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FIG. 8A 
library (name) -441- File Header Text 
/* file comment */ 
date : sti-inu; 
revision : string; 
comment : string; 
time unit : unit number; 
leakage_power_unit : unit_number; 
voltage unit unit number; File Header Text 
current unit : unit number; 
pulling resistance unit : unit number; 
capacitive load unit (number,unit); 
operating conditions (name) 

lu table template (name) J. 

variable_l : enum; 
variable 2 : enum; 
index 1 (string) 
index 2 (string) 

I 

Cell Interface Text 

US 7,685,545 B2 

Annotated Sample Liberty File 

LEGEND: 

File header text 
/*file comment text */ 

Cell body text 
Cell interface text 
/*cell comment text */ 

cell Lnamel j -4-Cell Body Text 
/* cell comment */ 
area : expression; 
auxiliary pad cell : enum; 
cell footprint : string; 
clock gating integrated cell : string; 
dont use : enum; 
dont touch : enum; 
interface timing : enum; 
is clock gating cell : enum; 
is isolation cell : enum; 
is level shifter : enum; 
level shifter type : enum; 
map only : enum; 
pad cell : enum; 
pad type : enum; 
power cell type : enum; 
P referred : enum; 
retention cell : name; 
timing model type : string; 
use for size only : enum; 
P in equal (strina.strina); 
pin opposite (strina,string); 
rail connection (name,name); 
resource usage (name,number); 
ff (name,name) } 
ff bank (name,name,number) ... 
generated clock (name) j ... 
latch (name,name) ... I 
latch bank (name,name,number) ... 
tul (name) i ... I 
cell leakage power : x r7;-.4-Cell Body Text 

FIG. 8B 
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has builtin pad : enum; 
input map : string; 
is pad : enum; 
isolation cell enable pin : enum; 
level shifter cell enable pin : enum; 
map to logic : number; 
multicell pad pin : enum; 
nextstate type : enum; 
pg function : string; 
pin func type : enum; 
power down function : string; 
prefer tied : string; 
primary output : enum; 
Pulse clock : enum; 
related ground pin : enum; 
related power pin : enum; 
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state function : string; 
std cell main rail : enum; 
switch function : enum; 
switch pin : enum; 
test output only : enum; 
three state : string; 
x function : string; 
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retention pin (name,enum); 
tlatch (string) 
timing 0 

Cell Interface Text 

Cell Body Text 

Annotated Sample Liberty File 

LEGEND: 

Cell body text 
Cell interface text 
/*cell comment text */ 
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Annotated Sample Verilog File 

// file comment 
primitive seq0(IQ,SN,nextstate,CK,NOTIFIER)., 

output IQ; 
input SN,nextstate,CK,NOTIFTER; 
reg 

table 
1 0 r ? : ? O. 

1 r ? : ? : 1. 

end tab le 
endprimitive 

n attribute // comment in attribute 
another attribute_*) 

module XNOR2 X1 

#(parameter MSB=3 LSB =O) 
B, 21\1);_ 

a 1 *) (*2*) input A; 
input 13;_ 

output ZNII 

not(ZN, i 0); 
/AL3 

// a comment in a module 
specify 

ZAN) = (0A, 0.1); 
ZNI = (0.1, 0.1); 

endspecify 
endmodule 

FIG. 9 

LEGEND: 

File header text 
II Comment text 

Cell body text 
Cell interface text 

Unrecorded text 
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Annotated Sample VHDL File 

- - Title : Standard VITAL TIMING Package 
: $Revision: 1.3 $ 

PACKAGE VITALTiming IS 
CONSTANT VitalZeroDelay : VitalDelavTvoe := 
ATTRIBUTE VITAL LevelO : BOOLEAN; 
TYPE VitalTimingDataType IS RECORD 

NotFirstFlaq : BOOLEAN; 
RefLast : X01' 

END RECORD1 

comment recorded with function "minimum" 
FUNCTION Minimum £ CONSTANT tl t2 : IN TIME) RETURN TIME IS 

BEGIN 
W tl < t2 THEN RETURN (tl); ELSE RETURN (t2); END M'. 
END Minimum} 

PROCEDURE VitalWireDelay L 

SIGNAL OutSiq : OUT std ulogic; 
SIGNAL InSiq : IN std ulogic: 
CONSTANT twire : IN VitalDelayType01 

VARIABLE Delay : TIME. 
BEGIN 

-- comment inside procedure "vitalwiredelay" 
Delay VitalCalcDelay( In i InSig'LAST VALUE, twire 

OutSig, <= TRANSPORT aSig AFTER Delay; 
END VitalWireDelayi 

END VITAL Timing; 

FIG. 10A 

LEGEND: 

File header text 
-- Comment text 

Cell body text 
Cell interface text 

Unrecorded text 
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Annotated Sample VHDL File 

ENTITY Latch IS 
GENERIC ( N : Natural := 21;_ 

PORT { Din : IN Word; Dout : OUT Word; Load, Clk : IN Bit 
CONSTANT ,Setup : Time := 12 ns: 
CONSTANT PulseWidtj Time := 50 ns: 
USE Work.TimingMonitors.ALL; 

BEGIN 
-- even the body of the entity is recorded as interface text 
ASSERT Clk='1' Q@ Clk'Delaved'Stable f.PulseWidth 
CheckTiming Setup, Din, Load, Clk ); 

END ENTITY Latch} 

ARCHITECTURE MC68000 OF Mc 68000 IS 
PROCEDURE bclr d IS 

PROCEDURE nestedL SIGNAL output : OUT std ulogic ). IS 
BEGIN 

output := '0'; 
END nestedl 

BEGIN 
NULL; 

END bc1r2=1:, 
BEGIN --main loop 

var.m(0) x"00"; 
END ARCHITECTURE MC 68000; 

FIG. 10B 

LEGEND: 

File header text 
-- Comment text 

Cell body text 
Cell interface text 

Unrecorded text 
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Annotated Sample OASIS File 

magic-bytes START 

PROPERTY ... 

PAD 
CELLNAME string 
CELLNAME string number 
TEXTSTRING string 
TEXTSTRING string number 
PROPNAME string 
PROPNAME string number 
PROPSTRING string 
PROPSTRING string number 
LAYERNAME string number number ... 

XNAME number string 
CELL string 

POLYGON byte layer-number datatype-number number number 
number number PROPERTY 

PLACEMENT byte string number number number number PROPERTY 
TEXT byte string laver-number texttvpe- number number number 

PROPERTY ... 
XYABSOLUTE 
XYRELATIVE 
PAD 
XGEOMETRY byte number layer-number datatype-number string 

number number PROPERTY ... 

XELEMENT number string 

END 

FIG. 11 

LEGEND: 

File header text 
Cell body text 
Non-geometry cell body text 
Unrecorded text 
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Annotated Sample GDSil File 

HEADER version 
BGNLIB(' mcd time access time 

LIBDIRSIZE number 
SRFNAME filename 
LIBSECUR numbers... 
LIBNAME name 
REFLIBS filenames 
FONTS filenames 
ATTRTABLE filename 
GENERATIONS number 
FORMAT number 
MASK string ... ENDMASKS 
UNITS number number Comments 

BGNSTR (Mcd time access time 
STRNAME cell/ 

( STRCLASS number )11 
BOUNDARY ELFLAGS number PLEX number LAYER number DATATYPE number 

XY number number number number 
PROPATTR number PROPVALUE striae ENDEL 

BOX ELFLAGS number FLEX number LAYER number BOXTYPE number 
XY number number number number 
PROPATTR number PROPVALIJE string ENDEL 

TEXT ELFLAGS number PLEX number LAYER number TEXTTYPE number 
PRESENTATION number PATHTYPE number WIDTH number 
STRANS number MAG number ANGLE number 
XY number number STRING string 
PROPATTR number PROPVALUE string ... ENDEL 

NODE ELFLAGS number PLEX number LAYER number NODETYPE number 
XY number number number number ... STRING string 
PROPATTR number PROPVALUE string ... ENDEL 

SREF ET,FT,AGS number PLEX number SNAME string STRANS number 
MAG. number ANGLE number XY number number 
PROPATTR number PROPVALIJE string ENDEL 

ENDSTR 

ENDLIB 

FIG. 12 

LEGEND: 

File header text 
Cell body text 
Non-geometry cell body text 
Unrecorded text 
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Annotated Sample SPICE Net list File 

* a simple inverter 
.global vdd 
.param Ip=0.35 In=0.3 wp=0.7 wn=0.7 
.options scale=lu 

.subckt inverter I zn 

drain gate source bulk 
mpullup zn i Did ydsl. pmos w=10.0 1=lp 

mpulldown zn nmos w=4.0 
,ends 

.end 
* this .options command is not processed: 
.options scale=lu 

FIG. 13 

LEGEND: 

File header text 
Cell body text 
Cell interface text 
Unrecorded text 
* Comment text 
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# a sample LEF file fragment 
VERSION 5.6 
NAMESCASESENSITIVE ON 
BUSBITCHARS 
DIVIDERCHAR "I" 

UNITS 
DATABASE MICRONS 2000 ; 

END UNITS 
MANUFACTURINGGRID 0.001 ;. 

LAYER M1 
TYPE ROUTING 
WIDTH 0.065 ;. 

SPACING 0.065 ;. 

PITCH 0.14 ;. 

END Ml 

SITE sitel 
SYMMETRY y 
CLASS core ; 
SIZE 0.19 BY 1.4 ; 

END sitel 

Sheet 16 of 20 US 7,685,545 B2 

Annotated Sample LEF File 

LEGEND: 

File header text 
Cell body text 
Cell interface text 
Unrecorded text 
# Comment text 

MACRO INV X1 

# a fragment of a simple inverter description 
CLASS core ; 

ORIGIN 0 0 ; 

SYMMETRY X Y ; 

SITE sitel ; 

SIZE 0.38 BY 1.4 ; 

FOREIGN cell2 204.6 302.1 FE ; 

EEQ ce113 ; 

PIN A 
DIRECTION INPUT ; 

PORT LAYER M1 ; 

POLYGON 0.04 0.465 0.14 0.465 0.14 0.6 0.04 0.6 ; 

END 

END A 
OBS 

LAYER M1 ; 

POLYGON 0.05 1.015 0.115 1.015 0.115 1.09 0.43 
END 
DENSITY 

LAYER M1 ; 

RECT 0.06 0.10 0.12 1.22 75.0 ; 

LAYER M2 ; 

RECT 0.06 0.10 0.12 1.22 25.0 ; 

END 

PROPERTY propl "abc" 
END INV X1 

END LIBRARY 

FIG. 14 

1.09 ; 
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# a small test DEF file, based in part on the sample 
# in the LEF /DEF manual 
DESIGN DEMO4CHIP ; 
TECHNOLOGY DEMO4CHTP ; 
UNITS DISTANCE MICRONS 100 ; 
DIEAREA k 0 0 ) 4286200 81362000 ) 
ROW rovv_O CORE 400 900 FS DO 85 BY 1 

ROW row _1 CORE 400 2100 N DO 85 BY 1 

COMPONENTS 5 ; 
- CORNER1 CORNER ; 
- CORNER2 CORNER ; 
- CO1 IN1X ; 
- CO2 IN1 Y ; 
- Z38A05 DFF3 ; 

END COMPONENTS 
NETS 2 ; 
- VDD Z38A05 SN 1 Z3805 CN ) ; 
- Z38A05 Z38A05 QN ) k CO1 B 1 ; 
END NETS 
BLOCKAGES 2 ; 
- LAYER M2 

+ COMPONENT cl 
POLYGON 25 20 ) * 300 ) 50 

- PLACEMENT 
RECT 160 120 ) 100 320 l 
RECT L 90 440 ) f 220 600 ) ; 

END BLOCKAGES 
SLOTS 1 ; 
- LAYER ml 

POLYGON k 40 30 ) k 90 * ) k * 120 ) ; 
END SLOTS 

Annotated Sample DEF File 

LEGEND: 

File header text 
Cell body text 
Cell interface text 
Unrecorded text 
# Comment text 

STEP 300 1200 ; 
STEP 300 1200 ; 

) ) ) 

FIG. 15 

20 
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Annotated Sample Structured Text File 

#!,/bin/sh -f 
# dummy.sh - dummy shell script for testing structured file parser \ 
(with a continuation inside a comment) 
# line with a trailing 'V but with white space following it: \I- 
if (Si "some \" text")ul_ # a comment in the middle of a line 

multi_space_indent twice in the line 
fi 

# completely blank lines are ignored: 

'a string inside single quotes - should not reduce the spaces' 

FIG. 16 

LEGEND: 

File header text 
Cell body text 
Cell interface text 
Unrecorded text 
# Comment text 
1_ Space character 
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Annotated Sample User-parsed File 

HEADERTEXT (layl) first line of header 
COMMENT first file comment line 
HEADERTEXT second line of header 
CELL ce112 
INTERFACE ( lay2 ) i1 first interface 
HIERCELL 
CELLNONGEOM(lay3) non-geometry line 1 

INTERFACE (layl) i3 third interface 
CELLTEXT first line of ce112 

CELLNONGEOM(lay2) non-geometry line 2 

INTERFACE (layl ) b fourth interface - should be first when sorting 
COMMENT comment in cell2 
CELLTEXT second line of ce112 

CELLTEXT early line of ce112 for sorting 
INTERFACE ( lay3 ) i2 second interface 
HEADERTEXT third line of header - cell ended 
HEADERTEXT fourth line of header - will be before third when sorted 
COMMENT second file comment line 
CELL celll 

CELLTEXT (lay4) firstlineofceill 
INTERFACE L first interface of ce111 

INTERFACE j2 second interface of ce111 

CELLNONGEOM non-geometry line 3, no layer number 

FIG. 17A 

LEGEND: 

File header text 
Cell body text 
Cell interface text 
Unrecorded text 
Non-geometry cell body 
text 
Comment text 
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Annotated Sample User-parsed File 

COMMENT first file comment line 
CELL cell2 

COMMENT comment in cell2 
INTERFACE (layl) h3 fourth interface - should be first when sorting 
INTERFACE (layl) i3 third interface 
INTERFACE (lay2) i1 first interface 
INTERFACE (lay3) i2 second interface 
CELLTEXT early line of cell2 for sorting 
CELLTEXT first line of ce112 

CELLTEXT second line of cell2 
CELLNONGEOM(lay2) non-geometry line 2 

CELLNONGEOM(lay3) non-geometry line 1 

COMMENT second file comment line 
CELL celll 
INTERFACE jl first interface of celll 
INTERFACE 2 second interface of celll 
CELLTEXT (lay4) first line of celll 
CELLNONGEOM non-geometry line 3, no layer number 
HEADERTEXT fourth line of header - will be before third when sorted 
HEADERTEXT second line of header 
HEADERTEXT third line of header - cell ended 
HEADERTEXT (layl) first line of header 

FIG. 17B 

LEGEND: 

File header text 
Cell body text 
Cell interface text 
Unrecorded text 
Non-geometry cell body 
text 
Comment text 
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METHODS AND DEVICES FOR 
INDEPENDENT EVALUATION OF CELL 
INTEGRITY, CHANGES AND ORIGIN IN 

CHIP DESIGN FOR PRODUCTION 
WORKFLOW 

RELATED APPLICATIONS 

This application is a continuation of U.S. patent applica- 
tion Ser. No. 12/482,296, which application claims the benefit 
of U.S. Patent Provisional Application No. 61/131,601. The 
priority provisional application is incorporated by reference. 
This application is related to the PCT Application No. 2009/ 
046913 of the same title, filed on 10 Jun. 2009. The PCT 
Application is incorporated by reference. 

