closing paren-
thesis.

Everything after the first space is recorded as text of the
specified type without further interpretation.

Newline sequences (CR-LF on Windows, LF on Unix/
Linux) are removed before recording any digests, to avoid
system dependence in the generated digests.

There is no limit on the length of any line. Lines begin with
a keyword; blank lines are illegal.

5

54
Syntax of User-Parsed Text Files
The format of a line is as follows:

HEADERTEXT header text
HEADERTEXT(layer) header text

A HEADERTEXT line specifies data outside of any cell. If
a cell is open (see below), that cell is terminated and no further

o cell text can be provided until a new cell is started. All header
data is saved as a single block, whether it is at the start of the
file, between cells, or after the last cell. If the header text is to
be sorted, all of it is kept in memory until the end of the file
(subject to the memory usage limit) and then sorted as a unit.

15 A space character follows the HEADERTEXT keyword;
everything after that space to the end of the line is recorded as
file header text. No further white space removal is performed,
and no further interpretation or upper case/lower case con-
version is performed.

CELL cell_name
A CELL line specifies the beginning of a new cell. If a cell

is already open, it is terminated and all digests are computed
for it. A space character follows the CELL keyword; every-

25
thing after that space to the end of the line is used as the cell
name, including any white space. No interpretation or upper
case/lower case conversion is performed on the cell name.
Duplicate cell names are not allowed; if there might be dupli-
cate names in a proprietary format, they are disambiguated in

30 the parser for that format. A fatal error will occur if a duplicate
cell name is found.

20

INTERFACE interface object name interface object text
35 INTERFACE(layer) interface object name interface object text

40

45

50

An INTERFACE line specifies an interface record for a
cell. There is a separate name for interface records, but oth-
erwise the data on the line is not interpreted. There may be
multiple interface records using the same interface name The
interface name (e.g. a pin name for a cell) is the first white
space-delimited word after the INTERFACE keyword or
layer name. Any white space after the interface name is then
skipped, and whatever text remains (if any) on the line is
recorded as the interface object text. No upper case/lower
case conversion is performed on the interface name or inter-
face object text, and no white space removal is performed on
the interface object text. Both the interface name and the
interface object text are recorded as cell interface data.

A fatal error will occur if an INTERFACE line is found
outside of a cell (before the first CELL statement or between
a HEADERTEXT statement and the next CELL statement).

HIERCELL
55 A HIERCELL line marks the cell as being hierarchical,

meaning that it contains references to other cells. This infor-
mation is available for digest reporting. There are no param-
eters on this line.

60

CELLTEXT cell body text
CELLTEXT(layer) cell body text

65 A CELLTEXT line specifies cell body text. Everything
after the space which follows the CELLTEXT keyword or the
closing parenthesis of the layer name is recorded as cell body

US 7,685,545 B2
55

text without further interpretation or upper case/lower case
conversion. No white space removal is performed either.

A fatal error will occur if a CELLTEXT line is found
outside of a cell (before the first CELL statement or between
a HEADERTEXT statement and the next CELL statement).

CELLNONGEOM cell body text
CELLNONGEOM(layer) cell body text

A CELLNONGEOM line specifies non-geometric cell
body text. Everything after the space which follows the
CELLNONGEOM keyword or the closing parenthesis of the
layer name is recorded as cell non-geometry body text with-
out further interpretation or upper case/lower case conver-
sion. No white space removal is performed either.

A fatal error will occur if a CELLNONGEOM line is found
outside of a cell (before the first CELL statement or between
a HEADERTEXT statement and the next CELL statement).

COMMENT comment_text
The COMMENT line specifies comment text. Everything

after the space which follows the COMMENT keyword is
recorded as cell or file header comment text (depending on the
context) without further interpretation, white space removal,
or upper case/lower case conversion.

Sorting of User-Parsed Text Files
If sorting is requested, the text for the header is collected

until the end of the file is reached (even if there are cells in the
file) or until so much header text is stored in memory that the
usage limit is exceeded. If the usage limit is exceeded, the
stored header text is sent to the digest module in its original
order. Similarly, text for a cell is collected until the end of the
cell is reached or until so much header and cell text is stored
in memory that a usage limit is exceeded. This should happen
infrequently, if ample memory is provided or provisions are
made to buffer memory to disk.

Header text is kept in memory in preference to cell text. The
assumption is that if there are cells in the file, the cells are the
most likely units to overflow the memory limit and so there is
little benefit to releasing the header text.

For header text, the primary sort key is the layer number:
lower layer numbers (indexes within the layer name table)
come first. Within a given layer, the lines are sorted in alpha-
betic order using the text of the lines, excluding the keyword
and layer name.

Within a cell, the primary sort key is the line type: interface
text comes before cell body text, and cell non-geometry body
text comes last. The layer number is the secondary key: lower
layer numbers come first. Within a given layer, the lines are
sorted in alphabetic order using the text of the lines, excluding
the keyword and layer name.

Annotated Sample User-Parsed File
FIGS. 17A-17B are annotated examples of user parsed

files. The layer names in FIG. 17A are layl , lay2, lay3, and
lay4. These will be recorded as layers 0 through 3 respectively
and a mapping table will be made available. File header, cell
interface, cell body, and cell non-geometry body lines with no
layer are recorded on layer -1, for which no layer name will
be defined. For this format, the definition of layer -1 is deter-
mined by the user's application.

Cell ce112 is hierarchical and has interface objects (e.g.
pins) named h3, il, i2, and i3. Cell cell 1 has interface objects
named jl and j2.

If the file is not sorted, digests are recorded in the order of
appearance as shown above. If the file is sorted, canonical cell
digests will be recorded as shown in FIG. 17B.

Note that the sorting of interface lines is based on the
remainder of a line before it is split into the interface name and
the interface text. Thus interface h3 of cell ce112 is recorded

56
before interface il , even though the interface text of it pre-
cedes that of h3 alphabetically. Similarly, the first line of the
header text will be recorded last because it has a layer index of
0 while the other header lines have a layer index of -1.

5 Also note that cell ce112 ends when cell celll begins and
that cell cell 1 ends when the header text begins.

The file-level digests will not change when sorting is
enabled. HIERCELL records do not affect the sorting or the
canonical cell digests of the cells that contain them; they

10
simply set a flag in the cell data structure.

Limitations of the User-Parsed Text File Format
The User-Parsed file format is ASCII, so it is not possible to

write a User-Parsed file that will have the same digests as a file
in the binary OASIS® and GDSII formats. There are also
differences between the ways that tokens are processed in
User-Parsed files versus tokens in other structured text file
formats. To match digests from files using a proprietary, inter-
nal data format to digests from another format, the user either
translates the internal data format files to the supported for-
mat first or writes a custom parser for the internal format.

15

20

Working Examples of Comparing Canonical Digests

Three modes of comparison are available using the proto-
type command line tool. File comparison mode compares

25 digest files for two different versions of a design file such as
OASIS® or GDSII and reports meaningful differences. Ver-
sion check mode compares digests for a design file against
digests calculated for a set of library files and reports the most
recent match, if any. Database check mode matches cells in a

30 design file against libraries containing digests of new/un-
tested cells, production cells, deprecated/obsolete cells, and
known bad cells.

File Comparison Mode
In file comparison mode, digests for two design files are

35 compared and any differences are reported. It notes any
unmatched cells and prints a report for cells with different
digests, along with the layers (when applicable) and cell
structures (e.g. interfaces, when applicable) that differ. This
mode is useful when one wants to ensure that only authorized
changes have been made to a design already in production.

40
For example, a designer might have changed one layer in a
single cell; any reports of additional changes would represent
errors.

The syntax for running a file comparison using the proto-
type command line tool is:

sigcompare -compare [-showall] filel filet
The first parameter, -compare specifies file comparison

mode. By default, only differing cells are reported; the
optional -showall flag specifies that all cells are reported,

so including identical cells.
Cells are matched by name, with no attempt to find copies

under different names
File Comparison Example
Consider the following pair of Library Exchange Format

55 (LEF) digest files:

45

60

File "lib 45nm vl
Arguments: -mem 64

c5eb5fff File
1c18cc01 File
eb7f52d1 File

File Header (sorted)
6f3a526d File
7a436b8c File

65 157939e1 File
b450539c File

0.1ef': LEF format
-sort

non-Whitespace
Whitespace

Header with Comments
Header without Comments
Header Comments
Header non-Layer

US 7,685,545 B2
57

-continued

316de219 File Header Layer Ml
ff7eda09 File Header Layer M2

Cell "AND2 Xl" (sorted)
9a4743f9 Cell with Comments
9a4743f9 Cell without Comments
(none) Cell Comments
051d90d0 Cell Interface non-Layer
cbeeal9a Cell Interface Layer M1
54b472b3 Cell Body non-Layer

Cell "AND2 X2" (sorted)
6922ffe9 Cell with Comments
6922ffe9 Cell without Comments
(none) Cell Comments
04592cfd Cell Interface non-Layer
39cfala7 Cell Interface Layer Ml
54b472b3 Cell Body non-Layer

Cell "AND2 X4" (sorted)
aa5c90cd Cell with Comments
aa5c90cd Cell without Comments
(none) Cell Comments
d48106d4 Cell Interface non-Layer
2a69e4aa Cell Interface Layer M1
39cfala7 Cell Interface Layer M2
54b472b3 Cell Body non-Layer

Cell "ANDS Xl" (sorted)
aeld08cc Cell with Comments
aeld08cc
(none)
5b3057b1
al992dce

Cell without Comments
Cell Comments
Cell Interface non-Layer
Cell Interface Layer Ml

54b472b3 Cell Body non-Layer
Cell "ANDS X2" (sorted)

e9fc0084 Cell with Comments
e9fc0084 Cell without Comments
(none) Cell Comments
6bca4478 Cell Interface non-Layer
d682364f Cell Interface Layer M1
54b472b3 Cell Body non-Layer

Cell "ANDS X4" (sorted)
6a5906e0 Cell with Comments
6a5906e0 Cell without Comments
(none) Cell Comments
0a3e63ea Cell Interface non-Layer
34d317b9 Cell Interface Layer Ml
77375526 Cell Interface Layer M2
54b472b3 Cell Body non-Layer

and:

File "lib 45nm v2 0.1ef': LEF format
Arguments: -mem 64 -sort

e03e9e03 File
80a5de77 File non-Whitespace
30dbab35 File Whitespace

File Header (sorted)
7c315cff File Header with Comments
6948651e File Header without Comments
157939e1 File Header Comments
b450539c File Header non-Layer
316de219 File Header Layer Ml
ec75d49b File Header Layer M2

Cell "AND2 Xl" (sorted)
1ed769e0 Cell with Comments
1ed769e0 Cell without Comments
(none) Cell Comments
818dbac9 Cell Interface non-Layer
cbeeal9a Cell Interface Layer M1
54b472b3 Cell Body non-Layer

Cell "AND2 X2" (sorted)
498852e8 Cell with Comments
498852e8 Cell without Comments
(none) Cell Comments
04592cfd Cell Interface non-Layer
19650ca6 Cell Interface Layer M1
54b472b3 Cell Body non-Layer

Cell "AND2 X4" (sorted)
aa5c90cd Cell with Comments

5

58

-continued

aa5c90cd Cell without Comments
(none) Cell Comments
d48106d4 Cell Interface non-Layer
2a69e4aa Cell Interface Layer M1
39cfala7 Cell Interface Layer M2
54b472b3 Cell Body non-Layer

Cell "AND3 Xl" (sorted)
aeld08cc Cell with Comments
aeld08cc Cell without Comments

10 (none) Cell Comments
5b3057b1 Cell Interface non-Layer
al992dce Cell Interface Layer Ml
54b472b3 Cell Body non-Layer

Cell "AND3 X2" (sorted)
e9fc0084 Cell with Comments

15 e9fc0084 Cell without Comments
(none) Cell Comments
6bca4478 Cell Interface non-Layer
d682364f Cell Interface Layer Ml
54b472b3 Cell Body non-Layer

Cell "AND3 X4" (sorted)
6a5906e0 Cell with Comments
6a5906e0 Cell without Comments
(none) Cell Comments
0a3e63ea Cell Interface non-Layer
34d317b9 Cell Interface Layer Ml
77375526 Cell Interface Layer M2
54b472b3 Cell Body non-Layer

20

25

These files were generated by reading two versions of a
LEF file with geometry sorting enabled (recommended for
OASIS®, GDSII, LEF, DEF, and Liberty format files) and

30 32-bit digests. Because LEF files specify how a place and
route tool should connect to standard cells, nearly everything
in the cells is in the interface-changes are quite significant,
because they mean that the new layout versions could not
simply be dropped in to replace the older versions.

35 Running this command:

40

sigcompare -compare
sigcompare_file2.txt

Produces the following report:

sigcompare_file 1 .txt

Summary of file-level comparisons:
File "lib 45nm vl 0.1er File digest does not match
File "lib 45nm v2 0.1ef' File digest.

45 File "lib 45nm vl 0.1er non-Whitespace digest does not match
File "lib 45nm v2 0.1ef' non-Whitespace digest.
File "lib 45nm vl 0.1er Whitespace digest does not match
File "lib 45nm v2 0.1ef' Whitespace digest.
Summary of file header comparisons:
File "lib 45nm vl 0.1er header is a partial match with

50 File "lib 45nm v2 0.lef' header:
non-Layer digests match
File Header Layers matched:

M1
File Header Layers mismatched:

M2
comments match

Summary of all cell comparisons:
2 cells are partial matches
4 cells are perfect matches

File "lib 45nm vl 0.1er cell "AND2 X2" is a partial match
with
File "lib 45nm v2 0.1er cell "AND2 X2":

Cell Interface matches partially:
Cell Interface non-Layer digests match
Cell Interface Layers mismatched:

M1
no Cell Body data is present
no Cell Body non-Geometric Layer data is present
no comments present

File "lib 45nm vl 0.1er cell "AND2 Xl" is a partial match

55

60

65

US 7,685,545 B2
59

-continued

with
File "lib 45nm v2 0.lef' cell "AND2 Xi":

Cell Interface matches partially:
Cell Interface non-Layer digests do not match
Cell Interface Layers matched:

M1
no Cell Body data is present
no Cell Body non-Geometric Layer data is present
no comments present

There are differences somewhere in the files, so the file
digests of all bytes in the file differ. Some of the values are
different as well, so the non-whitespace digests differ.
Finally, the whitespace digests differ. The file digest compari-
son is printed for all file types; the other two are printed only
for text file types.

The LEF file headers (which include design rules and para-
sitic information for routing layers) differ on layer M2, and
the cells AND2_X2 andAND2_X1 do not match completely. 20

These comparisons do not show the exact nature of the dif-
ferences between the headers and the cells; they simply tell
the user where to look.

Not all design file formats have relevant data in the file
header. GDSII files have no meaningful data in the file header,
and OASIS® file-level properties do not affect the geometric
representation. As a result, a comparison between GDSII or
OASIS® files will not include a report on matching of file
header data.

Version Reporting Mode 30

One use of version reporting mode is to determine the
source library for cells in a design file when the user has
multiple versions of a library file. For cells in the design file,
the program locates the most recent match from all of the
library files, if any.

The syntax for version reporting mode is:

60

-continued

File Header (sorted)

5
(none) File Header with Comments
(none) File Header without Comments
(none) File Header Comments

Cell "top" (sorted; hierarchical)
4512f0e0 Cell with Comments
4512f0e0 Cell without Comments

10 (none) Cell Comments
4512f0e0 Cell Body non-Layer

Cell "AND2 Xl" (sorted)
63710c55 Cell with Comments

63710c55 Cell without Comments

15
(none) Cell Comments

a57f61d1 Cell Body Layer 8

d5557088 Cell Body Layer 10

135b1d0c Cell Body Layer 12

Cell "AND2 X2" (sorted)

4245e32b Cell with Comments
4245e32b Cell without Comments

(none) Cell Comments
33bfda26 Cell Body Layer 8

47834653 Cell Body Layer 10

36797f5e Cell Body Layer 12

25 Cell "AND2 X4" (sorted)

sigcompare -report [-showall] file -1 file . . . -2 file . . .

[-3 file . . .] . . .

The design file is first; the remaining files are libraries.
Library files are specified with their version number, with -1
representing the most recent version, -2 representing the next
most recent version, etc. There is no limit on the version
numbers or the number of files per version number, except
that the version numbers are sequential and there is at least
one file per version number.

The -report parameter specifies version reporting mode. By
default, only unmatched cells (e.g. place and route cells),
imperfect matches, or matches to out-of-date cells are
reported; the optional -showall flag specifies that all cells are
reported, including perfect matches to the most recent library
version.

If a file name starts with a "-" then its name is preceded with
-file.

Cells are matched by name, with no attempt to find copies
under different names

Version Reporting Example
This example compares the digests from a small design

OASIS® file against the GDSII libraries used to build it. The
design digest file is named design_from_versions.txt:

File "design from versions.oas": OASIS format
Arguments: -grid le-9 -mem 64 -sort

f3b2848e File
(none) File non-Whitespace
(none) File Whitespace

7dbb4961

7dbb4961

(none)

b431 c2dd
addb2970

6451 a2cc

Cell with Comments

Cell without Comments
Cell Comments

Cell Body Layer 8

Cell Body Layer 10

Cell Body Layer 12

Digests from the most recent library are included in the file
35 sigcompare_versionl 3. txt: note that the GDSII cells have

comment digests while the OASIS cells above do not have
any comments.

40

45

File "lib vl 3.gds": GDS format
Arguments: -grid le-9 -mem 64 -sort

3b57a2c0 File
(none) File non-Whitespace
(none) File Whitespace

File Header (sorted)
9547893d File Header with Comments
01f60a9d File Header without Comments
94b183a0 File Header Comments
01f60a9d File Header non-Layer

Cell "AND2 Xl" (sorted)
e60bb9da Cell with Comments

50 7ff2lcaa Cell without Comments
9919a570 Cell Comments
b9fc712e Cell Body Layer 8

d5557088 Cell Body Layer 10
135b1d0c Cell Body Layer 12

Cell "AND2 X2" (sorted)
55 ff7d7b80 Cell with Comments

6684def0 Cell without Comments
9919a570 Cell Comments
cdf468c5 Cell Body Layer 8

9d09c96b Cell Body Layer 10
36797f5e Cell Body Layer 12

60 Cell "AND2 X4" (sorted)
11174169 Cell with Comments
88eee419 Cell without Comments
9919a570 Cell Comments
7715e8f3 Cell Body Layer 8

8158c56e Cell Body Layer 10
7ea3c984 Cell Body Layer 12

65

US 7,685,545 B2
61

Digests from the previous version are included in the file
sigcompare_versionl 2.txt:

File "lib vl 2.gds": GDS format
Arguments: -grid le-9 -mem 64 -sort

f7b57566 File
(none) File non-Whitespace
(none) File Whitespace

File Header (sorted)
e4590214 File Header with Comments
d5839d36 File Header without Comments
31da9f22 File Header Comments
d5839d36 File Header non-Layer

Cell "AND2 Xl" (sorted)
6f006266 Cell with Comments
26f9c716
99f9a570
b9fc712e
26cf422a

Cell without Comments
Cell Comments
Cell Body Layer 8

Cell Body Layer 10

b9caf4lf Cell Body Layer 12

Cell "AND2 X2" (sorted)
4b527d9d Cell with Comments
4245e32b Cell without Comments
09179eb6 Cell Comments
33bfda26 Cell Body Layer 8

47834653 Cell Body Layer 10

36797f5e Cell Body Layer 12

Cell "AND2 X4" (sorted)
b35fe404
92f41f5b
2labfb5f
418cffaf
addb2970
7ea3c984

Cell with Comments
Cell without Comments
Cell Comments
Cell Body Layer 8

Cell Body Layer 10

Cell Body Layer 12

5

10

15

20

25

30

35

Digests from the oldest active version of the library are
stored in sigcompare_versionl 1.txt:

File "lib vl 1.gds": GDS format
Arguments: -grid le-9 -mem 64 -sort

ae014c24 File
(none) File non-Whitespace
(none) File Whitespace

File Header (sorted)
82295a77 File Header with Comments
86b9ff40 File Header without Comments
0490a537 File Header Comments
86b9ff40 File Header non-Layer

Cell "AND2 Xl" (sorted)
15918b78 Cell with Comments
8c682e08 Cell without Comments
99f9a570 Cell Comments
b9fc712e Cell Body Layer 8

26cf422a Cell Body Layer 10
135b1d0c Cell Body Layer 12

Cell "AND2 X2" (sorted)
Sal e9163 Cell with Comments
169108cf Cell without Comments
4c8f99ac Cell Comments
33bfda26 Cell Body Layer 8

47834653 Cell Body Layer 10
6fad94ba Cell Body Layer 12

Cell "AND2 X4" (sorted)
99bcef32 Cell with Comments
b817146d Cell without Comments
2labfb5f Cell Comments
b431c2dd Cell Body Layer 8

addb2970 Cell Body Layer 10
alfdffc0 Cell Body Layer 12

40

45

62
If this command is run:

sigcompare -report design from versions.txt \
-1 sigcompare versionl 3.txt \
-2 sigcompare versionl 2.txt \
-3 sigcompare versionl 1.txt

Then the following report is generated:

Summary of all comparisons:

1 cells do not appear in any library
1 of these cells are hierarchical

2 cells match only partially with library cells
2 cells match old library cells

File "design from versions.oas" cell "top" does not match any
library cell.