BACKGROUND OF THE INVENTION 

The technology disclosed relates to the granular analysis of 
design data used to prepare chip designs for manufacturing 
and to identify similarities and differences among parts of 
design data files. In particular, it relates to parsing data and 
organizing it into canonical forms, digesting the canonical 
forms, and comparing digests of design data from different 
sources, such as chip-level designs and design template 
libraries. Organizing the design data into canonical forms 
generally reduces the sensitivity of data analysis to variations 
in the data that have no functional impact on the design. The 
details of the granular analysis vary among design languages 
and data file formats used to represent aspects of a design. 
Depending on the desired analysis and the design languages, 
granular analysis may include partitioning and reporting 
design files by header/cell portions, by separate handling of 
comments, by functionally significant/non-significant data, 
by whitespace/non-whitespace, and by layer within a unit of 
design data. The similarities and differences of interest 
depend on the purpose of the granular analysis. The compari- 
sons are useful in many ways. 

The design of an integrated circuit is an iterative process 
involving hundreds of thousands of cell and block views, 
artifacts, and their dependencies. The views, artifacts, and 
their dependencies represent the developing functional, elec- 
trical and physical state of an integrated circuit. 

Cells and blocks proceed through the design process at 
different rates, starting with internal cell-level development 
and release from a design template vendor and cycling 
through multiple releases or iterations. Keeping track of the 
most recent version of blocks, libraries, cells, and artifacts is 
difficult, at best. For example, when someone discovers a 
yield problem in a product that uses a particular design tem- 
plate, the company will have difficulty determining what 
other projects use that design template. 

The potential for use of an obsolete cell or library is every- 
where. Design tools have their own configuration files, and 
machines have their own search paths and disk mount points. 
A design or tapeout team may not find an out-of-date file or 
link until a problematic design comes back from manufactur- 
ing. 

Complex multi-level designs bring new problems. A frozen 60 

block, which was tentatively completed by the design team, 
might be using an out-of-date version of a library cell. More- 
over, a designer might avoid a name conflict with another 
designer's cell by simply renaming a cell, without verifying 
whether the two cells are equivalent. Renaming the cell 65 

decouples it from future library updates and cell tracking 
mechanisms. 
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Designers have made unauthorized modifications to design 

templates provided by vendors, which resulted in failure dur- 
ing production and potentially voided a warranty otherwise 
available from the design template vendor. Designers might, 
for example, think that modifications would improve the per- 
formance or functionality of the template, only to find out that 
they produce the opposite outcome, such as failure in produc- 
tion. Furthermore, third party vendors do not warrant modi- 
fications to their design templates. If something does occur 
like this, it becomes difficult to determine the cause and to 
identify who is responsible. 

When a design is ready for release to production, there can 
be as many as 40,000 unique cells. With designs as complex 
as they are today, there is a greater chance that some library 
cells used to prepare the design are not up to date. The tapeout 
team cannot determine with certainty whether the cells in the 
design it is about to send to the mask shop represent the most 
recent available versions. There is no way today to ensure that 
a tapeout candidate uses all of the most recent data or ensure 
that no one made unauthorized modifications to certified lay- 
outs. 

The known approaches to tracking cell data during the 
design of an integrated circuit track data files that contain 
collections of cells. To find cell changes within a file, design- 
ers resort to a manual analysis of millions of lines of data 
typically using a differencing tool. Running a difference 
check is not effective across design languages or data file 
formats, because differencing tools typically perform text 
matches that do not consider the design language or the data 
type used to represent the design. A differencing program 
typically subtracts the differences between files, without 
analysis of whether the changes have a functional impact on 
the chip being produced or whether they are significant. Dif- 
ferencing tools have a particularly difficult time with two 
binary data files. 

Examples of design tools that apparently include differenc- 
ing tools include ClearCase, DesignSync and IC Manage, 
which are described by their respective sellers. Because such 
tools operate at a file level, rather than a cell level, a designer 
using a differencing tool would practically need to extract the 
two sections of code to be compared into new files and com- 
pare the files directly. Or, the designer might rely on file 
metadata, in which another designer has kept notes about the 
course of design efforts. Neither of these approaches is very 
robust or efficient. 

Some design template suppliers add tags to their templates. 
The tags identify the templates as theirs with respect to other 
design templates that may be part of an integrated circuit 
design that are not their. The tags are used to count the 
instances of design templates used in a design and then the 
users of the templates pay royalties based on the number of 
instances. The standard for the industry approach to the use of 
this tagging method is maintained by the by the VSI Alli- 
anceTM. Version 2.0 of the standard, entitled "Virtual Com- 
ponent Identification Physical Tagging Standard," accessed 
on May 21, 2009, describes the way to use the tagging meth- 
ods. This standard describes text tags to be embedded in 
GDSII text or comment lines. The VSI Alliance includes 
IBM, Intel, ARM, Freescale Semiconductor, TSMC and oth- 
ers. Third party IP suppliers have developed a scanner that can 
detect and report design templates if the tags remain part of 
the design template data. If the tags are removed or obfus- 
cated in some way, the owners of the design templates will not 
be compensated in terms of royalties. 

An opportunity arises to develop new tools for analysis of 
design data, which facilitate granular evaluation of design 
data at various junctures in the design work flow. Better, more 
error free, more resilient and transparent work flows and 
resulting product designs may result. 
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SUMMARY/OVERVIEW 

The technology disclosed relates to granular analysis of 
design data used to prepare chip designs for manufacturing 
and to identification of similarities and differences among 
parts of design data files. In particular, it relates to parsing 
data and organizing it into canonical forms, digesting the 
canonical forms, and comparing digests of design data from 
different sources, such as chip-level designs and design tem- 
plate libraries. Organizing the design data into canonical 
forms generally reduces the sensitivity of data analysis to 
variations in the data that have no functional impact on the 
design. The details of the granular analysis vary among 
design languages used to represent aspects of a design. 
Depending on the desired analysis and the design languages, 
granular analysis may include partitioning design files by 
header/cell portions, by separate handling of comments, by 
functionally significant/non-significant data, by whitespace/ 
non-whitespace, and by layer within a unit of design data. The 
similarities and differences of interest depend on the purpose 
of the granular analysis. The comparisons are useful in many 
ways. Particular aspects of the present invention are described 
in the claims, specification and drawings. 

BRIEF DESCRIPTION OF THE DRAWINGS 

FIG. 1 illustrates, at a high-level, an integrated circuit 
design environment. 

FIG. 2 illustrates the proliferation of versions and some of 
the file formats associated with the blocks in FIG. 1. 

FIG. 3 illustrates junctures in the design process at which 
the technology disclosed can usefully be applied. 

FIG. 4 depicts an evaluator that digests canonical represen- 
tations of parts of multiple data files. 

A canonical cell digest or design unit digest is generated by 
processing a file that contains design data, as illustrated in 
FIG. 5. 

FIGS. 6 and 7 provide a high-level flowchart of some 
aspects of these methods. 

FIGS. 8A-8D illustrate a sampling of the possible header 
and cell statements in a Liberty file. 

FIG. 9 is an annotated example of a Verilog. 
FIG. 10A-10B illustrate an annotated sample VHDL file. 
FIG. 11 is an annotated sample OASIS® file. 
FIG. 12 is an annotated sample GDSII file. 
FIG. 13 is an annotated version of a SPICE file. 
FIG. 14 is an annotated sample LEF. 
FIG. 15 is an annotated version of DEF. 
FIG. 16 is an annotated version of a structured text file. 
FIGS. 17A-17B are annotated examples of user parsed 

files. 

DETAILED DESCRIPTION 

The following detailed description is made with reference 
to the figures. Preferred embodiments are described to illus- 
trate the present invention, not to limit its scope, which is 
defined by the claims. Those of ordinary skill in the art will 
recognize a variety of equivalent variations on the description 
that follows. 

Overview 
Environment of Integrated Circuit Design 
The environment of circuit design presents even more chal- 

lenges and opportunities for improvements than described in 
the Background section, above. A successful Integrated Cir- 
cuit (IC) tapeout requires that cells and blocks of the IC 

4 
design are correct. Using the wrong version of a circuit, 
whether a leaf cell with a few transistors or a large hierarchi- 
cal design block, can cost millions of dollars and months of 
delay. 

5 Chip-level design template management systems, post 
logic synthesis, track file-based collections of design data: 
cells, versions of cells, blocks, and chip-level design blocks. 
It appears that design data management systems cannot effec- 
tively determine or summarize what has changed within a 

10 given collection of cell and block data, found inside a file. 
Chip-level design data management systems cannot track at 
this level of granularity, because cells and blocks and chip- 
level design blocks are created by different design tools and 
different versions of design tools, and are represented using 

15 different design languages and data file formats. In a compli- 
cated SOC design, design blocks may come from different 
design groups using different design tools and versions of 
tools. The deficiencies perceived in current design manage- 
ment tools leave them unable to evaluate cell equivalence at 

20 the cell level or to report what has changed within individual 
cells. 

Existing design data management tools appear not to dis- 
tinguish between text data and object data and not to sort the 
data or otherwise produce a canonical representation of the 

25 design data. In turn, they lack an auditing capability that 
would be useful to project managers who are interested in 
verifying that the cells in an IC design are of the latest 
approved version, in ensuring that the cells have not been 
improperly copied or imported, or in determining whether a 

30 proposed cell design update will be usable in a design 
approaching tapeout. 

In addition, design data management systems do not pro- 
vide a way to validate the final GDSII or OASIS® file 
released to the mask shop. They all assume that with strict 

35 enough controls, no "stray" layouts will get into the final 
design. 

Cells and Blocks as Units of Design 
Chip design makes heavy use of cells, which are grouped 

into blocks. A cell is associated with a set of data files that are 
40 sometimes called cell "views." Cell views contain functional 

or physical representations of the cell. Typically, there are two 
or more views of a cell that present design data in design 
languages such as SPICE, Extracted Netlist, GDSII, Liberty, 
Vital and/or LEF. Different views specify different types of 

45 information about a cell. Different electronic design automa- 
tion (EDA) tools operate on different views and the data they 
contain. Some tools manipulate detailed polygon data, while 
others work only with simplified polygon representations. 
Performance estimation tools do not work with polygons at 

so all they use timing information. If the versions of a cell used 
by the various tools are not consistent, there is a substantial 
risk that a design using that cell will fail. 

A chip-level design block may contain several cell blocks 
of cells. Cell blocks may contain references to cells and to 

55 sub-blocks that contain other cells and so on. References may 
be nested. References to cells are eventually expanded when 
the chip is fabricated. During the design process, use of ref- 
erences greatly reduces the amount of memory and disk space 
required to represent the design. A memory area on a chip, for 

60 example, will contain the definition of one or more core bit 
cells, row and column cells that read and write bit cells, and a 
top-level cell that references the core bit cell, the row cells, 
and the column cells. A 65,536 bit memory (a "64 K bit 
memory") will typically have one bit cell definition, refer- 

65 enced 65,536 times; two column driver or sensing cell defi- 
nitions (top and bottom) referenced 256 times; two row driver 
or sensing cell definitions referenced 256 times; and assorted 
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decoding circuits. Hierarchical design can further reduce the 
number of references; a row of the memory could be defined 
to contain references to left and right row cells plus 256 
references to the core bit cell, and then this row could be 
referenced 256 times. Fewer than 1,000 nested references 
could be used, instead of 65,536 cell references. 

When masks (tooling for fabricating cells on chips) are 
made or direct writing is used, cell references are expanded. 
In the memory example above, no matter how the cell hier- 
archy is specified, there will be 65,536 core bit cells printed 
on the wafer, copied from the single original cell. Before 
expansion, a design data file may be tens of gigabytes in size; 
after expansion, the file can be many times larger. Only a few 
tools need to work with the fully expanded data, including the 
mask data preparation software workstation and possibly the 
rule checking system that checks for design rule violations in 
the chip design. 

Some views use file formats that provide for multiple 
"cells" called a cell collection within a single file. This adds 
another dimension of complexity: the version of a cell col- 
lection file in one of these formats depends on the versions of 
all of the cells inside it. A new version of a library may have 
a new cell collection simply because a single cell inside has 
changed. 

Complex design templates such as processor cores tend to 
have many associated artifacts. Typically, artifacts are stored 
in a separate file. These may be performance constraint files 
for logic synthesis, behavioral description files for simula- 
tion, or log files from the tools that constructed of the cells. All 
of these files are supposed to be synchronized with the major 
layout and timing views of the cell. 

More subtly, some views of cells can change even when the 
representation of those cells (e.g. layout) has not changed. For 
example, timing models may change if a change is made to 
the fabrication process at the foundry, even without changing 
the physical layout of the cell, or simply because more infor- 
mation becomes available about average performance of 
products from the foundry. 

How Canonical Cell Digests ("CCDs") and Canonical 
Design Unit Digests ("CDUDs") Work 

Canonical cell digests and, more generally, canonical 
design unit digests, are outputs of a new tool that will be 
useful in the IC design process. The canonical digest tools 
disclosed in this document generate file-wide, cell-by-cell, 
and layer-by-layer digests for common EDA file formats and 
can be extended to other file formats. These tools can distin- 
guish between trivial changes such as whitespace or comment 
modifications and major changes such as new interfaces to 
cells. It allows matching of cells to a repository of versioned 
cell digests to detect unauthorized use of untested cells, obso- 
lete cells, changes to cells, or copies of cells under different 
names At a high level, FIG. 4 depicts an evaluator 433 that 
digests 415, 435, 455 canonical representations of parts of 
multiple data files 411, 431, 451. Digests representing two or 
more files are compared. In this context, for patent purposes, 
the term "file" is used generically, as two files of data might be 
stored in a single database. Within the design industry, design 
files are typically stored in a file hierarchy, such as a Windows 
or Linux file system. The evaluator 433 compares the digests 
and generates a summary 473 or report 475 of similarities 
and/or differences in digests that are of interest for a particular 
purpose. 