cell is hierarchical.
File "design from versions.oas" cell "AND2 X4" is a partial
match with
File "lib vl 1.gds" cell "AND2 X4":

no Cell Interface data is present
Cell Body data matches partially:

Cell Body Layers matched:
10 8

Cell Body Layers mismatched:
12

no Cell Body non-Geometric Layer data is present
there are 2 newer versions of this cell

File "design from versions.oas" cell "AND2 Xl" is a partial
match with
File "lib vl 3.gds" cell "AND2 Xi":

no Cell Interface data is present
Cell Body data matches partially:

Cell Body Layers matched:
10 12

Cell Body Layers mismatched:
8

no Cell Body non-Geometric Layer data is present
File "design from versions.oas" cell "AND2 X2" is a perfect
match with
File "lib vl 2.gds" cell "AND2 X2":

no Cell Interface data is present
Cell Body data matches perfectly:

Cell Body Layers matched:
10 12 8

no Cell Body non-Geometric Layer data is present
there is 1 newer version of this cell

The top-level design cell is not in any library, as expected.
The other three cells in the design file have at least one
reportable issue:

AND2_X4 does not match any library cell perfectly; the
50 closest match is a version from the oldest library

AND2_X1 does not match any library cell perfectly; the
closest match is a version from the newest library

AND2_X2 is a perfect match to a cell in the second oldest
library

55 The list of matched and mismatched data types and layers
is printed when a cell matches only in part.

Database Checking Mode
One use of database checking mode is to verify a candidate

design file against a set of libraries tagged with maturity
60 levels: new/unproven, production, deprecated/obsolete, or

known bad. These represent the lifetime of a particular ver-
sion of a cell. For example, if a design is in mass production,
the user might not want to use an unproven version of a cell;
the user might want to use only cells that have been marked

65 production-worthy. Once a new version has been proven,
however, older versions are phased out. Deprecated versions
might be used only in designs already in mass production, not

US 7,685,545 B2
63

in new designs. Finally, if a cell version is known to have
functional or yield problems, it should not be used in any
designs.

Canonical cell digest matching allows the user to classify
all of the cells in a candidate file, even if they have been copied 5

under different names. In this way the user can detect all uses
of a known bad cell or identify unauthorized cells in time to
prevent release of a design to fabrication.

Using a prototype command line processor, the syntax for
database checking mode is:

sigcompare -database [-showall] [-new . . .] [-prod . . .]

[-depr . . .] [-bad . . .] -test . . .

The -database parameter specifies database checking
mode. By default, perfect matches to production cells are not
reported. Use the optional -showall flag to report these cells as
well.

The remainder of the command line is the list of digest files
with their types. They may be in any order except that there is
at least one -test (candidate) file and at least one file of another
type.

The -new parameter is used to specify libraries containing
cells that are new and have not yet been proven in production.
All file names that follow, up to the next library type, are
marked as new.

The -prod parameter is used to specify libraries containing
cells that have been proven in production. All file names that
follow, up to the next library type, are marked as production.

The -depr parameter is used to specify libraries containing
cells that are deprecated or obsolete and should not be used in
new designs. All file names that follow, up to the next library
type, are marked as deprecated.

The -bad parameter is used to specify libraries containing
cells that are known to be bad and should be removed from all
designs. All file names that follow, up to the next library type,
are marked as known bad.

The -test parameter is used to specify candidate design
files. Generally the user will compare only one candidate file
at a time.

If a file name starts with a "-" then its name is preceded with
-file.

Database Checking Example
This example compares the digests from a small design

OASIS® file against the GDSII libraries used to build it. The
design digest file is named design_from_database.txt:

File "design from database.oas": OASIS format
Arguments: -grid le-9 -mem 64 -sort

14430d19 File
(none) File non-Whitespace
(none) File Whitespace

File Header (sorted)
(none) File Header with Comments
(none) File Header without Comments
(none) File Header Comments

Cell "top" (sorted; hierarchical)
fccf8240 Cell with Comments
fccf8240 Cell without Comments
(none) Cell Comments
fccf8240 Cell Body non-Layer

Cell "AND2 Xl" (sorted)
7ff2lcaa Cell with Comments
7ff2lcaa Cell without Comments
(none) Cell Comments
b9fc712e Cell Body Layer 8

d5557088 Cell Body Layer 10
135b1d0c Cell Body Layer 12

Cell "AND2 X2" (sorted)
aeece77d Cell with Comments
aeece77d Cell without Comments

10

15

64

-continued

(none)
dfl6de70
47834653
36797f5e

Cell Comments
Cell Body Layer 8

Cell Body Layer 10

Cell Body Layer 12

Cell "AND2 X4" (sorted)
b817146d
b817146d
(none)
b431 c2dd
addb2970
al fdffc0

Cell with Comments
Cell without Comments
Cell Comments
Cell Body Layer 8

Cell Body Layer 10

Cell Body Layer 12

Cell "AND2 X4A" (sorted)
b817146d Cell with Comments
b817146d Cell without Comments
(none) Cell Comments
b431c2dd Cell Body Layer 8

addb2970 Cell Body Layer 10

al fdffc0 Cell Body Layer 12

Cell "AND2 X3" (sorted)
20 c6f8c857 Cell with Comments

c6f8c857 Cell without Comments
(none) Cell Comments
b9fc712e Cell Body Layer 8

075a8f95 Cell Body Layer 10

25 785e36ec Cell Body Layer 12

Cell "AND2 X5" (sorted)

30

e60bb9da
7ff2lcaa
991%570
b9fc712e
d5557088
135b1d0c

Cell with Comments
Cell without Comments
Cell Comments
Cell Body Layer 8

Cell Body Layer 10

Cell Body Layer 12

The files sigcompare_versionl 1 .txt, sigcompare ver-
35 sionl 2. txt, and sigcompare_versionl 3. txt from the ver-

sion reporting example are used again, along with a new file
sigcompare_versionl 4. txt:

40

File "lib vl 4.gds": GDS format
Arguments: -grid le-9 -mem 64 -sort

c589fla1 File
(none) File non-Whitespace
(none) File Whitespace

45 File Header (sorted)
43922b24 File Header with Comments
c52bd464 File Header without Comments
86b9ff40 File Header Comments
c52bd464 File Header non-Layer

Cell "AND2 Xl" (sorted)
50 512424b9 Cell with Comments

4a03a6f8 Cell without Comments
1b278241 Cell Comments
b9fc712e Cell Body Layer 8

8balel3a Cell Body Layer 10
785e36ec Cell Body Layer 12

55 Cell "AND2 X2" (sorted)
a994ef98 Cell with Comments
58eb1029 Cell without Comments
fl7fffb1 Cell Comments
cdf468c5 Cell Body Layer 8

47a75210 Cell Body Layer 10
d2b82afc Cell Body Layer 12

Cell "AND2 X4" (sorted)
9842af7a Cell with Comments

60

65

5c09dc54
c44b732e
8d50e097
affaf547
7ea3 c984

Cell without Comments
Cell Comments
Cell Body Layer 8

Cell Body Layer 10
Cell Body Layer 12

US 7,685,545 B2
65

When this command is run:

sigcompare -database -new sigcompare versionl 4.txt \
-prod sigcompare versionl 3.txt \
-depr sigcompare versionl 2.txt \
-bad sigcompare versionl 1.txt \
-test design from database.txt

The following report is generated:

Summary of all comparisons:

1 cells have no good matches
1 of these cells are hierarchical

2 cells are perfect matches with known bad cells
1 of these matches are under different names

1 cells are partial matches with deprecated cells
1 cells are partial matches with new cells

1 of these matches are under different names
2 cells are perfect matches with production cells

1 of these matches are under different names
File "design from database.oas", cell "top": no good matches.

cell is hierarchical.
File "design from database.oas" cell "AND2 X4A" is a perfect
match with
File "lib vl 1.gds" bad cell "AND2 X4":

no Cell Interface data is present
Cell Body data matches perfectly:

Cell Body Layers matched:
10 12 8

no Cell Body non-Geometric Layer data is present
File "design from database.oas" cell "AND2 X4" is a perfect
match with
File "lib vl 1.gds" bad cell "AND2 X4":

no Cell Interface data is present
Cell Body data matches perfectly:

Cell Body Layers matched:
10 12 8

no Cell Body non-Geometric Layer data is present
File "design from database.oas" cell "AND2 X2" is a partial
match with
File "lib vl 2.gds" deprecated cell "AND2 X2":

no Cell Interface data is present
Cell Body data matches partially:

Cell Body Layers matched:
10 12

Cell Body Layers mismatched:
8

no Cell Body non-Geometric Layer data is present
File "design from database.oas" cell "AND2 X3" is a partial
match with
File "lib vl 4.gds" new cell "AND2 Xi":

no Cell Interface data is present
Cell Body data matches partially:

Cell Body Layers matched:
12 8

Cell Body Layers mismatched:
10

no Cell Body non-Geometric Layer data is present
File "design from database.oas" cell "AND2 X5" is a perfect
match with
File "lib vl 3.gds" production cell "AND2 Xi":

no Cell Interface data is present
Cell Body data matches perfectly:

Cell Body Layers matched:
10 12 8

no Cell Body non-Geometric Layer data is present

As before, the top-level cell does not match any of the
libraries. Any cell the designer creates as part of the physical
design process, e.g. by place and route, will not be in a library.
Usually these cells will not be leaf cells, so a report is printed
for cells that are hierarchical, meaning they have references to
other cells in them.

66
Matches to known bad cells are listed after unmatched

cells. In this program mode, matches are found and reported
even if the cell names differ. For example, cell AND2_X4A is
a copy of the known bad cell AND2_X4 from the oldest

5 library (version 1.1), suggesting that a designer renamed the
cell in a design block rather than replace it with the up-to-date
version. The known bad version of AND2_X4 also appears
under its original name

Matches to deprecated cells are listed next. Here the best
10 match to the design cell AND2_X2 is from the deprecated

library version 1.2. This suggests that a designer modified the
cell locally starting with an out-of-date library. The layer
similarities and differences are noted with the cell and file
names

15 Matches to new cells are listed after matches to deprecated
cells. Cell AND2_X3 from the design is a perfect match to the
new library cell AND2_X1, meaning that it was copied from
the new library under a different name

20
Finally, matches to production cells under different names

are listed. Here the design cell AND2_X5 is a copy of the
production cell AND2_X1 from library version 1.3. This is
not an immediate problem, but if version 1.3 of AND2_X1 is
modified later, the copy will not be replaced with the

25
improved version.

If the -showall option is selected, matches to production
cells of the same name are listed after all other matches. In this
tiny example only one additional cell report would be printed;
normally thousands of matching cell reports would be

30 printed.