A canonical cell digest or design unit digest is generated by 
processing a file 411 that contains design data, as illustrated in 
FIG. 5. This design data ultimately contributes to production 
of a physical circuit, also called an integrated circuit or a chip. 
In one embodiment, a parser 531 running on a processor 530, 

6 
normalizer logic 533 running cooperatively with the parser, 
and a digester 534 running on the processor generated syntax 
trees 532 and canonical cell digests that are stored in memory 
415. The canonical organization of a cell digest depends on 

5 the design language being parsed. These processors generate 
at least one digest per cell. The digests, for instance, may be 
32 or 64 bit codes generated from canonical output of the 
parser and normalizer logic. A variety of hash functions can 
be used to create the digests, such as CRC, MD5 and others. 

10 The digester can generate separate digests for header and 
body parts of a cell and generate digests by layer within a cell. 
Comments, whitespace and functionally significant data can 
be separately digested. Digests can be stored persistently for 
later use. For instance, digests of an approved library can be 

15 generated and stored for repeated comparison to digests of 
design projects. 

Comparison of canonical digests is a powerful tool that 
allows a user to understand small differences between design 
elements in large files. As indicated above, design files, espe- 

2o cially files containing binary polygon data, can be enormous. 
Thousands or hundreds of thousands of cells (or more, with 
large memories, for instance) are contained in the design file. 
With this much data, false alarms are a real problem. One use 
of canonical cell digests is to identify and allow filtering of 

25 detected changes based on their functional significance and, 
sometimes, their source in the design process. 

A comparer 536 running on a processor 535 and a reporter 
537 running on the processor operate on digests stored in 
memory 415 by the digester 534. Typically, either two or three 

30 groups of files 411 are compared. For the sake of simplicity 
we refer to a group of files as a "file" and expect that the reader 
will understand that the actual number of files compared is 
arbitrary. "Two files" means two or more files. Two files may 
represent an old library of cells and a new library of cells. 

35 Three files may be a design file, an approved library of cells 
and a collection of rejected cell designs that will cause failure 
if the rejected designs are used in a product. The comparer 
checks digests for one file against digests for one or more 
other files. The reporter, responsive to filtering criteria, 

40 reports matches between cells in the respective files, near- 
matches, or cells in one file that are not found in the other files. 
These reports may be summaries to memory 473, such as a 
database or other intermediate format that another program 
can process, or to a report 475 that is viewable by a human 

45 operator, either on a display or on paper. There are a wide 
variety of use cases for comparing files to produce useful 
reports. 

Some of the use cases for this technology are: 
Understanding an updated cell design library 

50 Evaluating the impact of an updated cell library on designs 
in process 

Finding unapproved and/or bad cells in design data before 
place and route, before tapeout and at other design mile- 
stones 

55 Identifying renamed cells in design data and verifying that 
they match approved cell templates 

Detecting cell modifications that jeopardize warranties of 
the vendors who provide the templates 

Counting the number of cells in a production design for 
60 which royalties are owed 

From these use cases, one should be able to see how powerful 
the disclosed canonical digests will be as a tool for circuit 
designers. 

65 A prototype canonical digest tool processes the following 
major published EDA design data formats, and can readily be 
extended to other formats: 
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Open Artwork System Interchange Standard (OASIS ®) 
geometric layout files 

Calma GDSII geometric layout files 
Synopsys Liberty library circuit timing model files 
Verilog Register Transfer Level description files 
VHSIC Hardware Description Language (VHDL) Regis- 

ter Transfer Level description files 
Simulation Program with Integrated Circuit Emphasis 

(SPICE) sub-circuit netlist files 
Cadence Library Exchange Format (LEF) layout descrip- 

tion files 
Cadence Design Exchange Format (DEF) design descrip- 

tion files 
"Structured Text" scripting and control files 
Unstructured (arbitrary or unknown format) text files 
Unstructured (unknown format) binary files 
The tool also provides an application programming inter- 

face (API) for computing canonical cell digests for propri- 
etary data formats ("User-parsed" files). A parser running on 
a processor identifies significant design objects within the 
files and generates digests for cells, interfaces to cells, cell 
bodies, and file header data outside of any cell. 

Comments within cells or in the file header are marked 
separately so that changes in only the comments can be iden- 
tified. The data within file headers, cell interfaces, and cell 
bodies is furthermore separated by layer when appropriate so 
that changes to individual layers are obvious. When data 
within a file format is order-independent and sorting is 
requested, the canonical cell digest tool sorts only the data 
that is order-independent, leaving order-dependent data in its 
original order. 

Digest Calculation Basics 
Three general classes of objects within a design data file to 

which canonical cell digests can be applied are files, file 
headers, and cells. File-level digests can be calculated from 
all of the data in the file. Canonical cell digests are digests of 
canonically reorganized data for the cells or modules of a file. 
Canonical file header digests are digests of canonically reor- 
ganized data that are not in any cell or module. Depending on 
the design language or data file format and on user selected 
options, more or less reorganization is applied before digests 
are generated. In this disclosure, "canonical design unit 
digests" collectively refers to digests applied to file header 
and cell data. In the many examples provided, one will see 
that the design data in files can generally be treated as header 
or cell data, even in formats that have only one or the other 
category of data. 

Canonical cell digests can refer to multiple digests calcu- 
lated for parts of a cell: comment data, layer data, and non- 
layer data. Comment data is non-functional data (usually text) 
as determined by the specification for a given file format. For 
most formats, changes in comment digests can be ignored. 
Layer data has a distinct layer name or number that is mean- 
ingful to tools reading the file, such as first layer metal or 
polysilicon. Non-layer data represents objects that do not 
have a layer number, such as cell placements (instantiations) 
in GDSII or OASIS®, or objects in files that are not divided 
by layer number. 

Layer data is further separated into geometry data and 
non-geometry data. GDSII and OASIS® files have text and 
node name records that are not geometric data but still have 
layer numbers. Changes to node and text information are not 
necessarily as significant as changes to geometric data such as 
paths or polygons, so node and text digests are recorded 
separately. A user may choose to treat node and text data with 
the same importance as geometric data, but it is not necessary 
to do so. 

8 
Organization of Files and Digests 
For digest computation purposes, a file most generally 

includes an optional header and zero or more cells. Within the 
file header (which may include text between cells if that text 

5 does not clearly belong to a cell, such as when a cell has a 
distinct end record) there are comments plus header data, 
either on specified layers or explicitly reported as "non-layer 
data" such as when a file format does not have layer names or 
numbers. 

to Cells have an optional interface, an optional body, and 
optional comments. At least one of these three classes will be 
present in a cell. Cell interface data is either on named layers 
or numbers, or it is explicitly reported as "non-layer data". 

Cell body data is either on named or numbered layers, or it 
15 is explicitly reported as "non-layer data". The cell body (but 

not, in the present implementation, the cell interface or file 
header) may have "non-geometric data", which for a geomet- 
ric data format is information that does not specify polygons, 
rectangles, wires, etc. Typically non-geometric data would be 

20 properties and text records (e.g. in a GDSII or OASIS® file). 
If the data format is not geometric (e.g. Liberty timing mod- 
els), then all data is non-geometric even though it is not 
recorded in this class-callers are expected to know. Usually 
this is obvious because all data will be "non-layer". This is an 

25 implementation decision and is not critical to the invention. 
As examples, the reports may have general or detailed 

categories. An example of general categories follows: 

File: 

30 file header comments 

file header non-layer 

file header layer . . . 

cell . . . 

35 
Cell: 

cell comments 

cell interface non-layer 

40 cell interface layer . . . 

cell body non-layer 

cell body layer . . . 

45 
cell body non-geometric non-layer 

cell body non-geometric layer . . . 

An example of more detailed categories follows: 

File: 
50 

File 

File non-whitespace 

File whitespace 

55 File Header (not sorted: insufficient memory) 

File Header (no Sort requested) 

File Header Comments 

60 
File Header non-layer data ((-1) 

File Header layer-by-layer 

Cell 

Cell (Sorted) 
65 

Cell (not sorted: insufficient memory) 

Cell (no Sort requested) 
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Cell without Comments 

Cell Comments 

Cell Interface 

Cell Interface including File Header 

Cell Interface excluding File Header 

Cell Interface non-layer data (-1) 

Cell Interface layer-by-layer 

Cell Body non-layer data (-1) 

Cell Body layer-by-layer Geometry 
Cell Body Layer-by-Layer Non-Geometry. GDSII 

Example 
As an example, consider the digest report generated by the 

command-line canonical digest tool for a small GDSII file: 

File "testfiles/sigtest.gds": GDS format 
Arguments: -grid le-9 -mem 64 -nosort 

db7be73c File 
(none) File non-Whitespace 
(none) File Whitespace 

File Header (not sorted) 
8f078078 File Header with Comments 
3289c53f File Header without Comments 
bd8e4547 File Header Comments 
3289c53f File Header non-Layer 

Cell "Structure 1" (not sorted) 
a7100492 Cell with Comments 
3d4d7fbf Cell without Comments 
9a5d7b2d Cell Comments 
7b78aab4 
15546763 
fda35715 
aec2e57d 

Cell "Structure 
cd2b135d 
d2c6c150 
lfedd20d 
0f4c0817 
d4133b6c 
0999f22b 

Cell "Structure 
a7100492 
3d4d7fbf 
9a5d7b2d 
7b78aab4 
15546763 
fda35715 
aec2e57d 

Cell "Structure 
70262033 
5242eac1 
2264caf2 
7b78aab4 
7a5bf2ld 
fda35715 
aec2e57d 

Cell Body non-Layer 
Cell Body Layer 3 

Cell Body Layer 42 
Cell Body non -Geometric Data Layer 3 

2" (not sorted) 
Cell with Comments 
Cell without Comments 
Cell Comments 
Cell Body Layer 1 

Cell Body Layer 19 
Cell Body non-Geometric Data Layer 5 

3" (not sorted; hierarchical) 
Cell with Comments 
Cell without Comments 
Cell Comments 
Cell Body non-Layer 
Cell Body Layer 3 

Cell Body Layer 42 
Cell Body non-Geometric Data Layer 3 

4" (not sorted; hierarchical) 
Cell with Comments 
Cell without Comments 
Cell Comments 
Cell Body non-Layer 
Cell Body Layer 3 

Cell Body Layer 42 
Cell Body non-Geometric Data Layer 3 

Processing of a reference file testfiles/sigtest.gds generated 
a 32-bit file-level digest of db7be73c (hexadecimal). When 
the digest for the entire file is stored in a digest repository, one 
can use this digest to determine quickly whether any changes 
had been made to the file since digests were last processed and 
stored in a digest repository. 

GDSII is a binary file format. A file containing binary data 
does not contain whitespace, therefore the digests of 
whitespace and non-whitespace digests are not reported. 
Where applicable, non-whitespace digests can be reported as 
a means to determine whether a change to a data file origi- 
nated from a change in whitespace only. For Library cell 
views, whitespace should not change. Symbolic data within a 

10 
file is often separated by whitespace (space characters, tabs, 
or newlines), and typically the amount of whitespace is not 
significant. To help determine whether changes to symbolic 
data had been made, the prototype canonical digest tool com- 

5 putes digests for all whitespace characters in the file and for 
all non-whitespace characters in the file. Note that a 
whitespace digest captures the amount of whitespace byte- 
by-byte irrespective of its location. For instance, the same 
whitespace (using a single space character) and non- 
whitespace digests will be reported for the two strings "abc 
der and "abcd ef." 

Most data within a GDSII file is within the cells ("struc- 
tures" in GDSII nomenclature), but there are some records 
outside of any cell. This data is digested in file header digests. 
This header data can be partitioned by type, either as file 
header comments or file header non-layer data; there are no 
layer numbers assigned to the data within a GDSII file header. 
Details of the interpretation and recording of GDSII data are 
described below. 

For consistency, a common reporting format can be used or 
digests can be saved in a database. In this sample, the word 
"(none)" is printed in place of a digest when no data has been 
recorded for that digest type. Two examples of this are seen in 
the file digest block within the report. 

A composite file header digest is recorded along with the 
25 individual file header digests. This is computed by the com- 

mand-line utility for the user's convenience; in one embodi- 
ment, it is simply the exclusive-OR (XOR) of the individual 
file header canonical cell digests. It is also possible to com- 
pute the composite file header digest at the same time that cell 

30 digests are being computed. The composite file header digest 
can be used to help detect changes in file header data. 

Below the file header digest block appear individual cell 
digest blocks. The cell digests, as shown, include a comment 
digest, geometry digests for layer and non-layer data, non- 

35 geometry digests for layer and non-layer data, and composite 
cell digests for the cell with and without comments. As with 
the composite file header digest, the composite cell digest is 
generated in one embodiment by exclusive ORing together 
the other cell digests. They can be used to help detect changes 

40 in cell data. 
The digests for the above GSDII file were generated with- 

out sorting the data. This is reported in the program argument 
list printed right below the file name and along with blocks of 
digests. 

45 Cells Structure 3 and Structure 4 are hierarchical, mean- 
ing they have SREF or AREF references to other cells in 
them. Generally speaking, digests for place and route cells 
and other cells high in a design database hierarchy will 
change much more often than digests for the leaf cells they 

50 reference. Knowledge of whether a changed cell is a leaf cell 
can help one determine the significance of digest changes. 

Looking at the canonical cell digests for cells Structure 1 

and Structure 3, one sees that all of the digests for these cells 
are identical. This indicates a match in the polygon and struc- 

55 ture (cell) reference data for these two cells. The digests for 
Cells Structure 2 and Structure 4 do not match those for 
any other cells. 