File "design from database.oas" cell "AND2 Xl" is a perfect
match with

35 File "lib vl 3.gds" production cell "AND2 Xi":
no Cell Interface data is present
Cell Body data matches perfectly:

Cell Body Layers matched:
10 12 8

no Cell Body non-Geometric Layer data is present

40

Reports of Matching Liberty (.lib) Files

The Liberty format file testfiles /tstlibpar2.lib contains tim-
ing models for a few cells. The cell AND2_X2 has both cell

45 and scaled_cell specifications. In one embodiment these are
combined to generate the digest for the cell. The cells
AND2_X 1 ,AND2_X l_copy, and AND2_X1_copy_b are
identical; AND2_X1 _copy is an exact copy while some of the
statements within AND2_X1_copy_b have been reordered.

50 Without sorting, the digests differ:

55

60

otismartsig -sort -1 b testfiles/tstl bpar2.1ib

Cell "AND2 Xl"
Interface CRC 0190af2f
Contents CRC 6a059541

Cell "AND2 X1 copy"
Interface CRC 0190af2f
Contents CRC 6a059541

Cell "AND2 X1 copy b"
Interface CRC lee6bb80
Contents CRC e4fa24f0

The pin group statements of the cells are considered part of
65 the cell interface. Because two pin statements were

exchanged in AND2_X1_copy_b, both the interface and the
contents digests changed.

US 7,685,545 B2
67

With sorting on, all of the digests match:

otismartsig -sort -lib testfiles/tstlibpar2.lib

Cell "AND2 XI"
Interface CRC 0190af2f
Contents CRC dc623050

Cell "AND2 X1 copy"
Interface CRC 0190af2f
Contents CRC dc623050

Cell "AND2 X1 copy b"
Interface CRC 0190af2f
Contents CRC dc623050

Modifying the header of a Liberty format file (e.g. the
units, operating conditions, or table indices) potentially
impacts cells in the library, so by default the non-comment
tokens of the header are added to the digest of cells in the
library. Any change in the header will thus change cell
digests.

Reports of Matching Verilog Files

The file testfiles/verilog_test.v contains several small mod-
ules that describe the function of some transistor-level cells.
Some of these modules are copies. For example, the module
DFF_X2 is a direct copy of the module DFF_X 1 . Accord-
ingly, the digests for the two modules are identical:

otismartsig -ver testfiles/ve log_test.v

Cell "DFF Xl"
Interface CRC c102a525
Contents CRC dbac5dc2

Cell "DFF X2"
Interface CRC c102a525
Contents CRC dbac5dc2

A blank line was removed from within the cell, but the
language constructs are identical. There are no comments
within either module, so no comment digests are reported.

The file testfiles/verilog_test2.v contains the modules
0A121_X1 and 0A121_X2. The latter is identical except that
the port ordering has changed. Often Verilog modules are
instantiated using positional parameters, so the connections
to the modules would be different and the digests will also be
different:

otismartsig -ver testfiles/verilog_test2.v
File "testfiles/verilog_test2.v": Verilog format

File CRC 25de7835
File header CRC 6ef229e6
File comment CRC 6ef229e6
File non-whitespace CRC 07f87fb9
File whitespace CRC ac6fc0b2

Cell "OAI21 Xl"
Interface CRC dae46517
Contents CRC c73aceaf

Cell "OAI21 X2"
Interface CRC 01391569
Contents CRC c73aceaf

If -sort is specified, however, the ports are put into alpha-
betical order for the purpose of computing the digests and the
cells will match:

68

otismartsig -sort -ver testfiles/verilog test2.v
File CRC 25de7835

5 File header CRC 6ef229e6
File comment CRC 6ef229e6
File non-whitespace CRC 07f87fb9
File whitespace CRC ac6fc0b2

Cell "OAI21 XI"
Interface CRC cf2d7023

10 Contents CRC c73aceaf
Cell "OAI21 X2"

Interface CRC cf2d7023
Contents CRC c73aceaf

is Reports of Matching GDSII Files
The file testfiles/sigtest.gds is a synthetic GDSII format file

constructed to show some of the features of GDSII canonical
cell digest calculation. It contains four cells, Structure 1

through Structure 4. Structure 2 is a leaf cell, referenced by
20 the other three cells. Structure and array references do not

have layer numbers, so their digests are stored on layer -1 as
non-layer data:

25
otismartsig -gds testfiles/sigtest.gds
File "testfiles/sigtest.gds": GDS format

File CRC d0b40760
Cell "Structure 1"

Comment CRC b0f5064e

30 Layer -1 CRC 485b93e7
Layer 3 CRC 58ffb953
Layer 42 CRC e6098359
Cell CRC 4658afa3

Cell "Structure 2"
Comment CRC 6acc5ddd
Layer 1 CRC 0e517512
Layer 5 CRC 00065ea8
Layer 19 CRC 931b9a0f
Cell CRC f780ec68

Cell "Structure 3"
Comment CRC b0f5064e
Layer -1 CRC 485b93e7

40 Layer 3 CRC 58ffb953
Layer 42 CRC e6098359
Cell CRC 4658afa3

Cell "Structure 4"
Comment CRC 9d8b21ad
Layer -1 CRC 485b93e7

45 Layer 3 CRC 47a23fdd
Layer 42 CRC e6098359
Cell CRC 747bOece

35

Structure 3 is a direct copy of Structure 1, so all of its
50 digests are identical to those of Structure 1. The polygons on

layer 3 of Structure 4 are in a different order, so the digest for
layer 3 differs from that of Structure 1 and Structure 3.
Optionally, an otismartsig user may specify sorting of poly-
gons and other steps to further reorganize the design data that

55 is digested.

Applying Canonical Digests to Solve IC Design Problems
Calculating and comparing canonical digests can have

many practical uses in the design of integrated circuits. Dif-
60 ferent embodiments of the claimed technology address dif-

ferent issues. Some of the use cases for this technology are
listed above. FIG. 3 illustrates junctures in the design process
at which the technology disclosed can usefully be applied.
Most of the blocks in FIG. 3 match blocks in FIG. 1. Added to

65 FIG. 3 is an audit 362, which indicates an independent review
of production designs manufactured at the foundry to verify
the presence of royalty bearing design templates in the pro-

US 7,685,545 B2
69

duction designs. The block with dashed lines 301 is placed at
junctures where calculating and comparing canonical digests
may usefully be applied, without intending to be exhaustive.
Before logic synthesis 123, the validity of libraries of cell
designs being used for synthesis can be tested. As new data is
received from the foundry 141 for incorporation in a library of
cell designs number 131, the significance of changes can be
reviewed and evaluated. Before and after floor planning 133,
designs can be scrutinized for use of approved cells, renaming
and modification of cells and to avoid use of bad cells. As part
of an audit process 362, canonical digests of cells in produc-
tion designs can be compared to digests of royalty bearing cell
designs. Lists of and counts of cells in the production design
can be generated for a royalty auditing purposes. These useful
applications are further apparent in the sections that follow.

Common Theme
The useful applications described rely on a computer

implemented method to evaluate similarities and/or differ-
ences between design data for circuits residing in two or more
files. A computer is used to identify cells or design units
within the design data, as cells and design units are described
above. Cells may be grouped in blocks, as explained. Some
files may consist of a single header or cell. Within a cell, the
syntax of the design data is parsed and normalized into
canonical forms. The canonical forms reduce sensitivity of
data analysis to non-functional variations in the design data.
Digests are calculated and stored for at least part of the design
data in the canonical forms. At least one digest is produced per
cell or design unit, and typically more than one digest. Digests
also may be produced for file headers which are not consid-
ered part of any particular cell. Digests of cells in one file are
compared to digests of cells in the other file. Depending on
whether similarities or differences are more appropriate for
any particular analysis, an appropriate summary is generated.
The summary may be a report that is human readable or may
be stored in a computer file for further processing by other
programs.

Understanding an Updated Cell Design Library
One of the problems faced by designers is that new versions

of design libraries can be received from foundries, library
vendors or internal development groups without a satisfying
description of changes from one version to the next. A con-
ventional differencing tool could be used to compare new and
old libraries. As described above, differencing tools are
designed to flag changes, rather than evaluate the significance
of changes. Calculating digests of old and new versions of the
library can be used to identify changed cells. Partitioning of
cells between functional and nonfunctional data and into
layers can produce digests from which a library manager can
estimate the significance of changes to a new version of the
library and investigate in further detail. Changes in nonfunc-
tional data, such as changes to comments that identify the
library version or changes to IP tags that apply Soft IP Tag-
ging, can be segregated from changes in functionally signifi-
cant data. The segregation can be used to filter or color code
summaries and help the library manager decide where to
follow up.

Whether to Adopt an Updated Cell Design Library During
Development

Integrated circuit design is an iterative process using tens
of thousands of cells and tens or even hundreds of complex
design templates. Logic design teams use logic synthesis to
generate structural netlists, which are sent to the integration
team for the place and route process. In the final stages of the
design process, as top-level blocks are placed, routed and
optimized, it is useful to ensure that the design uses the most
recent versions of all library elements.

70
By the first round of place and route, however, so much has

been invested in a design project that project managers will
want to know what has changed in a library and why it has
changed before they accept a new version of the library that

5 requires rework of the design. If timing models have changed,
for example, another round of in-place optimization may be
required to match the new timing data. If cell footprints in the
library exchange format (LEF) file are changed, a new place
and route step may be required, which may result in large

10 changes in timing and further iteration. Reworking either of
these steps involves a risk that performance goals will not be
met or deadlines will be missed. These risks are weighed
against yield or functional problems that a new version of the
library addresses.

15 The technology disclosed can be used to focus analysis of
an updated cell design library on cells that are actually used in
a design that is under development. A three-way comparison
of digests for the design under development, old library cells,
and new library cells is useful for a project manager who

20 needs to decide whether to adopt an updated cell library after
substantial investment has been made. Multiple views of the
design data in multiple design languages can be considered
before the manager makes a decision.

Finding Unapproved and/or Bad Cells in Design Data
25 Cells have many potential sources, within a company and

from vendors. It is useful to determine whether cells come
from approved or unapproved sources. In addition, cells that
initially are approved may turn out to be bad and be placed on
a blacklist of sorts, a list of bad cells that should not be used

30 in any designs. One useful application of canonical digests is
to determine which cells in the design are not found in any
approved cell library. Another useful application is to deter-
mine whether any cells in the design have data that match a
library of bad cells that should not be used in any design.

35 These uses can, of course, be combined.
Identifying Renamed Cells in Design Data
During design, designers been known to rename cells in

order to avoid a cell name collision because cell names are
required in some tools to be unique. Ideally, a name collision

40 would be taken as a reason to investigate whether both uses of
the cell relied on the same cell version and to select between
different versions. The pressures of an ongoing design project
sometimes lead to less than ideal practices. And so, designers
simply rename a cell that they are using and leave it at that.

45 Canonical digests can be used to find the origin of a
renamed cell. Comparing digests of renamed cells to cell
libraries provides a more reliable indication of a cell origin
than comments within the cell, especially when work group
rules or expectations discourage renaming of cells. Compar-

50 ing the digests can prove that a renamed cell matches an
approved design, which gives a design manager or designer
confidence in reverting the cell name to the name used in the
approved design. Using names that match approved library
elements is desirable when design tools use the cell names as

55 references.
Detecting Cell Modifications that Jeopardize Warranties
A design team that starts with a template provided by a

vendor may attempt to improve on the template. For instance,
a compiled random access memory might be changed to

60 better suit the perceived needs of a current design. However,
the designer may not fully understand the consequences of
the change. For example, a change to speed up a memory at
nominal process conditions may in fact slow down the
memory under other process conditions. In the semiconduc-

65 for industry, this is known as what happens in other process
corners. Changes in design also might hurt the yield of a
circuit by causing bridging faults or open contacts. These

US 7,685,545 B2
71

changes may void an explicit or implied warranty of design
templates received from vendors.

A cell that has multiple digests can be analyzed to deter-
mine whether it is a modified version of another cell. In some
instances, multiple library cells will match across some lay-
ers. For instance, the metal layout within a class of cells that
all have the same function may match. When a match across
some, but not all layers is detected, further analysis can be
performed to determine whether an unauthorized modifica-
tion has taken place. Optionally, the analysis can be weighted
to emphasize layer changes that imply modification other
than the normal changes between members of a common
class of cells.

Royalty Audits
Tape out data is typically available to foundries as part of

the manufacturing process. This tape out data may be
expressed in OASIS®, GDSII or another language. It
includes polygons that define masks that are used as manu-
facturing tools or that are used for direct writing during manu-
facturing.

Digested cells from tape out data can be compared to
digested cells from royalty bearing libraries, based on poly-
gons in the cells. These polygons may be normalized by
sorting. They optionally may be further normalized by merg-
ing polygons in a cell and re-fracturing them applying a
consistent fracturing algorithm.

Using cell digests to audit designs used at foundries and
calculate royalties owed has the advantage that digests can be
analyzed by auditors without direct access to the digested
design data. If the foundry runs the digesting tool, the auditors
need only look at the resulting digests. Close questions can be
resolved by having the auditors look further at the design data,
instead of being limited to the digests.

Royalty audits also could be conducted against symbolic,
text-based design data, instead of polygon data.

Immediate Response to Failure Analysis
On occasion, failure analysis will establish that a design

template is bad and should not be used in any production. This
poses a significant problem for design managers, due to
renaming and modification of design templates. Canonical
digests provide a way to quickly scan existing production
designs and designs in progress. Digests of one or more
variations on a design template that is proven to be bad can be
compared to a library of digests for existing products and to
project files for designs that are in progress. Designs that have
digests which match or partially match the digests of the bad
design templates can be flagged for further investigation. This
gives design managers a way to find more than just the cells
that remained linked to the original design libraries. It allows
them to find renamed cells and modified cells that may share
the layers which cause failure of the bad design templates.

Run Time Options of the Command Line Processor
The prototype canonical cell digest command-line utility's

name is "otismartsig"; it is a 32- or 64-bit Linux executable
that will run on 2.4.x and later kernels (e.g. Red Hat Enter-
prise Linux 4.x and later). If it is run without arguments, it
prints help text similar to the following:

Oasis Tooling Smart Digest utility 1.0 alpha (r867)
Copyright (c) 2007-2008 by Oasis Tooling Inc. All Rights

Reserved.

Usage: otismartsig [flags] -type file... [-type file...]
Available flags:
-file: treat the next argument as a file name, even if it
begins with `-'

5

72

-continued

Oasis Tooling Smart Digest utility 1.0 alpha (r867)
Copyright (c) 2007-2008 by Oasis Tooling Inc. All Rights

Reserved.

-mem number: maximum memory usage in megabytes (default 64)
-64: compute 64-bit digests
-sort: sort records before computing digests
-nosort: do not sort records before computing digests

10 -noheader: omit Liberty file header from cell digests
-verbose: print errors as they are found (useful in debugging)
-grid number: record layout file digests using the specified

grid (default 1.0e-9 meter)
Available file types:
-oas: OASIS geometry database (default: -sort)

15 -gds: GDS geometry database (default: -sort)
-lib: Liberty library format (default: -sort)
-ver: Verilog RTL and netlist format (default: -nosort)
-vhd: VHDL RTL and netlist format (default: -nosort)
-spi: SPICE subcircuit netlist format (default: -nosort)
-lef: Library Exchange Format (default: -sort)
-def: Design Exchange Format (default: -sort)
-txt: unstructured text files (default: -nosort)
-stxt: structured (e.g. script) text files (default: -nosort)
-user: user-parsed files (default: -nosort)
-bin: unstructured binary files (default: -nosort)

20

25

30

File Types
Files should have a file type specified. Although it would be

possible to analyze a file's header to guess its format, the cost
of an error would be high a cell-based text file might be
misunderstood as an unstructured file, for example.

Files of more than one type may be analyzed in a single run
if desired. If a new file type argument is specified, files after
that argument use that format. In the following example, the
first two files are interpreted as unstructured text files, while

35
the last file is interpreted as a Verilog file:

otismartsig -txt filel.txt file2.txt -ver file3.txt
If a file name begins with -', it should be preceded with

-file. One -file argument can be used for each file.

Option: -sort
Most file formats provide the option of sorting the data. For

several formats, it is the default, because digests generated
using sorted data will generate more useful matches than
digests using unsorted data. The default behaviors are speci-

45 fied in the help text at the end of the brief description of file
formats. They are:

OASIS ®: sort by default because OASIS® writers are
quite likely to reorder data, especially when writing
repetitions

so GDSII: sort by default because GDSII writers may reorder
data and because GDSII cell data may need to be
matched against OASIS® data

Liberty: sort by default because the data is order-indepen-
dent

55 Verilog: do not sort by default because only cell interface
records are sorted

VHDL: do not sort by default because only cell interface
records are sorted

SPICE: do not sort by default because the sort routine also
sorts cell interface records

LEF: sort by default because much of the data is order-
independent

DEF: sort by default because much of the data is order-
65 independent

Unstructured text: do not sort by default because the file's
purpose is not known

4 0

60

US 7,685,545 B2
73

Structured text: sorting is not even allowed because script
files are order-dependent

User-parsed files: do not sort by default because the pur-
pose of the file is not known to the software

Unstructured binary: sorting is not even allowed because
there is no record structure

For Verilog, VHDL, and SPICE files, sorting of the inter-
face records (ports) may modify the meaning of the cell if
some instantiations use positional port referencing (connec-
tion based on the order of the parameters) rather than asso-
ciation-based port referencing (connection based on the
names of the parameters). Thus sorting for these formats
should be done with caution.

If the user wants to sort a file of a given format for which the
default is not to sort, the -sort option should be specified. If the
user wants to prevent sorting of a file, the -nosort option
should be specified. These options are "sticky," meaning that
they affect all files listed afterward on the command line.

Option: -mem
The -mem option specifies the maximum amount of

memory allowed for sorting, in megabytes. In the present
implementation sorting is performed exclusively in memory,
so if the estimated memory usage for a cell or file header
exceeds this limit, the affected data is sent to digest compu-
tation in its original order and sorting is disabled for that cell
or file header. The cells are tested for sortability, so that all
small design template blocks can be sorted even is minimal
memory is available, to increase matching and decrease false
detection of differences. Generally speaking, only large
placed and routed blocks will exceed the memory usage lim-
its.

The default memory usage limit is 64 megabytes; on 32-bit
Linux platforms the maximum memory usage limit is 3500
megabytes. If the value supplied with -mem is less than 16 it
is silently increased to 16; if the value is more than 3500, it is
silently reduced to 3500.

Because of uncertainties in memory allocation methods,
the tool's memory usage estimates are not precise. It is best
not to use a memory limit close to the amount of physical
memory on the machine which is computing the canonical
cell digests. Memory estimation for some file formats can be
optimistic.

Some cells in a file may be sorted while others in the same
file are too large to sort, so the canonical cell digest tool
reports whether a cell was sorted because -sort was set (or was
the default), not sorted because -nosort was specified (or was
the default), or too large to sort even though -sort was set:

Cell "Structure 1" (sorted)
Cell "Structure 1" (not sorted)
Cell "Structure 1" (tillable to sort)

The software tracks and stores with the digests an indica-
tion, such as a flag, of whether the digests for a given cell
represent sorted data or not. If the memory usage limit is
increased or the user begins using a new, more-efficient ver-
sion of the canonical cell digest software, some cells previ-
ously not sortable may now be sorted (or vice versa, if the user
decreases the limit). Unless the stores the indication of
whether the digests were calculated from sorted data, the user
will not be able to determine whether a change in digests
represents a real change in the data or is simply because one
set of digests is for sorted data while the other set is for
unsorted data.

74
Option: -64
By default, 32-bit digests are generated; if the -64 option is

specified, 64-bit digests are generated.
Generation of 64-bit digests requires somewhat more run

5 time than generation of 32-bit digests. Sixty-four bit digests
are available in the 32-bit executable as well as the 64-bit
executables.

Option: -verbose
By default, the program works silently, generating only a

10 digest report or a generic error message. The parsers are
optimized for automated digest generation, not for human
use. If a file fails to parse and it is useful to see the actual error,
use of the -verbose flag will cause the error to be printed.
Many of the parsers quit after the first error is found, so the

15 error report will not be particularly long. No digests will be
generated if any errors are found.

Option: -grid
Geometry in OASIS® and GDSII and files is drawn on a

grid, meaning that all coordinates in the file are scaled by
20 some number to determine the absolute size of the geometry

in microns or nanometers. The grid is stored in the file so that
the meaning is unambiguous, but if for some reason the grid
value changes, all of the coordinates in the cells will change
even though the geometry has not changed. Scaling all of the

25 coordinates by the grid is not an effective solution because the
grid is a floating point number, typically a power of 10.
Digests for floating point numbers could be machine-depen-
dent or vulnerable to roundoff error.

Thus there is a -grid option for OASIS® and GDSII files.
30 All coordinates are scaled to be multiples of this grid, e.g. one

nanometer (1.0e-9 meters, the default). For example, if the
file grid is 10 nanometers and the canonical cell digest grid is
one nanometer, all coordinates from the file are multiplied by
10 before being sent to digest computation. If the OASIS® or

35 GDSII file grid is not an integral multiple of the -grid value, an
error is printed.

Option: -noheader
Liberty format files have numerous definitions and unit

definitions in the file header. If any of these file header values
40 change, all of the values (e.g. delays) in all of the cells may

change as well. For example, if the time_unit or voltage_unit
values in the file header change, all of the timing delay values
in the cells will change as well, even if the text in the cells has
not changed. Liberty files are often built by a script that

45 concatenates a fixed file header with the data for the indi-
vidual cells, and it is easy to use the wrong header. Thus by
default all of the file header values (except for non-functional
values such as the date) are added to the digests for cells in the
Liberty file. If the user is confident that this error will not

so happen, header value merging can be disabled using the -no-
header option.