If sorting is requested, different digests are generated for 
some parts of the cells: 

10 

15 

20 

60 

File "testfiles/sigtest.gds": GDS format 
Arguments: -grid le-9 -mem 64 -sort 

db7be73c File 
65 (none) File non-Whitespace 

(none) File Whitespace 



US 7,685,545 B2 
11 

-continued 

File Header (sorted) 
8f078078 File Header with Comments 
3289c53f File Header without Comments 
bd8e4547 File Header Comments 
3289c53f File Header non-Layer 

Cell "Structure 1" (sorted) 
a7100492 Cell with Comments 
3d4d7fbf Cell without Comments 
9a5d7b2d Cell Comments 
7b78aab4 
15546763 
fda35715 
aec2e57d 

Cell "Structure 
cd2b135d 
d2c6c150 
lfedd20d 
0f4c0817 
d4133b6c 
0999f22b 

Cell "Structure 
a7100492 
3d4d7fbf 
9a5d7b2d 
7b78aab4 
15546763 
fda35715 
aec2e57d 

Cell "Structure 
1f29b54d 
3d4d7fbf 
2264caf2 
7b78aab4 
15546763 
fda35715 
aec2e57d 

Cell Body non-Layer 
Cell Body Layer 3 

Cell Body Layer 42 
Cell Body non-Geometric Data Layer 3 

2" (sorted) 
Cell with Comments 
Cell without Comments 
Cell Comments 
Cell Body Layer 1 

Cell Body Layer 19 
Cell Body non-Geometric Data Layer 5 

3" (sorted; hierarchical) 
Cell with Comments 
Cell without Comments 
Cell Comments 
Cell Body non-Layer 
Cell Body Layer 3 

Cell Body Layer 42 
Cell Body non-Geometric Data Layer 3 

4" (sorted; hierarchical) 
Cell with Comments 
Cell without Comments 
Cell Comments 
Cell Body non-Layer 
Cell Body Layer 3 

Cell Body Layer 42 
Cell Body non -Geometric Data Layer 3 

The file-level digest produced from file data before parsing 
is not affected by sorting. The file header digest block did not 
change either, because GDSII file header data is order-depen- 
dent and, therefore, is not sorted. Many cell element digests 
are changed because the data was reordered by a sort. The 
canonical cell digests for cell Body Layers 3 and 42 in cell 
Structure 4 now match those of Structure 1 and Structure 
3. This shows that Structure is the layer equivalent of 
Structure 1 and Structure 3. 

For some formats (e.g. GDSII and OASIS ®), sorting is so 
useful for digest matching that it should be the default behav- 
ior. Most cells in IC design files are small, so there is only a 
limited runtime impact. 

If 64-bit digests are requested, an excerpt of the report, 
without sorting, would be: 

File "testfiles/sigtest.gds": GDS format 
Arguments: -grid le-9 -mem 64 -nosort 

3670d1e4a8c8c74b File 
(none) File non-Whitespace 
(none) File Whitespace 

File Header (not sorted) 
026a2a5b01e0f6ec File Header with Comments 
fd352337a1644620 File Header without Comments 
ff5f096ca084bOcc File Header Comments 
fd352337a1644620 File Header non-Layer 

Cell "Structure 1" (not sorted) 
41a9962cc923db00 Cell with Comments 
a9a2d1241367de40 Cell without Comments 
e80b4708da440540 Cell Comments 
bb89d94bb8544e78 Cell Body non-Layer 
b9ef42b48f65e40d Cell Body Layer 3 

el 6d5f5cf714adc4 Cell Body Layer 42 
4aa91587d342d9f1 Cell Body non-Geometric Data Layer 3 

5 

10 

15 

12 

-continued 

Cell "Structure 2" (not sorted) 
30f8dca7d4Obb330 Cell 
1db29288b51ebd16 
2d4a4e2f61150e26 
a80b7d0fala83fel 
4bb6333790890817 
fe0fdcb0843f8ae0 

Cell 
Cell 
Cell 
Cell 
Cell 

with Comments 
without Comments 
Comments 
Body Layer 1 

Body Layer 19 

Body non-Geometric Data Layer 5 

Sequentially Using Canonical Digests and DIFF Tools 

Difference tools and algorithms are mentioned above. Dif- 
ference tools require a pair of files, which are being compared 
to calculate differences, to be present at the time of analysis. 
In contrast, canonical digests can be compared without hav- 
ing either file present. 

One application of canonical digests in combination with 
differencing tools would be to use the canonical digests to 

20 identify cells that differ for further inquiry. A differencing 
tool can be used to identify the details of what had changed 
within the cells that differ. This well focused use of differenc- 
ing tools is much more efficient than trying to compare whole 
design files using differencing algorithms 

25 Typical difference algorithms require that data be in more 
or less the same order for comparison because they do not 
know of a valid reordering. After all, they are looking for 
common subsequences. The run time of differencing algo- 
rithms is in the worst case exponential. To improve their run 
times, most difference algorithms have a maximum window 
beyond which they assume completely different data (i.e., if 
there are no matches within the window.) Paul Heckel's dif- 
ferencing algorithm is an exception to these limitations. See, 

35 "A Technique for Isolating Differences Between Files", Com- 
munications of the ACM 21 (April 1978): pp. 264-268. 

Difference algorithms assume no structure (or very little 
structure text lines only) in the data files they are compar- 
ing. They do not in themselves understand cells, headers, 

40 layers, non-layer data, or comments. 
DesignSync and IC Manage are tools for the IC design 

industry that appear to be based on standard file differencing 
algorithms These programs do not appear to have a deep 
comprehension of the functional significance of the data that 

45 they manage. IC Manage (http://www.icmanage.com) uses 
the Perforce source code management system underneath. 
Perforce is a general purpose data management and differ- 
encing tool that does not attempt to comprehend EDA data 
file formats. DesignSync (http://www.3ds.com) literature 

50 talks of linking together multiple related files to represent a 
cell (i.e. the multiple views). More information about Design- 
Sync can be found (as of May 2009) at: 

http://www.3ds.com/products/enovia/industries/high- 
tech/semiconductor/ 

http://www.3ds.com/fileadmin/PRODUCTS/ENOVIA/ 
PDF/SynchDesignSync-0805_PRESS_.pdf 

http://www.3ds.com/fileadmin/PRODUCTS/ENOVIA/ 
PDF/SemiAccIPmgmt-0805_PRESS_.pdf 

60 Differencing tools are useful for a detailed comparison of 
cells that are identified by canonical cell digests as being 
near-matches. They cannot reasonably be used to analyze 
huge design files or cell libraries because of run time, lack of 
understanding of EDA file syntaxes, noisy reports and limi- 

65 tations on matching. They cannot report which cells have 
changed and may report false differences when order-inde- 
pendent data is reordered. 

30 

55 
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With this overview of canonical cell digests and their use- 
fulness in mind, we turn to an in-depth disclosure, with many 
examples of how canonical representations of chip design 
data are constructed. 

Expanded Background and Vocabulary 
Typically a chip design proceeds through three major 

phases: 1) development or acquisition of standard cell and 
other design template libraries (not all fabless design houses 
will develop their own design template libraries); 2) front end 
design the creation of RTL, then logic synthesis; and 3) 
back end design floor planning, placement and routing, and 
in-place optimization (IPO). 

In front end design, higher level design template blocks are 
incorporated ("instantiated") by designers directly, not 
selected by the logic synthesis tool. Logic synthesis generally 
selects only standard cells, which have simpler functionality, 
as it converts the designers' RTL to a structural netlist for 
back end design. In back end design, the logic is adapted to 
production of masks that are used, in turn, to manufacture 
chips. 

An advanced integrated circuit (sometimes called a "sys- 
tem on chip" or "SoC") contains high-level functional blocks 
of circuitry, which may be complex design templates or com- 
pleted placed-and-routed portions of the design. The latter 
typically comprises standard cells selected by a logic synthe- 
sis system. 

Fables s chip design companies and third-party design tem- 
plate suppliers create sophisticated cell blocks that contain 
more than one standard cell and can perform some operation 
commonly used in the design of an integrated circuit. An 
ARM processor, for instance, is available as a design template 
that can be incorporated in a chip. 

A larger cell block that contains one or more references to 
smaller cells or cell blocks is said to be hierarchical. The cell 
block contained within the larger block can itself be hierar- 
chical, so that there can be several levels of hierarchy within 
a cell block. Because the smaller cells and cell blocks are 
incorporated by reference, their views and dependencies 
remain the same. 

A set of cells and cell blocks together represent a design 
template block library. A block library may have been pro- 
vided by a third-party supplier or created by an internal 
library development team. The design templates within such 
a library range from relatively simple blocks such as adders 
and multipliers to communications components such as USB 
ports and on to complex components such as digital signal 
processors (DSPs) or general purpose processors such as 
those provided by ARM. All of these can be used in multiple 
places within an integrated circuit design. 

The views and artifacts used by the design team to design 
and manufacture chips reside within a read-only block 
library. There can be hundreds to thousands of design tem- 
plates within dozens of libraries which together form a larger 
library that serves the integrated design groups. Logic and 
physical design teams use the library to create the function- 
ality and the physical layout, respectively, of the integrated 
circuit. 

Not every design template from a library will be used in an 
integrated circuit design. Logic synthesis tools often select 
from a subset of standard cell types, choosing only the cells 
that work well with their optimization algorithms Design 
template libraries may include a class of related function 
blocks or preconfigured variants, such as memory blocks, and 
a design team may choose to use only a subset of those 
variants. 

14 
For the reader who notices differences between how we 

describe things in this disclosure and the nomenclature more 
typically used, we point out that our "design templates" are 
often referred to in the industry as "IP." We consider design 

5 templates to better remind the reader of the physical relation- 
ship between design data and integrated circuits. 

Views and Artifacts 
Cells have views and artifacts. A view is one of the physi- 

cal, functional or electrical representations of a cell. The 
10 views together specify how the cell works within a design, 

and thus how a designer can use it to create an integrated 
circuit. 

An artifact is typically a file that results from the creation of 
a cell view, such as the log file or datasheet for a compiled 

15 RAM block, or a constraint file to be used when a design 
template is incorporated into a large block. Artifacts are often 
unstructured text files that might not be used directly in a tool 
but convey meaning to a designer. It is useful to keep them 
synchronized with the other views for the cell. 

20 GDSII and OASIS® (polygon level) views represent the 
physical layout of leaf cells, cell blocks, functional blocks 
and the entire integrated circuit. A Liberty view represents the 
timing model for a leaf cell or a complex design template. 

RTL views, either created by designers or provided in lieu 
25 of physical layout for design templates, describe the behavior 

of a design and logical connections to any design templates 
such as processor cores. An RTL view is usually in Verilog or 
VHDL format. Logic synthesis uses RTL views plus con- 
straint and simulation control files to generate a structural 

30 netlist (usually Verilog or VHDL). 
Designers use structural netlists to create a floor plan for 

the integrated circuit. A view in the Design Exchange Format 
(DEF) represents the floor plan to a place and route program. 
The structural netlist, Liberty, LEF, and DEF views are used 

35 as inputs to the place and route program. Placement is typi- 
cally performed within one functional block at a time; routing 
is performed both within a functional block (intrablock) and 
between functional blocks and design templates (interblock). 
Some views are used to create other views. For example, the 

40 GDSII polygon data for a leaf cell or standard cell is sent to a 
circuit extractor to determine the transistor connections and 
parasitic elements. These derived views are called dependent 
views. When the source view changes, it may be useful to 
regenerate some or all of the dependent views. 

45 Cells, Cell Interfaces, and Cell Bodies 
Canonical digests for a file are computed by analyzing the 

file and categorizing sections by type. Many files have a 
header which may include global information about the file. 
There may also be cells or modules, individual design units 

so which are combined to form a design. A cell may be broken 
down further into the cell name, the cell interface, and the cell 
body. Nearly all file formats also have a method for specifying 
comments, officially non-functional text that can still convey 
some meaning to readers or certain tools. 

55 The interface of a cell is the specification of the cell to the 
outside world. Changes to the interface are presumed to be 
significant and so they are flagged separately for review and 
approval. As a design moves towards completion, the stan- 
dards for approval of interface changes will increase because 

60 significant rework would be required to make use of the new 
cell. For example, if the placement of a pin in a layout cell 
changes, the new version cannot be used as a drop-in replace- 
ment without rerouting the design. This is not an issue during 
logic design, but in the latter stages of physical design it could 

65 cause major schedule delays. 
Components that are not part of the cell interface are part of 

the cell body. These aspects of the cell can change without 
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automatically invalidating existing instantiations of the cell. 
For example, changes to implant layers in the middle of a 
layout cell will not require rerouting. 

GDSII and OASIS® files have two classes of data within 
the body of a cell. The second class of data is non-geometric 
data such as text points and node points, so this is called cell 
non-geometric body data. The distinction is arbitrary; this 
class of data is simply recorded separately. It is also available 
for user-parsed text files. 

Some file formats can specify hierarchical data: cells that 
contain references to other cells. Where this information is 
available, it is returned with the digest data as a flag in the cell. 

Layers 
Many design files are split into layers. Different layers have 

different functions, and changes to some layers are "cheaper" 
than others. For example, if a logic error is found after a 
design has been fabricated, a fix that requires modifications 
only to one or more metal masks is cheaper than one that 
requires changes to transistor layers. Digests for file headers, 
cell interfaces, and cell bodies may be defined on a layer-by- 
layer basis. 

Internally, the digest module records digests on layers 
indexed by integer, typically from -1 to a small positive 
number. A layer number of -1 normally represents data not on 
any layer, such as cell references in a layout file such as GDSII 
or OASIS®, or all data for a format that does not have layers. 

Parsers with text-based layer names return a mapping of 
layer numbers to layer names, so that digests may be reported 
by name. Parsers may assign layer numbers themselves, so it 
is useful to retrieve this list and record or print numbers with 
the digests. 

Sorting 
Some portions of data in some formats are order-indepen- 

dent, meaning that the interpretation of the file does not 
depend on the order of appearance of objects (e.g. polygons) 
within a header or cell. An option to sort these portions of files 
is provided. For example, a VHDL module may be instanti- 
ated using an association list in which wires are associated by 
name with ports. These may be listed in any order. Sequential 
statements within the module, however, should not be reor- 
dered and so they are not sorted even if a sort option is 
selected. 

If file data is held in memory until all of it can be sorted, a 
significant amount of memory may be required. If the 
memory usage limit passed to the program is exceeded, the 
stored data (usually the cell data) may be sent immediately to 
the digest module in the same order in which it was read from 
the file, or a file-based sort may be used. Details of the sort 
routines are disclosed in the descriptions of the individual file 
formats. 

File header and cell digests may change when memory 
usage limits are changed or if program memory usage 
improves. A flag denoting whether a cell was sorted is avail- 
able through the Applications Programming Interface (API) 
and may be saved in a digest database along with the digests 
for the file header or cell. Using this flag a program can 
determine whether a digest change is due to an actual change 
in the data or is caused only by a change in sorting. 

Comments 
For most formats, comments are sent immediately to the 

digest module without sorting or further interpretation. Com- 
ments within a cell are added to the comment digest for that 
cell; comments outside of any cell are added to the file header 
comment digest. In VHDL, comments may contain synthesis 
directives, so they are associated with specific token 
sequences and thus may be sorted. 