Some Particular Embodiments

55 The technology disclosed may usefully be applied in a
variety of methods and devices. The technology also may be
embodied in articles of manufacture such as computer read-
able storage media storing a computer program that carries
out the methods or that can be combined with hardware to

60 produce the devices described.
Methods are described in the first group of embodiments.

These are computer implemented methods of evaluating
similarities and/or differences between design data residing
in at least two files stored in computer memory. FIGS. 6 and

65 7 provide a high-level flowchart of some aspects of these
methods. In the design data environment, data may be sym-
bolic or binary. By symbolic, we mean text that is intended to

US 7,685,545 B2
75

be human readable. For instance, numbers and letters. A
symbolic file also may contain codes that contribute to read-
ability of text or help with internal file management. For
instance tab characters, font attributes and bookmarks. A
design file may be expressed in any of the design languages or
formats described above. It may include polygons, which
may be defined by vertices or half planes. It may be hierar-
chical, including references to other design data, either
expanded or in hierarchical format. A wide range of design
data is contemplated. As mentioned above, reference to two
files is generic. The two files may be parts of the same data-
base. More than two files may be involved.

The method operates on data residing in first and second
files 411. In this description, we will refer to the method as
operating on cells within a design and generating canonical
cell digests. By canonical, we mean in a standardized format.
Some design data files are normalized or transformed into a
canonical format by passing them through a parser and apply-
ing parsing rules. Other files may require semantic analysis of
a syntax tree generated by the parsing or other manipulations
to normalize the file. Depending on the parsing rules, normal-
izing may eliminate whitespace, segregate comments from
program code, sort tokens or the branches of the syntax tree,
classify tokens or branches of the syntax tree as a functional
or nonfunctional design data, divide data between header and
cell data or divide data within a cell between cells header and
cell body data, reordering corner points of a polygon, or apply
any of the other parsing and normalization strategies
described above. One should understand, more generally, that
the method applies to design units of data and the words
"design units" could be substituted for "cells" in the descrip-
tion that follows and in the originally filed claims. In this
disclosure, we illustrate how design data in files can be par-
titioned into header data and cell data. By partition or parti-
tioned, we mean physically or logically divided into groups.
As explained below, parsing rules that produce a syntax tree
may naturally produce a physical partitioning of data. Once
the syntax tree has been produced, tags or flags may be
applied to nodes or branches of the syntax tree. A tag typically
is a code that has a particular meaning. A flag also may be a
code, but it may be simpler than a tag, as a Boolean value in
a field that has a specific meaning. The method description
that follows applies equally to design units and cells. The
method includes identifying cells within the design data
residing in the files 611. It proceeds with parsing syntax of
612 and normalizing 613 the design data within the cells into
canonical forms. Parsing syntax can be applied to either sym-
bolic or binary files. Parsing a symbolic file includes identi-
fying tokens and recognizing their role in the file from a series
of parsing rules that describe a language. Parsing a binary
design data file includes identifying elements and groups of
binary data and recognizing their role in the design data from
parsing rules that describe the binary format of the design file.
Parsing sometimes involves building a syntax tree. Alterna-
tively, parsing can generate a stream of events. Normalizing is
described above. The canonical forms may be maintained in
one or more syntax trees 532. The canonical forms reduce
sensitivity of data analysis to nonfunctional variations in the
design data within a particular cell. Nonfunctional changes in
design data are changes to design data that do not change a
physical circuit that is produced using the design data. For
instance, comments typically are nonfunctional design data;
whitespace is usually nonfunctional in a symbolic file; in an
ordered list of polygon corner coordinates, the selection of the
starting coordinate and whether the corners are listed in a
clockwise or counterclockwise direction are typically non-
functional. At a higher level, fracturing a complex polygon

76
into trapezoids or triangles, for instance, should not function-
ally change the physical circuit produced, although a particu-
lar fracturing algorithm may be necessary to the operation of
a particular tool that is used in the production process. The

5 method further includes calculating 614 and storing digests
415 of at least selected design data in the canonical forms,
producing at least one digest per cell.

The method compares 615 the digests of canonical forms
and summarizes 616 at least some results of comparing the

10 digests. It may produce a summary 473 in memory, such as a
table of data available to another program, or a report 475 that
is viewable by a user.

There are multiple ways in which this comparison can be
performed. One or more sets of digests are stored in a search-

15 able data structure. A convenient searchable data structure is
a hash table indexed by a modulus of the digests. Another
hashing function could be used. The size of a hash table is
selected based on the storage required and the desired fre-
quency of collisions between hashes into the table. In case of

20 collisions, lists are created linked to the hash table. Alterna-
tively, an inverted index of digests could be created, at the cost
of sorting digests. In many embodiments, there will be a
plurality of digests per cell. One approach to comparing and
scoring multiple digests is to create a list of all cells that have

25 digests which match any digest for a cell of interest. In some
embodiments, this list may be ordered, for instance with cells
from a most recent library preceding cells from older librar-
ies. Using the list of candidate cells, comparisons are made
between all of the digests for the cell of interest and the

30 digests for the candidate cells. Particularly for an ordered list,
comparisons may be terminated when a match is found
between all of the digests for the cell of interest and one of the
candidate cells. When there is no complete match between the
cell of interest and any of the candidate cells, a threshold or

35 ratio may be applied for a number of digest matches that
causes a pair of cells to be considered similar. Alternatively,
where there is no complete match, the partial matches may be
rank ordered and one or more partial matches summarized or
reported.

40 One aspect of the method further includes partitioning
functionally significant design data 722 from non-significant
data within the canonical forms before calculating and storing
the digests. Design data is functionally significant when a
change in the design data would result in a change in a circuit

45 generated from the design data. Then, the selected design data
in the canonical forms used to calculate the digests includes at
least the functionally significant design data.

Additional granularity in the digest comparisons can be
supported by partitioning design data within cells by cell

so header, interface, and/or body 721, by layers 723, and by
sortable/order dependent data 724. Partitioning strategies
may produce either a physical or logical partitioning of data.
Physical partitioning of data includes separating the data into
physically separate groups, such as first and second lists.

55 Logically partitioning data may involve tagging or flagging
the data so that the computer recognizes items of data as
belonging to particular groups. These partitioning strategies
may be applied individually or in any combination. Parsing
712 creates one or more syntax trees 532 that can partition the

60 design data as desired. For some partitioning strategies, this
involves defining how nodes and branches in the syntax trees
are organized. For other partitioning strategies, this may
involve setting flags for nodes or branches in the syntax trees.
Flags are described above. The calculating and storing digests

65 further includes producing at least one digest per partition.
The summarizing distinguishes among the digests produce
from different partition types.

US 7,685,545 B2
77

The methods above may be applied to comparing files
encoded using differing design languages. The two languages
that this disclosure describes how to render comparable are
the OASIS® design language and the GDSII design lan-
guage. The first and second files referred to above are
OASIS® and GDSII files, when those two languages are
being compared. They may be two other languages when
equivalences are developed for other pairs. When comparing
files that are in different design languages, the canonical
forms for the design languages render comparable at least the
design data in bodies of cells. Alternatively, for design lan-
guages in which the functional differences among cells are
expressed in cell headers and not in the bodies of the cells
themselves, the canonical forms may render comparable at
least the design data in the cell headers.

The methods above can be applied to evaluating a new
library of cell designs against an old library of cell designs.
Then, the first file is a new library of cell designs and the
second file is an old library. The summarizing further includes
reporting at least functionally significant changes in the new
library that are detected by comparing the digests of the two
libraries.

The methods above further could be applied to evaluating
the impact of adopting a new library. This application of the
methods also applies to determining whether cells in a design
file belong to an out-of-date library. This application further
includes a third file to which the identifying, parsing and
calculating actions are applied. In this variation, the first file is
a design file, the second file is at least one current library of
cell designs and the third file is at least one out-of-date library
of cell designs. The summarizing includes reporting cells in
the design file that have digests that do not match digests of
cell designs in the current library, but do match digests of cell
designs in the out-of-date library. Optionally, cell designs
which do not appear in either the current or out-of-date library
can also be reported. This reporting criteria naturally elimi-
nates from reporting cell designs that are the same in both the
current and out-of-date library. While we have described the
present method as comparing the current and out-of-date
library, these words are used to refer to two generations of the
library and could just as easily be applied to a candidate
version (the so-called "current version"), not yet adopted, and
a production version (the so-called "out-of-date version").

Another application of the methods above is identifying
bad or unapproved cells. Detection of bad or unapproved cells
can proceed separately or in combination. The methods above
can be applied to evaluating a design file to determine whether
cells in the design file belong to a collection of known bad
cells. In this application, the first file is a design file, which is
compared to a file that contains known bad cells. The sum-
marizing further includes reporting cells in the design file that
have digests that match digests of cells in the file of known
bad cells. Similarly, the methods above can be applied to
evaluating a design file to determine whether cells in the
design file belong to at least one approved library. Again, the
first file is the design file, which is compared to at least one
approved library. The reporting typically will report on an
exception basis the cells in the design file that have digests
that do not match digests in cells in the approved library.
Optionally, partial matches may be reported when there is no
perfect match between a cell in the design file and any of the
cells in the approved library.

A further use of the methods above is to detect functionally
identical cells with different cell names. The first file is a
design file and the second file is at least one approved library.
The calculating and storing of digests is applied to at least
functionally significant data in multiple layers of the design

78
file and the approved library. The summarizing further
includes reporting as renamed the cells in the design file that
have digests of functionally significant data in the multiple
layers that do match digests in the approved library (called

5 "the functionally matching cells"), but which renamed cells
have cell names that do not match cell names of the function-
ally matching cells. Optionally, the method may be extended
to reverting the cells in the design file reported as "renamed"
to have cell names that match and link to the functionally

10 matching cells in the approved library.
An interesting use of the methods above is to evaluate a

design file to determine whether warranted or other cells in
the design file have been modified from their warranted
design template. The first file is a design file and the second

15 file is at least one approved library. The calculating and stor-
ing digests is applied to at least functionally significant data in
multiple layers of the cells in the design file and the approved
library. The summarizing further includes reporting as poten-
tially modified cells in the design file that have digests of

20 functionally significant data in some but not all of the multiple
layers that match digests of cells in the approved library.

A further application of the methods above is to scan pro-
duction designs to find royalty bearing cell designs used in the
production designs. In this application, the first file includes

25 one or more royalty bearing libraries of royalty bearing cell
designs and the second file includes one or more production
designs that include cell designs. The summarizing further
includes reporting as potentially royalty bearing certain cells
in the production designs that have digests which match

30 digests of cells in the royalty bearing libraries. Optionally,
near matches also can be reported. Near matches is a term that
applies to cells or design units that have multiple digests, such
as digests for multiple layers of a cell. Two cells may be near
matches if most of the layers in the cell have matching digests.