16 
Comments do not have layer names or numbers. 
Design Data File Formats Reviewed 
Many views of chip design data use specialized file for- 

mats. Some of these are binary and some are text (symbolic). 
5 The files tend to be large, however, and hard to view even 

when they are human-readable. They are created by library 
and design template vendors and used by Electronic Design 
Automation (EDA) tools, but a typical design house has not 
had the ability to interpret the files and make judgments about 

10 those files on its own. 
GDSII and OASIS® views contain the physical layout of 

leaf cells and hierarchical cells. Leaf cells contain only geom- 
etry (polygons, wires, rectangles, circles, etc.). Hierarchical 
cells contain references to other cells and may also contain 

15 geometry. There may also be design template blocks, cells of 
possibly complex function such as a processor core that are 
imported from vendors. Designers are supposed to use leaf 
cells and design template blocks without modification. 

A GDSII or OASIS® view is contained in a single file and 
20 contains geometric data for a number of cells. Such a view 

may define a library of geometric data to be referenced within 
a chip or it may define the geometric data for a chip. 

A Library Exchange Format (LEF) view contains a simpli- 
fied version of the physical layout of one or more leaf cells or 

25 design template blocks for presentation to a place and route 
tool. 

A Liberty view contains timing information for one or 
more cells, which may be leaf cells, complex design tem- 
plates, or a mix of each. 

30 Register Transfer Level (RTL) views contain behavioral 
descriptions of cells. Typically RTL views are specified in the 
Verilog or VHDL language formats. Logic synthesis converts 
RTL views to structural netlists, which are views that contain 
references to leaf cells, design template blocks, or other struc- 

35 tural netlists. Structural netlists are often in a very restricted 
version of the Verilog or VHDL language formats, containing 
only lists of referenced cells and not any behavioral descrip- 
tions. A structural netlist is suitable for entry to a place and 
route tool. Once the structural netlist is placed and routed, its 

40 performance can be evaluated and if suitable can be released 
to fabrication. 

A Design Exchange Format (DEF) view contains a 
description of a floor plan, a coarse representation of a chip. It 
defines the placement of large design template blocks and 

45 blank areas, into which the place and route tool puts standard 
cells. It is possible to create a DEF file for a block within a 
chip, run placement and routing for that block, and then use 
the block within a higher-level DEF view. The placed and 
routed block is then treated the same as a design template 

so block. 
When creating a library of standard cells, circuit extraction 

is performed on the physical layout. An electrical represen- 
tation of the devices and interconnections in the physical 
layout, including any parasitic components such as capaci- 

55 tances and resistors, is created and put into a format usable by 
a circuit simulator such as SPICE. A SPICE view may repre- 
sent data for a leaf cell or a hierarchical cell. 

The SPICE view is used as input to a circuit characteriza- 
tion program, which typically uses SPICE or another electri- 

60 cal simulator to evaluate the circuit under a particular stimu- 
lus or set of stimuli, then estimate the delays within the 
circuit. These delays are then stored within the Liberty view. 
The logic synthesis and place and route tools use the Liberty 
views to estimate the performance of a design or portion of a 

65 design. 
As can be seen from the descriptions above, certain views 

contain data that is used to generate other views. For example, 
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the GDSII or OASIS® layout view is used to create the LEF 
and extracted netlist views, and the extracted netlist view is 
used to generate the Liberty view. The created views are 
known as dependent views, and there may be a complex 
relationship between the independent views, such as layout, 
and the dependent views. 

Standard cells typically implement relatively simple func- 
tions, from an inverter (two transistors) to a flip-flop (20-40 
transistors) or adder (10-100 transistors). Their functions are 
simple enough for a logic synthesis tool to manipulate 
directly. There may be several thousand standard cells in a 
single standard cell library, and three to perhaps several dozen 
standard cell libraries available for a single design. 

Design template blocks typically implement more com- 
plex functions such as processor cores, read-write memory 
(RAM), read-only memory (ROM), or input/output sub- 
systems. Their functions are too complex for a logic synthesis 
tool to manipulate directly. Instead designers explicitly ask 
for instances of design template blocks to be inserted into 
their design, then specify the connections to the design tem- 
plate blocks. For convenience, the instances are usually 
placed into the RTL views. There may be hundreds of indi- 
vidual design template blocks placed in a single SoC design. 

Memories are typically created using compilers written by 
the design template providers. These allow designers to gen- 
erate custom memory configurations (e.g. word width, num- 
ber of words) that are warranted by the design template pro- 
viders as long as they are not modified once the compilers 
complete. To this end, designers are supposed to treat the 
output of a memory compiler as a design template block. 

A memory block may be contained in a hierarchical GDSII 
or OASIS® view. This view is incorporated into the design 
during final assembly. The compiler also generates timing 
views (typically Liberty) and physical abstractions (typically 
LEF) so that automated tools can analyze designs which use 
the memories. 

When all standard cell libraries and design template blocks 
available to a design team are considered, there may be tens of 
thousands of distinct cells. Not all of these cells may be used 
in a given design. For example, a design team might have had 
bad experiences with a logic synthesis tool using exclusive- 
OR (XOR) gates, and so they may tell the logic synthesis tool 
not to use any XOR gates. Some cell functions may be present 
in multiple drive strengths-current capacities for handling 
varying amounts of attached circuitry and parasitic compo- 
nents and the design tools might not use all of the drive 
strengths in a given design. 

WORKING EXAMPLES OF CANONICAL 
DIGESTS FOR CELL VIEWS 

In this section, we describe and analyze many of the design 
languages and file formats used for IC design. We provide 
more than a dozen examples of preparing canonical versions 
of design data used in an IC design flow. 

FIG. 1 illustrates, at a high-level, an integrated circuit 
design environment. Of course, there are many variations on 
this environment and many details that are not shown. In this 
variation, most of the blocks illustrate the process that a 
developer of cell design templates might follow to provide the 
templates to fabless customers 137 who rely on a foundry 151 
to produce chips and act on feedback from the foundries. 
From this diagram, one should understand that the fabless 
customer's release of a design for manufacture by the foundry 
includes the so-called "tapeout" for mask production. At the 
beginning of the design process, the designer develops a 
functional specification 111 and performs logic design to 

18 
produce RTL 121, which may provide new functionality not 
found in competitors' devices or at a lower price. The 
designer has available information from the foundry that 
includes foundry rules and electrical information 141. The 

5 foundry information is reflected in a library of cell design 
templates 131 that are combined with the RTL during logic 
synthesis 123. RTL is sometimes offered to the fabless cus- 
tomers as front-end views 125. The output of logic synthesis 
is used in floor planning 133; the output of floor planning is 

io used in place and route operations 143 that produce back-end 
views 145. Not shown, but readily understood, the place and 
route operations are subject to physical constraints. Back-end 
views are released to fabless customers 137. Back-end and 
front-end views may be compiled into libraries by or for the 

15 fabless customers. These back-end views are in the form of 
fixed blocks that customers should not modify. 

FIG. 2 illustrates the proliferation of versions and some of 
the file formats associated with the blocks in FIG. 1. Parallel 
numbering between the figures associates the blocks in the 

20 two figures. Functional specifications may be expressed in a 
design language. The functional specification constraints will 
have a version. The RTL created in logic design 221 may be 
expressed in Verilog or VHDL, which will have its own ver- 
sion. The foundry rules 241 may be expressed in languages 

25 such as PDK, Interconnect, Parametrics or a foundry propri- 
etary language. A reference cell library may include a number 
of views for design data. Languages for expressing these 
views include SPICE, Liberty, LEF and GDSII. During logic 
design 221, outputs may include simulation control and RTL 

30 (Verilog or VHDL). Results of logic design may be published 
directly as front-end views 225 expressed using Liberty, LEF, 
and RTL; or they may be sent to logic synthesis 223. The 
results of logic synthesis 223 are combined with physical 
specifications 253 and used as input to floor planning 233 and 

35 to place and route 243. These processes utilize views such as 
structural netlist, DEF, Liberty, LEF and GDSII. Results of 
these processes may be published as backend views 245. 
Fabless customers 137 may use front end and/or back end 
views of design data. Note that the version numbers included 

40 in FIG. 2 are merely illustrative and should not be taken as 
references to past, current or future versions of languages or 
libraries. The file formats referenced in FIG. 2 are explained 
in the following section. 

Classification of File Types 
45 For this discussion, files are classified as unstructured text, 

structured text, unstructured binary, or structured binary. 
Unstructured files have no particular format; they are either 
auxiliary files such as documentation or else they do not have 
cells and layers. The digests computed for these files are very 

50 limited. Structured files have a defined syntax which may 
include comments, layer names or numbers, and cells. These 
require parsers to distinguish the sections of the file and mark 
them by type. 

Except for GDSII and OASIS® files, digests generated for 
55 files in one format are generally not compatible with digests 

generated for files in any other format. That is, comparison of 
digests across file types is usually meaningless. If no object 
properties are present, it is possible to compare GDSII and 
OASIS® data because it is first translated to an internal rep- 

60 resentation that supports comparison across these file types. 
Generally speaking, object properties in OASIS® are incom- 
patible with object properties in GDSII, except that S_GDS_ 
PROPERTY properties in an OASIS® file are converted to 
the equivalent GDSII properties. 

65 Detailed descriptions of the file types and their interpreta- 
tions follow. Details for file interpretation, digest calculation, 
and sorting behavior are described below. Sections are self- 
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contained so that they may serve as an independent reference. 
Thus some information may be repeated. 

In the descriptions that follow, language keywords appear 
in Courier font, e.g. HEADERTEXT or scaled_cell. 

File-Level Digests 
Parsers compute at least one file-level digest, for all of the 

bytes in the file in order with no interpretation or sorting. 
Parsers for text-based formats also compute file-level digests 
for all whitespace characters (spaces and horizontal tabs) and 
for all non-whitespace characters. These are not canonical 
cell digests; they are not format-specific and can be used only 
to determine quickly whether a file has been changed at all. 

Canonical Digests 
When recording canonical digests, files are broken down 

into file units, coupled with a recording type. A file unit is a 
portion of the file as defined by the language specification, 
typically one or more tokens (words or punctuation), and a 
recording type is one of file header, comment, cell name, cell 
interface, cell body, or cell non-geometry body. Cell non- 
geometry body data is simply a separate class of cell body 
data. Currently this class is used only in the GDSII and 
OASIS® parsers to denote non-geometric data that has layer 
numbers, such as NODE and TEXT records. 

The definition of how digests are computed for a file format 
can be complex, as illustrated by FIGS. 8-17. The description 
of various formats includes an overview, detailed specifica- 
tions for the processing of file units, and the examples. 

Example 1 

Liberty Formatted Files 

The Liberty library file format provides a way to describe 
the function and timing of circuits to logic synthesis tools. It 
is defined by Synopsys and is widely used because Synopsys 
has published a specification. It is a text-based format that can 
be viewed easily, but due to the volume of data in Liberty files, 
they are normally created by software. 

In this first example, we walk through the digesting of a 
Liberty design language file. Some parts of a Liberty file are 
unrecorded. "Unrecorded" refers to canonical digesting. 
Generally speaking, cell names are not digested because 
doing so would prevent matching of otherwise equivalent 
cells with different names. Some parsers also skip tokens that 
are required and provide no additional information, such as 
fixed-place keywords or layer names (since digests are sepa- 
rated by layer anyway). 

In some formats, the "text" being recorded is actually non- 
printable binary data, and the descriptions use keywords from 
the language specifications. 

Canonical cell digests typically have 32 or 64 bits. Both 
types are computed using Cyclic Redundancy Checks 
(CRCs). Thirty-two-bit digests are computed using the ISO 
3309 CRC polynomial and method specified for OASIS® 
files in SEMI Standard P0039-1105: 

x32+x26+x23+x22+x16+x12+x11+x10+x8+x7+x5+x4+x2+ 

x+1 

Sixty-four-bit digests are computed using the CRC polyno- 
mial specified for Ecma International's Standard ECMA- 
182: 

x64+x62 +x57 +x55+x54+x53+x52+x47 +x46+x45 +x40 +x39+ 
x38+x37+x35+x33 +x32+x31 +x29 +x27+x24+x23 +x22+x21 

X19 +X17 +X13 +X12 +X10 +X9 +X7 +X4 +xl 

File Content Digests for Liberty (.lib) Files 
The details of this example, applied to Liberty (.lib) files, 

depend on whether scaled_cell records are in the same file as 

20 
cell records. The first part of the discussion that follows 
assumes that the two kinds of records are in the same file. The 
later part allows for the two to be found in different files. 

Liberty files have content digests for some or all of the 
5 following file elements: 

File 

File Header 

Comment Text Inside the Header (Optional) 

Header of the Cell 

Body of the Cell exclusive of file header information (Op- 
tional) 

Body of the Cell with file header information merged into 
15 the Cell (Optional) 

Comment Text Inside of Cells (Optional) 

The file is scanned to find the cell names inside. For cell in 
the file, the tool returns a digest for the header of the cell 

20 
(input and output specifications) and a digest for the body of 
the cell. 

As an option, separate digests are computed for comment 
text in the header and inside the cells, and differences in 
whitespace (number of spaces, tabs vs. spaces, blank lines) 

25 are ignored. 

Digests are computed and returned for the header of the file 
(information before any cell definitions) and for the file as a 
whole. By default, the digest for the header of the file (exclud- 
ing comment text, the file date, and the revision) is merged 
with the digest for a cell to avoid problems resulting from (for 
example) changes in unit definitions or logic thresholds that 
would affect all cells in the library. As an option, the file 
header may be excluded from cell body digest calculation 

35 when it is known that the file header has changed but cell 
comparisons are still desired. 

All cell and scaled_cell group statements are put in order 
before recording any digests, regardless of whether sorting of 
the file is requested. The digest for the cell includes all scaled_ 

40 cell timing definitions as well. The cell group is first, and the 
scaled_cell groups follow in sorted order based on the oper- 
ating conditions group name 

Because scaled_cell records may appear anywhere in the 
file, even before the unscaled cell, no "all text including 

45 whitespace" digests are computed for the cells. This digest is 
computed only at the file level. 

Because sorting is required to group scaled_cell records 
with cell records, the entire file is loaded into memory regard- 

50 
less of the memory limit specified on the command line. Note, 
however, that cell and scaled_cell group statements may 
appear in separate files, in which case they are handled as 
described below instead of being put in order, as they can be 
if they appear in the same file. 

55 Only the pin names are recorded in the cell header digest. 
This means, for example, that if the direction of a pin changes 
the header digest will not change. 