35 The second group of embodiments are devices. These are
computer devices that evaluate similarities and/or differences
between design data residing in at least two files stored in
computer memory. FIG. 5, previously described, provides a
high level block diagram of some aspects of these devices. As

40 with the method embodiments, the design data processed by
the devices may be symbolic or binary. It may be expressed in
any of the design languages or formats described above. It
may include polygons. It may be hierarchical, including ref-
erences to other design data, either expanded or in its hierar-

45 chical format. A wide range of design data is contemplated.
As mentioned above, reference to two files is generic. The two
files may be parts of the same database. More than two files
may be involved.

The device includes at least one processor and memory
50 530, 535. A parser 531 runs on the processor and parses files

411 containing design data representing aspects of a design
for a physical circuit and creates one or more syntax trees 532
in the memory. In this description, we will refer to the device
as operating on cells within a design and generating canonical

55 cell digests. One should understand, more generally, that the
device can operation on design units of data and that the
words "design units" could be substituted for "cells" in the
description that follows and in the originally filed claims.

Normalizer logic 533 runs on the processor and cooperates
60 with the parser 432 that organizes the syntax trees 532 to

produce canonical forms. In the phrase "normalizer logic,"
logic means instructions to control the operation of computer
components. Running on a processor, logic typically would
be object code compiled from program instructions. Within a

65 processor, logic may be micro-instructions. In a program-
mable logic component, such as a field programmable gate
array (FPGA), the logic may be represented by gates and

US 7,685,545 B2
79

connections among gates. In this application, logic is what
tells computer components how to execute a task. The nor-
malizer logic includes a partitioning module that partitions
the file into at least one header and, depending on rules of a
design language used to encode the file, into multiple cells of
design data. The partitioning module organizes the syntax
trees to represent the header and cell partitions. As explained
above, in various design languages, a file may contain header
data, cell data or both. To be clear, the device applies to files
that contain only one of header and cell data.

The normalizer logic further includes a canonical forming
module that interprets the syntax trees to produce canonical
forms of the design data, wherein the canonical forms reduce
sensitivity of data analysis to non-functional variations in the
design data.

The device further includes a digester 534 running on the
processor that calculates and stores digests in memory 415,
producing at least one digest per partition.

A comparer module 536 runs on a processor 535 and com-
pares the digests of canonical forms. A module is a segment of
logic that carries out a particular task. For instance, normal-
izer logic includes a plurality of modules. A reporter 537, also
running on the processor 535, summarizes at least some
results of comparing the digests. The reporter may produce a
summary 473 in memory, such as a table of data available to
another program, or a report 475 that is viewable by a user.

There are multiple ways in which the comparer can be
structured. One or more sets of digests are stored in a search-
able data structure. The structure of the comparer depends on
the searchable data structure. One convenient data structure is
a hash table indexed by a modulus of the digests. Another
hashing function could be used. The size of a hash table is
selected based on the storage required and the desired fre-
quency of collisions between hashes into the table. In case of
collisions, lists are created linked to the hash table. Alterna-
tively, an inverted index of digests could be created, at the cost
of sorting digests. In many embodiments, there will be a
plurality of digests per cell. One approach to comparing and
scoring multiple digests is to create a list of all cells that have
digests which match any digest for a cell of interest. In some
embodiments, this list may be ordered, for instance with cells
from a most recent library preceding cells from older librar-
ies. Using the list of candidate cells, comparisons are made
between all of the digests for the cell of interest and the
digests for the candidate cells. Particularly for an ordered list,
comparisons may be terminated when a match is found
between all of the digests for the cell of interest and one of the
candidate cells. When there is no complete match between the
cell of interest and any of the candidate cells, a threshold or
ratio may be applied for a number of digest matches that
causes a pair of cells to be considered similar. Alternatively,
where there is no complete match, the partial matches may be
rank ordered and one or more partial matches summarized or
reported.

The partition module may further partition functionally
significant design data from non-significant data within the
canonical forms before the digester calculates and stores the
digests. Design data is functionally significant when a change
in the design data would result in a change in a circuit gener-
ated from the design data. Then, the selected design data in
the canonical forms processed by the digester 534 to calculate
the digests includes at least the functionally significant design
data.

Additional granularity in the digest comparisons can be
supported by the partitioning module distinguishing design
data within cells by cell header, interface, and/or body, by
layers, and by sortable/order dependent data. These partition-

80
ing strategies may be applied individually or in any combi-
nation. For partitioning options, the parser 531 creates one or
more syntax trees 532 that partition the design data as desired.
For some partitioning strategies, this involves how nodes and

5 branches in the syntax trees are organized. For other parti-
tioning strategies, this may involve setting flags for nodes or
branches in the syntax trees. The digester that calculates and
stores digests produces at least one digest per partition. The
reporter 537 distinguishes among the digests produced from

10 different partition types.
The device may compare files encoded using differing

design languages. The two languages that this disclosure
describes how to render comparable are the OASIS® design
language and the GDSII design language. The first and sec-

15 and files referred to above are OASIS® and GDSII files, when
those two languages are being compared. They may be two
other languages when equivalences are developed for other
pairs. When comparing files that are in different design lan-
guages, the canonical forming module produces canonical

20 forms for the design languages that render comparable at least
the design data in bodies of cells. Alternatively, for design
languages in which the functional differences among cells are
expressed in cell headers and not in the bodies of the cells
themselves, the canonical forms may render comparable at

25 least the design data in the cell headers.
The device above can be applied to evaluating a new library

of cell designs against an old library of cell designs. Then, the
first file is a new library of cell designs and the second file is
an old library. The reporter further reports at least function-

30 ally significant changes in the new library that are detected by
comparing the digests of the two libraries.

The device above further could be applied to evaluating the
impact of adopting a new library. This use of the device also
applies to determining whether cells in a design file belong to

35 an out-of-date library. Three files are involved. The first file is
a design file, the second file is at least one current library of
cell designs and the third file is at least one out-of-date library
of cell designs. The reporter module uses results from the
comparer and reports cells in the design file that have digests

40 that do not match digests of cell designs in the current library,
but do match digests of cell designs in the out-of-date library.
Optionally, cell designs which do not appear in either the
current or out-of-date library can also be reported. This
reporting criteria naturally eliminates from reporting cell

45 designs that are the same in both the current and out-of-date
library. While we have described the present method as com-
paring the current and out-of-date library, these words are
used to refer to two generations of the library and congested
as equally be applied to a candidate version (the so-called

50 "current version"), not yet adopted, and a production version
(the so-called "out-of-date version").

Another application of the device above is identifying bad
or unapproved cells. Detection of bad or unapproved cells can
proceed separately or in combination. The device can be

55 applied to evaluating a design file to determine whether cells
in the design file belong to a collection of known bad cells. In
this application, the first file is a design file, which is com-
pared to a file that contains known bad cells. The reporter
module summarizes cells in the design file that have digests

60 that match digests of cells in the file of known bad cells.
Similarly, the device above can be applied to evaluating a
design file to determine whether cells in the design file belong
to at least one approved library. Again, the first file is the
design file, which is compared to at least one approved

65 library. The reporter module typically will report on an excep-
tion basis the cells in the design file that have digests that do
not match digests in cells in the approved library. Optionally,

US 7,685,545 B2
81

partial matches may be reported when there is no perfect
match between a cell in the design file and any of the cells in
the approved library.

A further use of the device above is to detect functionally
identical cells with different cell names. The partitioning
module for this use further partitions the file by layers within
cells and organizes the syntax trees to reflect the layers. The
first file is a design file and the second file is at least one
approved library. The digester calculates and stores digests
that reflect at least functionally significant data in multiple
layers of the design file and the approved library. The reporter
module further summarizes as "renamed" those cells in the
design file that have digests of functionally significant data in
the multiple layers that do match digests in the approved
library (called "the functionally matching cells"), but which
renamed cells have cell names that do not match cell names of
the functionally matching cells. Optionally, the method may
be extended to reverting the cells in the design file reported as
"renamed" to have cell names that match and link to the
functionally matching cells in the approved library.

An interesting use of the device above is to evaluate a
design file to determine whether warranted or other cells in
the design file have been modified from their warranted
design template. The first file is a design file and the second
file is at least one approved library. The digester calculates
and stores digests of at least the functionally significant data
in multiple layers of the cells in the design file and the
approved library. The reporter further summarizes as poten-
tially modified cells in the design file that have digests of
functionally significant data in some but not all of the multiple
layers that match digests of cells in the approved library.

A further application of the device above is to scan produc-
tion designs to find royalty bearing cell designs used in the
production designs. In this application, the first file includes
one or more royalty bearing libraries of royalty bearing cell
designs and the second file includes one or more production
designs that include cell designs. The reporter further sum-
marizes as potentially royalty bearing those cells in the pro-
duction designs that have digests which match digests of cells
in the royalty bearing libraries. Optionally, near matches also
can be reported.

A third group of embodiments are articles of manufacture,
consistent with but not limited by the case In re Beauregard.
In one embodiment, these articles of manufacture include a
computer readable storage medium that stores program code
for carrying out any of the method embodiments described
above. The program code, when running on a processor,
enables the processor to carry out the actions described
above. In a second embodiment, these articles of manufacture
include a computer readable storage medium that stores pro-
gram code that, when combined with a processor and
memory, creates any of the devices described above. The
program code, when combined with the processor and
memory, includes the modules set forth above.

We claim as follows:
1. A computer-implemented method of evaluating similari-

ties and/or differences between design data for circuits, the
design data residing in at least two files stored in computer
memory, the method including:

using a computer, identifying cells within design data
residing in first and second files, wherein the cells cor-
respond to portions of design for a physical circuit;

parsing syntax of and normalizing the design data within
the cells into canonical forms, wherein the canonical
forms reduce sensitivity of data analysis to non-func-
tional variations in the design data within a particular
cell;

82
partitioning functionally significant design data from non-

significant data within the canonical forms, wherein the
design data is functionally significant when a change in
the design data would result in a change in a circuit

5 generated from the design data;
calculating and storing digests of at least selected design

data in the canonical forms, producing at least one digest
per cell;

wherein the selected design data in the canonical forms
10 used to calculate the digests includes at least the func-

tionally significant design data;
comparing the digests of the cells in the first file to the

digests of the cells in the second file; and
summarizing at least some results of the comparing of the

15 digests.
2. The method of claim 1, applied to evaluating a new

library of cell designs against an old library of cell designs,
wherein:

the first file is a new library of cell designs and the second
20 file is an old library of cell designs; and

the summarizing further includes reporting at least the
functionally significant changes in the new library that
are detected by comparing the digests.

3. The method of claim 1, applied to detecting functionally
25 identical cells with different cell names, wherein:

the first file is a design file and the second file is at least one
approved library;

the calculating and storing digests is applied to at least
functionally significant data in multiple layers of the
cells in design file and the approved library; and

the summarizing further includes reporting as renamed the
cells in the design file that have digests of functionally
significant data in the multiple layers that do match
digests of cells in the approved library (called "the func-
tionally matching cells"), but which renamed cells have
cell names that do not match cell names of the function-
ally matching cells.

4. A computer-implemented method of evaluating similari-

40
ties and/or differences between design data for circuits, the
design data residing in at least two files stored in computer
memory, the method including:

using a computer, identifying cells within design data
residing in first and second files, wherein the cells cor-

45
respond to portions of design for a physical circuit;

parsing syntax of and normalizing the design data within
the cells into canonical forms, wherein the canonical
forms reduce sensitivity of data analysis to non-func-
tional variations in the design data within a particular

50
cell;

wherein
the first file contains design data expressed in an

OASIS ® design language and the second file contains
design data expressed in a GDSII design language;

55 and
the canonical forms for the OASIS® and the GDSII

design languages render comparable design data in
bodies of the cells;

calculating and storing digests of at least selected design
60 data in the canonical forms, producing at least one digest

per cell;
comparing the digests of the cells in the first file to the

digests of the cells in the second file;
summarizing at least some results of the comparing of the

65 digests.
5. A computer-implemented method of evaluating similari-

ties and/or differences between design data for circuits, the

3

3

0

5

US 7,685,545 B2
83

design data residing in at least three files stored in computer
memory, the method including:

using a computer, identifying cells within design data
residing in first, second and third files, wherein the cells
correspond to portions of design for a physical circuit;

wherein the first file is a design file, the second file is at least
one current library of cell designs, and the third file is at
least one out of date library of cell designs; and

parsing syntax of and normalizing the design data within
the cells into canonical forms, wherein the canonical
forms reduce sensitivity of data analysis to non-func-
tional variations in the design data within a particular
cell;

calculating and storing digests of at least selected design
data in the canonical forms, producing at least one digest
per cell;

comparing the digests of the cells in the first file to the
digests of the cells in the second file;

reporting at least cells in the design file that have digests
that do not match digests of cell designs in the current
library and that do match digests of cell designs in the
out of date library.

6. A computer-implemented method of evaluating similari-
ties and/or differences between design data for circuits, the
design data residing in at least two files stored in computer
memory, the method including:

using a computer, identifying cells within design data
residing in first and second files, wherein the cells cor-
respond to portions of design for a physical circuit, the
first file is a design file and the second file contains
known bad cell designs;

parsing syntax of and normalizing the design data within
the cells into canonical forms, wherein the canonical
forms reduce sensitivity of data analysis to non-func-
tional variations in the design data within a particular
cell;

calculating and storing digests of at least selected design
data in the canonical forms, producing at least one digest
per cell;

comparing the digests of the cells in the first file to the
digests of the cells in the second file; and

summarizing at least some results of the comparing of the
digests; and

cells in the design file that have digests that match digests
of cells in the file of known bad cell designs.

7. The method of claim 6, further applied to evaluating
whether the cells in the design file belong to at least one
approved library, including:

a third file to which the identifying, parsing and calculating
steps are applied;

wherein the third file is at least one approved library of
cells; and

wherein the summarizing further includes reporting cells
in the design file that have digests that do not match
digests of cells in the approved library of cells.

8. A computer-implemented method of evaluating similari-
ties and/or differences between design data for circuits, the
design data residing in at least two files stored in computer
memory, the method including:

using a computer, identifying cells within design data
residing in first and second files, wherein the cells cor-
respond to portions of design for a physical circuit, the
first file is a design file and the second file is at least one
approved library;

parsing syntax of and normalizing the design data within
the cells into canonical forms, wherein the canonical

84
forms reduce sensitivity of data analysis to non-func-
tional variations in the design data within a particular
cell;

calculating and storing digests of at least selected design
5 data in the canonical forms, producing at least one digest

per cell;
comparing the digests of the cells in the first file to the

digests of the cells in the second file; and
reporting cells in the design file that have digests that do not

10 match digests of cells in the approved library.
9. A computer-implemented method of evaluating similari-

ties and/or differences between design data for circuits, the
design data residing in at least two files stored in computer
memory, the method including:

using a computer, identifying cells within design data
residing in first and second files, wherein the cells cor-
respond to portions of design for a physical circuit, the
first file is a design file and the second file is at least one
approved library;

parsing syntax of and normalizing the design data within
the cells into canonical forms, wherein the canonical
forms reduce sensitivity of data analysis to non-func-
tional variations in the design data within a particular
cell;

calculating and storing digests of at least functionally sig-
nificant data in multiple layers of the canonical forms of
the cells in the design file and the approved library,
producing at least one digest per cell; and

30 comparing the digests of the cells in the first file to the
digests of the cells in the second file;

reporting as potentially modified cells in the design file that
have digests of functionally significant data in some but
not all of the multiple layers that match digests of cells in

35 the approved library.
10. A computer-implemented method of evaluating simi-

larities and/or differences between design data for circuits,
the design data residing in at least two files stored in computer
memory, the method including:

40 using a computer, identifying cells within design data
residing in first and second files, wherein the cells cor-
respond to portions of design for a physical circuit, the
first file includes one or more royalty-bearing libraries of
royalty-bearing cell designs and the second file includes

45 one or more production designs that include cell
designs;

parsing syntax of and normalizing the design data within
the cells into canonical forms, wherein the canonical
forms reduce sensitivity of data analysis to non-func-

50 tional variations in the design data within a particular
cell;

calculating and storing digests of at least selected design
data in the canonical forms, producing at least one digest
per cell;

comparing the digests of the cells in the first file to the
digests of the cells in the second file; and

summarizing at least some results of the comparing of the
digests;

60 the summarizing further includes reporting as potentially
royalty-bearing cells in the production designs that have
digests which match digests of cells in the royalty-bear-
ing libraries.

11. A computer-implemented method of evaluating simi-
65 larities and/or differences between design data for circuits,

the design data residing in at least two files stored in computer
memory, the method including:

2

2

5

0

5

5 5

US 7,685,545 B2
85

using a computer, identifying cells within design data
residing in first and second files, wherein the cells cor-
respond to portions of design for a physical circuit;

parsing syntax of and normalizing the design data within
the cells into canonical forms, wherein the canonical
forms reduce sensitivity of data analysis to non-func-
tional variations in the design data within a particular
cell;

creating one or more syntax trees that partition the design
data within a cell at least:
between header and body data, according to a format in

which the design data is cast; and
between functionally significant and non-significant

data, wherein parts of the design data are functionally
significant when a change in the design data would
result in a change in a circuit generated from the
design data; and

calculating and storing digests of at least selected design
data in the canonical forms producing at least one digest
per partition per cell; and

comparing the digests of the cells in the first file to the
digests of the cells in the second file;

summarizing at least some results of the comparing of the
digests; and distinguishing among the digests produced
from different partition types.

12. The method of claim 11, wherein the syntax trees
further partition the design data within a cell into design
layers.

13. The method of claim 11, further including:
recognizing branches of the syntax trees that include nodes

which represent design data that is order independent,
wherein order independent means that the nodes can be
processed in varying orders without changing a circuit
generated from the design data represented by the nodes;
and

sorting nodes in the identified branches;
wherein the calculating and storing digests are applied to

the sorted nodes.
14. A device that evaluates similarities and/or differences

between design data for circuits, the design data residing in at
least two files stored in computer memory, the device includ-
ing:

at least one processor and memory;
a parser running on the processor, that parses a file con-

taining design data representing aspects of a design for a
physical circuit and creates one or more syntax trees in
the memory;

normalizer logic running on the processor and cooperating
with the parser that organizes the syntax trees to produce
canonical forms, wherein the normalizer logic includes:
a partitioning module that partitions the file into at least

one header and, depending on rules of a design lan-
guage used to encode the file, into multiple cells of
design data and organizes the syntax trees to represent
the header and cell partitions; and

a canonical forming module that interprets the syntax
trees to produce canonical forms of the design data,

86
wherein the canonical forms reduce sensitivity of data
analysis to non-functional variations in the design
data;

a digester module running on the processor that receives
5 the canonical forms for at least selected partitions and

calculates and stores in the memory at least one digest
per selected partition;

a comparer module running on the processor that receives
and compares the digests of at least a first file and a

10 second file, which contain design data; and
a reporter module running on the processor and coupled to

the digester that summarizes at least some of the
matches and/or differences detected by the comparisons
of digests.

15 15. The device of claim 14, wherein the canonical forming
module interprets the sortability of branches of the syntax
trees and organizes the syntax trees to reflect sortability.

16. The device of claim 14, wherein the partitioning mod-
ule further partitions the file by layers within cells and orga-

2o nizes the syntax trees to reflect the layers.
17. The device of claim 14, wherein the partitioning mod-

ule further partitions the file between design data that is
functionally significant and design data that is not significant,
wherein the design data is functionally significant when a

25 change in the design data would result in a change in a circuit
generated from the design data; and the partitioning module
organizes the syntax trees to reflect functional significance.

18. The device of claim 17, adapted to evaluating a new
library of cell designs against an old library of cell designs,

30 wherein:
the first file is a new library of cell designs and the second

file is an old library of cell designs; and
the reporter module summarizes the functionally signifi-

cant changes in the new library that are detected by
35 comparing the digests.

19. The device of claim 14, wherein:
the first file includes one or more royalty-bearing libraries

of royalty-bearing cell designs and the second file
includes one or more production designs that include

40 cell designs; and
the reporter module further reports as potentially royalty-

bearing cells in the production designs that have digests
which match digests of cells in the royalty-bearing
libraries.

45 20. The device of claim 14, wherein:
the first file is a design file and the second file is at least one

approved library;
the calculating and storing digests is applied to at least

functionally significant data in multiple layers of the
50 cells in design file and the approved library; and

the reporter module further reports as renamed the cells in
the design file that have at least some digests of func-
tionally significant data in the multiple layers that do
match digests of cells in the approved library (called "the

55 functionally matching cells"), but which renamed cells
have cell names that do not match cell names of the
functionally matching cells.

PATENT NO.
APPLICATION NO.
DATED
INVENTOR(S)

UNITED STATES PATENT AND TRADEMARK OFFICE

CERTIFICATE OF CORRECTION

: 7,685,545 B2
: 12/536413

: March 23, 2010
: David Chapman et al.

Page 1 of 1

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

In Claim 11, column 85, line 24, please replace "digest;" and insert --digest--.

Signed and Sealed this

Twenty-seventh Day of April, 2010

David J. Kappos
Director of the United States Patent and Trademark Office