Because of the run time that would be required, sorting of 
group statements in one embodiment is shallow: only one 

60 child level of a group statement is considered when sorting a 
list of group statements. Alternatively, multiple child levels 
could be sorted. Note that the statements inside a group are 
sorted (again, using one child level). All sorts are stable, so 
when the limits of the comparisons are exceeded, statements 

65 that were previously in a specific relative order will remain in 
that relative order. For example, sorting the following yields 
the results shown in Table 1 below: 

10 

30 
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TABLE 1 

Sorting of File Group Statements 

Before Sort 

gl (B) { 

gb (A) { 

p: Z; 
p: X; 

ga (c) { 

p: E; 
p: F; 

ga (G) { 

p: D; 
p: E; 

ga (c) { 

p: E; 
p: D; 

After Sort 

G1 (B) { 

ga (C) { 

p: E; 
p: F; 

ga (C) { 

p: D; 
p: E; 

ga (G) { 

p: D; 
p: E; 

gb (A) { 

p: X; 
p: Z; 

The group statement gb is moved after all of the ga groups 
because keyword gb comes after ga, even though the param- 
eter A would come before C. Also note that the two ga state- 
ments with the parameter C remain in the same relative order 
because their low-level p statements are not considered dur- 
ing the sort. The p records themselves are sorted within the ga 
records, and the G parameter for one of the ga records causes 
it to be moved to the end of the set of ga records. 

Liberty Library Description Files 

Layout designers often use the same cell name for cells in 
different libraries (e.g. high performance vs. high density), so 
to help distinguish cells in different libraries, the library name 
in the Liberty file is prepended to all cell names. For example: 

library (demo) { 

cell (INV X1) { 

area : 0.032; 

The cell name associated with this cell would be demo. 
INV_Xl . 

The Liberty format specifies a number of scaling param- 
eters designed to help extrapolate timing and power coeffi- 
cients to all expected process corners. This may not be suffi- 
cient for some cells, so additional scaled cell records can be 
defined for those cells using the scaled_cell statement instead 
of the normal cell statement. The cell names for the scaled cell 
records are additionally marked with the scaled cell name, 
which is particularly useful to distinguish between the cell 
types when both types appear in the same file. For example: 

library (demo) { 

scaled cell (AND2 X2, slow slow) { 

area : 1.064000; 

The cell name associated with this cell would be 
demo.AND2_X2.slow_slow. 

22 
A Liberty file also contains an extensive header specifying 

parameters that apply to cells. Inadvertent changes to the 
header can thus have significant consequences, so by default 
the digest for the at least some of the parameters in the header 

5 to be merged into the digest for cells in the file. When a header 
will not be changed accidentally (such as converting to a 
smaller voltage or time unit) without corresponding changes 
to all of the cells, one can disable header merging using the 
-noheader command-line option. 

10 The statements in a Liberty file are order-independent, so 
by default the statements are sorted unless the user specifies 
the -nosort flag. 

There are no layers in a Liberty file, so all of the digests for 
a cell are reported as non-Layer data, as in the following 

15 sample report: 

20 

File "testfiles/tstlibpar2.Iib": Liberty format 
Arguments: -mem 64 -sort 

728fb5e7 File 
451c31ec File non-Whitespace 
00a03577 File Whitespace 

File Header (sorted) 
164c9eaf File Header with Comments 
lccO3fe0 File Header without Comments 

25 0a8cal4f File Header Comments 
lccO3fe0 File Header non-Layer 

Cell "demo.AND2 Xl" (sorted) 
be7930d6 Cell with Comments 
be7930d6 Cell without Comments 
(none) Cell Comments 

30 fe7aeb77 Cell Interface non-Layer 
4003dbal Cell Body non-Layer 

Here header merging is enabled; otherwise the argument 
line below the file name would have reported -noheader. 

35 Details of Handling Liberty Format Files: Definitions 
The prototype Liberty parser follows the definition of the 

Liberty format found in Synopsys' Liberty Reference Manual 
(Version 2007.03). 

Syntax Interpretation 
The Liberty reference describes three statement types, 

which can be summarized as follows: 

40 

keyword: value; 

45 keyword-value; 

keyword (value . . . ); 

keyword (value . . . ) {statement . . . 

The first two forms are known as simple attributes. The 
50 third form is known as a complex attribute, and the fourth is 

known as a group statement. The group statement may in turn 
contain any combination of simple attributes, complex 
attributes, or group statements. Note that the semicolon at the 
end of the second form of a simple attribute and the paren- 

55 thesized list of a group statement are optional. 
Although the first token of a statement is supposed to be a 

keyword (i.e. a reserved word), the Liberty format allows 
library vendors to define new simple attributes and so only 
limited checking of keywords is performed. The parser 

60 ensures that a Liberty file contains one or more library group 
statements and that any cell or scaled_cell statements are 
within the library. It also looks for cell-level statements that 
can be considered part of the cell's interface. Otherwise any 
statement that follows the above general syntax is allowed. 

65 There are no layer names in Liberty format files, so all 
digests are recorded with a default layer number of -1 for 
non-layer data. 
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The reference specifies C-style comments, beginning with 
the token /* and ending with the token */. Comments are 
assumed not to nest. Comments inside cells are recorded as 
part of the digests of the cells. Comments that appear outside 
of any library or that appear within a library statement but 
outside of any cell are recorded as file header comments. 

The Liberty format provides a means to specify scaled 
versions of cells that are characterized at differing operating 
points. In one embodiment, these scaled_cell statements are 
treated as independent cells because they may appear in dif- 
ferent Liberty files than the unscaled versions of the cells. 

Because the same cell names may appear in multiple librar- 
ies, one parser embodiment qualifies a cell name with its 
library name and scaled_cell name if any, e.g. 
cmos 90 nm.andx2 for a cell or cmos 90 nm. 
andx2.slow_slow for a scaled_cell. If any component of the 
name includes `.' characters, that component is quoted: 
"cmos 90 nm.v2".andx2."slow.slow". 

The top-level statements in a library include many param- 
eters that affect the interpretation of all cells within the 
library. For example, the delay or power values within the 
cells may be measured in units of nanoseconds or picowatts. 
A Liberty file that was hand-edited, or assembled from file 
fragments by a script, might have a header that does not 
correspond with the cells. To help detect this kind of error, 
most of the library-level attributes are collected into a header 
block that can then be merged into the cells for digest record- 
ing. Attributes that are very likely to change from version to 
version, e.g. date or version, are excluded from this header 
block. 

Many of the attributes and group statements within a cell or 
scaled_cell statement specify the interface of the cell, mean- 
ing that any changes to these statements imply that the func- 
tion of the cell has changed in a meaningful way. See the 
section "Annotated Sample Liberty File" for a complete list. 

Some of the attributes within pin, bus, and bundle group 
statements also specify the interface of the cell. Some of the 
data within these statements, however, can reasonably be 
expected to change from one version of a library to the next. 
For example, timing group statements will change whenever 
process parameters are updated or some portion of the layout 
is changed, even if the cell is still functionally the same. 

Sorting of Liberty Files 
Liberty files are not order-dependent; statements within a 

cell or a group statement within a cell may appear in any 
order. To allow comparisons between libraries which may 
have had statements reordered, the statements within cells 
may be sorted. The primary sort key is the keyword which 
begins the statement. If both keywords are user-defined 
attributes (vs. predefined Liberty keywords,) a string com- 
parison is performed and the statement with the keyword 
which comes first alphabetically is first in the statement list. If 
the keywords of the two statements are identical then the 
secondary sort key is the list of parameters in a statement. 
Parameters are compared as a string, and if there is a differ- 
ence the statement with the parameter that comes first in 
alphabetical order is first in the statement list. If all param- 
eters are equal except that one parameter list is shorter, the 
statement with the shorter parameter list comes first. 

If the parameter lists are identical then the statements are 
considered to be identical. To limit runtime during sorting, 
some embodiments do not compare the statements inside of 
group statements. A stable sort is used, so that statement 
ordering is changed only if there are obvious differences. 

Limitations of the Prototype Liberty Parser 
Most tokens in Liberty files, including library, cell, and 

scaled_cell names, are assumed to be case sensitive. The 

24 
exceptions are true and false, which are case-insensitive in the 
reference Synopsys parser implementation. 

The parser assumes that the memory usage limit will be 
high enough to store all of the statements of a single cell or 

5 scaled_cell plus all of the file header statements. 
Only limited syntax checking is done beyond verification 

of statement structure. For example, multiple top-level library 
statements are allowed. If the structure of the library does not 
follow the Liberty statement syntax, or if there are no library 

10 statements at the top level, an error is reported and no digests 
are computed. 

Header statements that appear between cells are merged 
into only the digests that follow them in the file. For the most 
complete digest recording, all library header statements 

15 should appear before any cell or scaled_cell statements. 
Because the search path for include files is not available 

(and may change over time), include file directives are not 
processed. 

Values inside strings are not interpreted. It is assumed that 
20 the same tools will be creating Liberty files and that these 

tools will not, for example, reformat numbers unless the 
numbers have actually changed. 

The lists of keywords to be excluded from the library 
header or included in the cell interface should be fixed and 

25 changed after careful deliberation, as many digests may need 
to be recalculated when key word lists change. 

Unit numbers in the file header are supported either as 
explicit tokens, e.g. 1 ns, or as strings, e.g. "1 mV". It is 
assumed that new versions of a file will not switch between 

30 the two representations. 
Annotated Sample Liberty File 
FIGS. 8A-8D illustrate a sampling of the possible header 

and cell statements in a Liberty file. Most header and cell 
statements are processed in the manner illustrated. In particu- 

35 lar, when an entire group statement is recorded as the same 
digest type, only the keyword, parameters (if any), and curly 
braces are shown in FIG. 8. Attributes and statements outside 
of cells are added to the file header digest. Within a cell, only 
the attributes and group statements identified are recorded as 

40 part of the cell interface. Some attributes and group state- 
ments highlighted, as indicated, are recorded as part of the 
cell body. 

By default, most file header statements (excluding com- 
ment tokens) are recorded as part of the interface of cells; this 

45 is not shown here. The date, revision, and comment attributes 
are not recorded as part of the interface of cells because they 
are likely to change when a Liberty file is modified. 

Many simple cell and pin attributes are considered to be 
part of the cell interface; they are listed in the example above. 

so Anything that is double underlined or not shown here is 
considered to be part of the cell body. 

Note that bus and bundle group statements may include any 
of the simple attributes of a pin statement as well as nested pin 
statements. The attributes of bus and bundle statements are 

55 recorded as if they were in a pin statement; the contents of the 
nested pin statements are recorded as if they were standalone 
pins. 

In the Synopsys reference parser, simple attributes may use 
either :' or `-' to separate the variable name from the expres- 

60 sion which follows, so the following are equivalent: 

area=5; 

area: 5; 
The documentation uses `:', so all `-' are converted to `:' 

65 before being sent to the digest engine. 
Verilog is a simulation and Register Transfer Logic (RTL) 

language widely used in integrated circuit design. It is a 
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text-based format commonly created by designers and com- 
piled by logic synthesis tools. It allows designers to specify 
designs as interconnected modules. Circuit functionality is 
specified in modules recorded as cells, with input and output 
ports recorded as cell interfaces. Hints to the logic synthesis 5 

tools are put into attributes associated with module headers or 
statements. 

Semicolons for simple and complex attributes are not 
recorded because the Synopsys reference parser does not 
always require them, effectively making them optional. 10 

Example 2 

Verilog File Type 

In this example, Verilog files have content digests for the 
following file elements: 

File 
File Header 
Cell Module Port Definitions 
Body of the Cell Module 
The file is scanned to find the module names inside. Sepa- 

rate digests are computed for the port definitions and the body 
of the module. These are based on the individual Verilog 
tokens excluding any whitespace. 

Digests are computed and returned for the header of the file 
(information outside of any module definitions) and for the 
file as a whole. These include any whitespace. 

Verilog 2005 syntax is presumed, even if a `begin_key- 
words is present. Because only the module structure of the file 
is being parsed, this should not impact digest calculation for 
the file (keywords are not interpreted differently than sym- 
bols, for example). The file is assumed to be syntactically 
correct. 

Compiler directives, including macro substitutions, are not 
interpreted. It is assumed that the file is valid Verilog without 
macro substitution. Generally speaking, it is assumed that 
macros are used only for constant definitions and that they do 
not create syntactic structures such as module headers or 
Verilog statements. 

Include file directives are not interpreted, since the include 
path at the time of digest calculation may be different than the 
include path at compilation time. 

In one embodiment, synthesis directives are assumed to be 
within Verilog attributes ("(*" and "*)"), not comments. If 
there is an attribute immediately before a module or macro- 
module declaration, its digest is added to that of the module. 
Comments outside of module declarations are considered 
part of the "header" (non-module text) of the source file, not 
part of the modules themselves. Because the characters of a 
preceding attribute are scanned before the parser knows about 
the module declaration, they are added to the "all text" digest 
for the header, not the module itself. Comments outside of 
modules are added to the file header digest. Modules and 
macromodules are treated as equivalent objects. In one 
embodiment, functions, UDPs, and generate blocks are con- 
sidered part of the "header" of the source file, not as modules 
themselves. It is also possible to treat these as special forms of 
modules, recording them as cells in a manner similar to the 
handling ofVHDL constructs such as procedure and function 
declarations. Port names in a list_of ports will not be sorted 
properly if any of the ports use "." or "{ }" notation. 

Digests are not computed for whitespace within cells. Only 
file-level whitespace digests are computed. Within cells, the 
digests are based only on the tokens of the file (including 
comments when appropriate). 

15 

26 
Verilog RTL Files 
Much of the body of a Verilog module is order-dependent, 

so only the module parameters can be sorted. Even then, 
modules are not always instantiated using order-independent 
argument specifications, so digest matches found after sorting 
might not represent true equivalence between module defini- 
tions. Thus sorting of Verilog files should be done with cau- 
tion. By default Verilog files are not sorted unless the user 
specifies the -sort flag. 

There are no layers in a Verilog file, so all of the digests for 
a cell are reported as non-Layer data: 

File "testfiles/verilog test.v": Verilog format 
Arguments: -mem 64 -nosort 

5404c699 File 
7c2a352d File non-Whitespace 
219b1881 File Whitespace 

File Header (not sorted) 
b290d605 File Header with Comments 
(none) File Header without Comments 

20 b290d605 File Header Comments 
Cell "DFF Xl" (not sorted) 

ca436d2f Cell with Comments 
ca436d2f Cell without Comments 
(none) Cell Comments 
c102a525 Cell Interface non-Layer 

25 Ob41c80a Cell Body non-Layer 

Verilog Format Files: Definitions 
The Verilog language specification is an IEEE standard; the 

prototype Verilog parser follows the definition of the lan- 
30 guage in IEEE Standard 1364-2005. This does not yet include 

Verilog-A (analog) extensions, but it can readily be extended 
to do so. 

Although Verilog RTL descriptions are used in logic syn- 
thesis, the language itself is not sufficient to determine the 

35 intent of a designer. Logic synthesis tools provide means for 
guiding optimization through the use of attributes. These are 
comment-like token sequences which precede or are embed- 
ded within Verilog modules and statements. The text within 
the attributes forms synthesis directives. The prototype Ver- 

40 flog parser parses Verilog attributes, assigns them to the 
appropriate language constructs, and sends them to the digest 
engine, but it does not interpret the text inside. 

Prior to the addition of attributes to the Verilog language, 
synthesis directives were specified using Verilog comments. 

45 The parser does not currently support the use of comments for 
synthesis directives, but it can be readily extended to do so. 

Syntax Interpretation 
A Verilog file is a sequence of declarations and modules. A 

module is a cell in the canonical cell digest tool; everything 
50 else is recorded as part of the file header. 

A module may have an interface specified by parameters. 
There are two styles of parameter definition: a list of ports and 
a list of port declarations. A list of ports has only the port 
names present in the module statement, while a list of port 

55 declarations also has the port types. 

module a(b,c,d); // list of ports 

60 module a(input [7:0] b,output [8:0] c,reg d); // port 
declarations 

When the interface to a module is specified using a list of 
ports, the declarations are embedded in the module body. The 

65 parser looks for them and sends them to the digest engine as 
cell interface data. Everything else in the module body is sent 
to the digest engine as cell body data. 
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When the interface to a module is specified using a list of 
port declarations, everything in the module body is sent to the 
digest engine as cell body data. 

The parser assumes that module and macromodule are 
equivalent. macromodule is converted to module before 
being sent to the digest engine. 

Macro definitions are not interpreted. Because macro defi- 
nitions may be in included files which are not available to the 
parser or may change over time, no attempt is made to expand 
macro references. It is assumed that macros do not contain 
syntax constructs, so that it is possible to parse a Verilog file 
by assuming that a macro reference is equivalent to an iden- 
tifier or number. 

Library declarations and include statements are recorded 
as file header data. Include files are not read; the include file 
search path is not available to the canonical cell digest pro- 
gram. It may also change over time, invalidating any file 
digests already computed. 

Functions, User-Defined Primitive (UDP) definitions, gen- 
erate blocks, and configuration declarations may be added to 
the file header digest without further interpretation, or may be 
treated as in VHDL files. 

Attributes immediately preceding a module keyword or 
within a module body are recorded as cell body text. All other 
attributes are recorded as file header text. 

Sorting of Verilog Files 
Many of the statements in Verilog are order-dependent and 

thus cannot be sorted. The parser does not attempt to deter- 
mine which portions of module bodies are order-indepen- 
dent it sorts only the parameters of module definitions. 
Because module instantiations might not use order-indepen- 
dent argument specifications, digest matches found after sort- 
ing might not represent true equivalence between module 
definitions. Thus sorting of Verilog files should be done with 
caution. 

Module input and output declarations may be specified one 
by one or, if the types are the same, in lists. For example, the 
following sets of declarations are equivalent: 

input signed [4:0] RN,CK,D,SE; 

and 
input signed [4:0] RN; 
input signed [4:0] CK; 
input signed [4:0] D; 
input signed [4:0] SE; 
The parser expands input and output parameter declara- 

tions from the first form to the second form. They can then be 
sorted according to the name of the parameter. 

The parser assumes that the memory usage limit will be 
high enough to store all of the port definitions for a module, 
since there will be only a few hundred at most. 

Limitations of the Prototype Verilog Parser 
The parser does not attempt to sort argument lists in mod- 

ule instantiations, even when all of the ports are connected by 
name (e.g..Out (topB)). 

Variable declarations within the body of a module can be 
used to modify the meaning of a port declaration when it is 
specified in a list of ports. The parser does not attempt to 
locate these additional declarations. For example: 

module a(b); 
input b; 
wire signed [7:0] b; 

endmodule 

28 
Here the type of input port b is modified by the wire 

declaration but the wire declaration is not added to the cell 
interface digest. 

The parser does not attempt to assign a "port name" when 
5 a port declaration uses external names with a .' or concatena- 

tions with "{ }". Normally the port name is located within the 
declaration and used as the interface record name when 
recording the digest for the port. When there are external 
names or concatenations, the first token of the declaration is 

10 used as the "name" for sorting the port. 
Parameter declarations in module port lists (specified using 

`#') are added to the cell body digest. 
Macro definitions are sent to the digest engine when they 

are found in the file. This may be within the file header or 
is within a cell. Macro references are not expanded because the 

macro definition might be in another file which is either not 
available to the canonical cell digest tool or may change over 
time. 

Compiler directives are not interpreted either. 
20 Numeric literals are sent to the digest engine without inter- 

pretation. In particular they are not converted to a canonical 
form first. For example, a plus sign in an exponent is optional, 
so le10 will be different than 1e +10. The numbers are not 
reprinted, so 1 e10 will also differ from 1.0e10. 

25 The parser does not attempt to determine when a Verilog 
module can be considered hierarchical. 

Annotated Sample Verilog File 
FIG. 9 is an annotated example of a Verilog file that illus- 

trates application of the parsing rules described above. 
30 

Example 3 

Structured Binary File Type 

35 In this example, structured binary file types, without a 
custom parser, are treated as Unstructured Binary Files. 

VHDL is a simulation and Register Transfer Logic (RTL) 
language widely used in integrated circuit design. It is a 
text-based format commonly created by designers and com- 

40 piled by logic synthesis tools. 
Generally, without knowing the structure of the binary file, 

a digest is assigned for all bytes. To assign digests to specific 
content within a structured binary file, the data structure 
needs to be known and a parser written for it. 

45 
Example 4 

VHDL File Type 

so In this example, VHDL Files have content digests for at 
least the following file elements: 

File 
File Header 
Entity Block 

55 Architecture Block 
This file is scanned to find the entity and architecture 

blocks for modules. For the modules, separate digests are 
computed for the entity and the architecture. Alternatively, 
more (or less) granular digests can be computed, as described 

6o in the explanation of VHDL "cells," below. These digests may 
be based on the individual VHDL tokens (including com- 
ments, since synthesis directives may be included in com- 
ments) excluding any whitespace. 

Digests are computed and returned for the header of the file 
65 (information outside of any module definitions) and for the 

file as a whole. These include any whitespace. Included files 
from USE directives are not examined or added to the digests. 
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VHDL RTL Files 
Many VHDL language constructs can be considered to 

meet the definition of a "cell", including entities, configura- 
tions, architectures, procedures, functions, components, 
types, and subtypes. A change to any one of these could have 
far-reaching impacts to a design. From a parsing standpoint, 
these and other VHDL declaration types are also first-class 
objects within a library. Thus the parser creates cells for the 
following VHDL language constructs (using production 
names from Annex A of IEEE Standard 1076-2002): 

subprogram_declaration (a procedure or a function) 
subprogram_body (a procedure or a function) 
type_declaration 
subtype_declaration 
constant_declaration 
signal_declaration 
shared_variable_declaration 
file_declaration 
alias_declaration 
component_declaration 
attribute_declaration 
attribute_specification 
disconnection_specification 
use_clause 
group_template_declaration 
group_declaration 
Hints to the logic synthesis tools are put into comments 

associated with object headers or statements. Thus the com- 
bined "Cell with Comments" digests are probably more use- 
ful than the "Cell without Comments" digests. 

Many of the statements VHDL are order-dependent, so 
only the parameters in declarations can be sorted. Even then, 
architectures and components are not always instantiated 
using order-independent argument specifications, so digest 
matches found after sorting might not represent true equiva- 
lence. Thus sorting of VHDL files should be done with cau- 
tion. By default VHDL files are not sorted unless the user 
specifies the -sort flag. 

There are no layers in a VHDL file, so all of the digests for 
a cell are reported as non-Layer data: 

File "testfiles/timing b.vhd": VHDL format 
Arguments: -mem 64 -nosort 

b116b16a File 
Ocafc4la File non-Whitespace 
704d8ab4 File Whitespace 

File Header (not sorted) 
9f2lalef File Header with Comments 
d279ff8a File Header without Comments 
4d585e65 File Header Comments 
d279ff8a File Header non-Layer 

Cell "vital timing.constantedgesymbolmatch" (not sorted) 
63c5ce8d Cell with Comments 
63c5ce8d Cell without Comments 
(none) Cell Comments 
63c5ce8d Cell Interface non-Layer 

Cell "vital timing.ffinction.vitalcalcdelay.1" (not sorted) 
cd370359 Cell with Comments 
cd370359 Cell without Comments 
(none) Cell Comments 
be204681 Cell Interface non-Layer 
731745d8 Cell Body non-Layer 

As seen above, the reported cell names include the library 
in which the object is defined (if any); the type of the object 
(constant, function, entity, architecture, etc.), the object 
name, and a disambiguating number used for overload reso- 
lution. Functions, for example, may be overloaded, meaning 
that the same name is used for a set of functions with different 

30 
parameter types. The logic synthesis tool chooses the proper 
function by examining all possible matches. 

The canonical cell digest tool does not implement a full 
VHDL parser. In particular, it does not maintain symbol 

5 tables, so it simply records the digests in cells with names 
based only on the object name. Because the disambiguating 
numbers could change if overloaded objects are added to or 
removed from a file, the user's matching software will have to 
select the proper cell based on digests. 

io VHDL Format Files: Definitions 
The VHSIC Hardware Description Language (VHDL) was 

defined for the Department of Defense in the 1980s as a 
hardware system definition language. It is now also used as a 
Register Transfer Language for logic synthesis. 

15 VHDL is a text-based language that allows designers to 
specify designs as interconnected entities implemented with 
architectures. It is a very complex language with many lan- 
guage constructs that impact the specification of a design. All 
of these are recorded as distinct cells whose names are quali- 

2o fled with their type, e.g. entity.full_adder. 
The VHDL language specification is an IEEE standard; the 

prototype VHDL parser follows the definition of the language 
in IEEE Standard 1076-2002. This does not include VHDL- 
AMS (analog) extensions. 

25 Although VHDL RTL descriptions are used in logic syn- 
thesis, the language itself is not sufficient to determine the 
intent of a designer. Synthesis directives embedded in com- 
ments are often added to the VHDL text to guide optimiza- 
tion. These are recorded with the language constructs that 

30 follow them. There is no equivalent to Verilog attributes. 
Comments outside of a package are added to the file header 

digest. 
Syntax Interpretation 
As described above, many VHDL language constructs can 

35 be considered to meet the definition of a "cell", including 
entities, configurations, architectures, procedures, functions, 
components, types, and subtypes. 

VHDL supports name overloading, meaning that a given 
name may map to multiple objects. The compiler selects the 

40 proper object using context and type information. 
The language definition relies very heavily on these two 

concepts, to the point that it is error prone to parse a VHDL 
file fully without having its included files available. Because 
the prototype canonical cell digest parser is not designed for 

45 logic synthesis and because the context in which it works (e.g. 
the include files) may change over time, it uses a slightly 
simplified language specification that allows context-free 
parsing. 

VHDL also supports operator overloading, meaning that 
so there may be multiple versions of the same object with dif- 

ferent types and parameters. For example, there may be sev- 
eral multiply operators. 

Finally, for a given design entity there may be multiple 
architectures. These are meant to be interchangeable; the 

55 designer specifies which architecture to use when instantiat- 
ing a module. 

Generating canonical cell digests for all aspects of a VHDL 
design thus requires disambiguation. An encoded name with 
two to four parts is assigned to objects recorded as cells: 

60 a package name, for objects stored in packages 
the object type, e.g. architecture or function 
the object's name as specified by the designer 
a number suffix, for objects overloaded by name 
For example, vital_ timing.constant.edgesymbolmatch 

65 represents the constant edgesymbolmatch in the package 
vital_timing and vital_timing.procedure.vitalerror.1 repre- 
sents the second procedure named vitalerror in this package. 
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Because canonical cell digests are computed on a file-by-file 
basis, the user's software may have to disambiguate the 
names further when storing the digests into a database. This is 
especially true for procedures and functions that have sepa- 
rate specifications and bodies the parser does not know until 
very late (after the parameter list) whether it has a specifica- 
tion or a body, and by that time the cell name has been passed 
to the digest engine. 

The VHDL specification also provides for nested object 
definitions, e.g. a function inside a procedure. Because these 
may be nested infinitely and because their scope is limited to 
the containing object (making them invisible to the outside), 
separate cells are not created for these objects. They are 
recorded as part of the cell body of the containing object. 

The VHDL specification uses the eight-bit character set 
defined in the ISO/IEC 8859-1 standard. The parser has full 
support for all valid eight-bit characters. 

VHDL is case-insensitive except for extended identifiers; 
the parser converts all tokens except extended identifiers to 
lower case before sending them to the digest engine. 

Sorting of VHDL Files 
Many of the statements in VHDL are order-dependent and 

thus cannot be sorted. The parser does not attempt to deter- 
mine which portions of architecture or subprogram bodies are 
order-independent it sorts only the parameters in their dec- 25 

larations. Because instantiations might not use order-inde- 
pendent argument specifications, digest matches found after 
sorting might not represent actual matches. Thus sorting of 
VHDL files should be done with caution. 

Parameter declarations may be specified one by one or, if 
the types are the same, in lists. For example, the following sets 
of declarations are equivalent: 

X,Y,Cin: in Bit; 
Cout,Sum: out Bit; 

32 
Parameter lists in procedure cells and function cells are not 

sorted; the parser may not know the names of the parameters 
in the procedure or function because their declarations may 
be in another file. This applies even if the parameters are in an 

5 association list that uses =>. 
Numeric literals are sent to the digest engine without inter- 

pretation. In particular they are not converted to a canonical 
form first. For example, a plus sign in an exponent is optional, 
so le10 will be different than 1e +10. The numbers are not 

10 reprinted, so 1 e10 will also differ from 1.0e10. 
The parser does not attempt to determine when a VHDL 

object can be considered hierarchical. 
Annotated Sample VHDL File 
FIGS. 10A-10B illustrate an annotated sample VHDL file. 

15 Note that in architecture MC68000, the name of the first- 
level nested function (bclr_d) is recorded as interface text, 
though the name of the second-level nested function (nested) 
is not. This is because bclr_d is considered to be an interface 
variable, like the variable Delay in the procedure VitalWire- 

2o Delay. Neither nested procedure is recorded as a separate cell; 
both are considered to be part of architecture MC68000. 

and 
X: in Bit; 
Y: in Bit; 
Cin: in Bit; 
Cout: out Bit; 
Sum: out Bit; 
The parser expands parameter declarations from the first 

form to the second form. They can then be sorted according to 
the name of the parameter. 

Because an entity is the specification of an interface to one 
or more architectures, everything in an entity is considered 
part of the interface, even entity statements after the word is. 

Names of top-level objects (cells) are not sent to the digest 
engine so that matching of equivalent cells with different 
names is possible. Names of variable declarations (including 
subprogram declarations) within top-level objects are 
recorded as cell interface text but the names of any declara- 
tions inside those variables are not. See the annotated sample 
file, FIGS. 10A-10B, for an example. 

Limitations of the Prototype VHDL Parser 
Vertical tab and form feed characters are converted to line 

feed characters even before they are added to the file-level 
digests. Carriage return/line feed pairs are converted to a 
single line feed character before being added to the file-level 
digests. 

The parser does not attempt to combine constants. For 
example, string literal concatenation is not performed. "abc- 
def' will not have the same digest as "abc" & "def'. 

Include file directives (library and use clauses) are not 
interpreted, since the include path at the time of digest calcu- 
lation may be different than the include path at compilation 
time. 

Examples 5-6 

OASIS® and GDSII File Types 

In this example, OASIS® and GDSII file types, having 
identical file elements, will be described together. These file 
types have content digests for the following file elements: 

30 File 
File Header 
Layer-by-Layer Geometric Objects 
Layer-by-layer Non-geometric Objects 
References to Lower-level Cells 

35 Boolean Flags Referring to Other Lower-level Cells 
The database is scanned to find the cell names inside. For 

the cells present, the following is computed: 
Layer-by-layer digests of all geometric objects (polygons, 

rectangles, etc.); 
40 Layer-by-layer digests of all non-geometric objects (text 

points, etc.); 
A digest for all other objects such as references to lower- 

level cells; and 
A Boolean flag indicating whether the cell has references 

45 to lower-level cells. 
As an option, the data in small and medium size cells is 

sorted prior to digest computation so that data ordering dif- 
ferences do not cause digest differences. The user can set the 
memory usage limit for this option. 

so OASIS® repetitions and GDSII array references are 
expanded prior to digest computation so that differences in 
repetition analysis do not cause digest differences. 

Digests are computed and returned for the header of the file 
(information before any cell definitions) and for the file as a 

55 whole. For GDSII files, the file is assumed to be syntactically 
correct. 

Structure (cell) creation and modification times are stored 
as comments; if they differ in two cells that are otherwise 
identical, the cell digests and comment digests will differ but 

60 all layer digests will be identical. 
None of the data in a GDSII or OASIS® cell is considered 

to be part of the "header" (the interface to the cell). That is 
assumed to be generated by external tools and stored else- 
where (e.g. LEF). No "whitespace" digests are computed for 

65 GDSII or OASIS® files. Structure references (SREF and 
AREF) are reported as part of the digest for non-layer data 
with index -1. GDSII or OASIS® polygon sorting and GDSII 
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or OASIS® polygon merging (overlap removal) can also be 
performed prior to digest computation. 

OASIS® Layout Files 
OASIS® files are structured binary files used for specify- 

ing layout. The format has many different methods for reduc- 
ing the space required for the file such as repetitions and 
compressed data blocks. These can change the order in which 
data appears in a cell or even the data constructs used to 
represent the data (RECTANGLE vs. CTRAPEZOID, for 
example). Internally, to ensure a consistent representation all 
geometric constructs are converted to POLYGON records 
and repetitions are expanded. 

Where appropriate, OASIS® file data is sorted by default if 
sufficient memory or disk space is available. Data is grouped 
by layer and then by position, so that the same digests are 
generated no matter how the data was ordered originally 
within the cell. As long as the data is sorted and there are no 
OASIS® properties in a cell, the user's software should be 
able to match digests between OASIS® cells and their 
equivalent GDSII representation. 

To avoid floating point roundoff error, digests are com- 
puted based on the integer coordinates of layout data within 
the cell. Because the user's preferred design grid may change 
over time, canonical cell digests are computed based on a 
smaller grid that the user specifies using the -grid command- 
line option. The user should choose this grid carefully to 
ensure that all future design grids are an integral multiple of it. 
By default this grid is 1 nanometer (1.0e-9 meter); it may be 
best to set an even smaller value such as 0.5 nanometer or 0.25 
nanometer. If the grid is too small, however, the user may get 
integer arithmetic overflows on 32-bit machines. 

Because all repetitions are expanded to ensure a consistent 
representation, runtime performance for canonical cell digest 
calculation may vary considerably even for files of the same 
size. 

Here is a portion of a digest report for an OASIS® file: 

Cell "Structure 1" (not sorted) 
f64ce851 
f64ce851 
(none) 
20b84e54 
e03bf9d2 
fda35715 
cb6c08c2 

Cell with Comments 
Cell without Comments 
Cell Comments 
Cell Body non-Layer 
Cell Body Layer 3 

Cell Body Layer 42 
Cell Body non-Geometric Data Layer 3 

In this example, sorting was not requested, and this is 
reported after the cell name. Nothing in an OASIS® cell is 
recorded as cell comment data, so the digest is reported as 
"(none)". There are some structure references recorded as 
non-layer data and some geometry on layers 3 and 42. Finally, 
there is some non-geometric data (one or more TEXT 
records) on layer 3. 

OASIS® Format Files: Definitions 
The Open Artwork System Interchange Standard (OA- 

SIS®) format was developed by a committee of Semiconduc- 
tor Equipment and Materials International (SEMI) as a 
replacement for GDSII. It removes 16- and 32-bit restrictions 
on numeric values and improves layout file sizes by up to a 
factor of 10. The prototype OASIS® parser follows the speci- 
fication described in SEMI Standard P39-1105 (November 
2005). Name tables are supported. 

OASIS® is a binary format, so for clarity this description 
uses the record names listed in the OASIS® specification. 

Syntax Interpretation of OASIS® Files 

34 
The OASIS® specification provides for arbitrary-preci- 

sion integers and floating point numbers. Arithmetic pack- 
ages for arbitrary-precision arithmetic are slow, however, and 
not in wide use in the design automation community. The 

5 prototype parser uses native integers (32 bits when compiled 
in 32-bit mode, 64 bits when compiled in 64-bit mode) and 
IEEE double-precision floating point numbers (64 bits). An 
error will be logged if numbers exceeding these limits are 
present in a file. 

10 The specification also provides for several different num- 
ber representations, such as unsigned integer, signed integer, 
ratio, reciprocal, and floating point. All numbers are con- 
verted to canonical form for comparisons native integers 
for integral values and double precision floating point num- 

15 bers for floating point values. This allows matching of num- 
bers written by different tools, e.g. 5/2 and 2.5. 

In like manner, all point lists (e.g. 1-delta lists) are fully 
expanded to X/Y coordinate pair lists before digests are com- 
puted. 

20 Design tools have considerable freedom to choose the 
OASIS® elements used to represent the geometry of a layout 
cell. Although a layout editor will generally preserve the 
designer's choice of, for example, a PATH vs. a POLYGON, 
the final output might have an equivalent POLYGON in order 

25 to reduce the ambiguity inherent in the definition of a PATH 
at a bend. Such a tool might also change the "winding direc- 
tion" of a POLYGON from counterclockwise to clockwise. 
To avoid these issues, all geometric elements are converted to 
a canonical representation for canonical cell digest calcula- 

30 tion: 
RECTANGLE, PATH, TRAPEZOID, CTRAPEZOID, 

and CIRCLE elements are converted to equivalent 
POLYGON records 

POLYGON point lists are reversed if the resulting polygon 
35 has a counterclockwise winding direction 

the first point in the list is chosen to be the lowest, leftmost 
point 

If there is a flip in a PLACEMENT record, it is stored as if 
it were a GDSII STRANS record (a bit array). 

40 If a PLACEMENT object uses a numeric cell reference, the 
number is replaced by its corresponding cell name, and only 
the cell name is sent to the digest. 

The OASIS® specification provides for repetitions of all 
constructs. Different tools might choose different methods of 

45 optimizing repetitions. The data is equivalent no matter how 
it is arrayed, so for canonicity all repetitions are expanded into 
single-object references (e.g. rectangles or PLACEMENT 
records). For this reason, runtime performance as a function 
of file size cannot be guaranteed a small file with a repeti- 

50 tion that expands to a billion polygons will require a great deal 
of CPU time. 

OASIS® files also coexist with older GDSII format files. 
OASIS® uses a different method of describing repeated 
object references, so unless repetitions are expanded, it will 

55 not be possible to match repeated PLACEMENT objects with 
GDSII AREFs. 

Note that in some embodiments, digests are computed 
based on the objects in the OASIS® file, not the underlying 
geometry. No overlap removal is performed before comput- 

60 ing the digest. 
The OASIS® format was designed to remove the need for 

"extensions" to the specification. If the OASIS® file does not 
comply with the specification, the parser will return an error. 

OASIS® layers are primarily indexed by number (all geo- 
65 metric constructs use layer numbers, not layer names); the 

mapping of layer names (if any) to numbers is not currently 
returned by the parser. 
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Coordinates in an OASIS® file are specified using a grid, 
e.g. 1 nanometer (1.0e-9 meter), at the front of the file. Within 
the cells, all coordinates are defined in terms of this grid so 
that they can be integral. The file grid can change, however, 
without affecting the final mask data. For example, imported 
design template blocks could be specified using a grid of 5 

nanometers even though the standard grid is 1 nanometer. The 
user's software would then convert all imported data to use 
the smaller grid, scaling the integer coordinates in the cells by 
a factor of 5. 

To ensure canonicity, all geometry in OASIS® files is 
scaled to use an internal canonical cell digest grid. The user 
should choose this grid carefully so that the OASIS® file grid 
used in all future designs will be compatible. For example, if 
the current design grid is 5 nanometers, it may be best to use 
a digest grid of 1 nanometer or even 0.5 nanometer. 

The canonical cell digest grid value is passed to the 
OASIS® parser and an error is returned if the OASIS® file 
grid is not an integral multiple of the canonical cell digest grid 
value. 

Structures with PLACEMENT records are marked as hier- 
archical for digest reporting. 

Sorting of OASIS® Files 
As mentioned, OASIS® files use a different method to 

specify arrayed structure references than GDSII files. Differ- 
ent vendors might also choose different repetition optimiza- 
tion methods. Finally, the geometric objects within a cell can 
be reordered at any time without changing the meaning of the 
file. Effective comparison of OASIS® layouts, or GDSII 
layouts versus OASIS® layouts, thus requires sorting. For 
this reason, sorting of GDSII and OASIS® layouts is enabled 
by default. 

After a geometric object is converted to canonical form, it 
can be compared to another object for sorting purposes as 
follows: 

the layer name is the primary key; lower layer numbers are 
first 

the element type (using GDSII record types) is the second- 
ary key; lower element types come first 

the XY coordinates of the element, if any, are the tertiary 
key; coordinates are compared one by one and the ele- 
ment with the lowest, leftmost point for a given entry 
comes first 

if a placement transform (i.e. flip) is present, the bit vector 
converted to an integer is compared and the "lowest" one 
comes first 

next, the DATATYPE values are compared, and the lowest 
one comes first 

if the records are placements, the cell name values are 
compared alphabetically and the lowest one comes first 

next, the MAG values, if any, are compared and the lowest 
one comes first 

next, the ANGLE values, if any, are compared and the 
lowest one comes first 

finally, the PROPERTY values are compared one by one 
It is expected that only the first three comparisons (layer 

name, element type, and XY location) will be used, so that the 
order of the other comparisons can be more or less arbitrary. 

The sorting criteria are actually the same as those used for 
GDSII; fields that do not apply to OASIS® have been omitted 
from the above description. Use of GDSII fields that have no 
analog in OASIS® (e.g. PLEX) or are different in OASIS® 
(e.g. properties) will prevent matching of cells across for- 
mats. 

If sorting is requested, the records in a cell are collected 
until the end of the cell is reached or until so much cell data is 
stored in memory that the usage limit is exceeded. Should that 

36 
occur, the stored cell records are sent to the digest module in 
their original order or may be sorted using a disk sort, at a 
substantial performance penalty. The memory test is per- 
formed on a cell-by-cell basis, so some cells may be sorted 

5 and some may be unsorted. Cells are marked as to whether 
they have been sorted; this information is available in digest 
reports and through the API. 

File header objects are not sorted. 
Limitations of the Prototype OASIS® Parser 

10 The OASIS® file is assumed to be compliant with SEMI 
P39 syntax and semantics. No errors are tolerated. Only one 
error is reported; the parser does not attempt to continue past 
the first error. 

Currently XELEMENT, XGEOMETRY, and XNAME 
15 records are discarded without being recorded (except in file- 

level digests). 
PAD records are discarded without being recorded (except 

in file-level digests). 
The memory used by name tables in the file is not mea- 

2o sured; this can cause actual memory usage to exceed the 
requested limit. 

The properties of an element are recorded as the same type 
(geometric data) as the element itself. The definition of 
PROPERTY records in OASIS® differs significantly from 

25 PROPATTR records in GDSII and it will be impossible to 
match cells that have elements with properties (other than the 
compatible S_GDS_PROPERTY) in them. 

The LAYERNAME table, if any, is not returned by the 
OASIS® parser, so only layer number information is avail- 

30 able for use with digests. 
Zero-area polygons are not reversed if their points are 

drawn in the "wrong" order. This can make it difficult to 
compare GDSII and OASIS® files containing zero-area poly- 
gons. 

35 Annotated Sample OASIS® File 
FIG. 11 is an annotated sample OASIS® file. Because 

OASIS® is a binary file format, OASIS® record names are 
used and some portions of individual elements are abbrevi- 
ated for simplicity. All of the fields within an element have the 

40 same recording type, so there is no loss of generality. 
For canonicity, RECTANGLE, PATH, TRAPEZOID, 

CTRAPEZOID, and CIRCLE elements are converted to 
equivalent POLYGON elements with a clockwise wrap. 
Thus, none of these element types is shown in the figure. The 

45 first point in the point list is chosen to be the lowest, leftmost 
point. The GDSII BOUNDARY record number is used so that 
OASIS® cells can be matched against GDSII cells. 

TEXT elements are recorded using the GDSII TEXT ele- 
ment number so that OASIS® cells which use only TEXT can 

so be matched against GDSII cells. Note that there is no analog 
in OASIS® to the GDSII NODE element. 

CBLOCK records are expanded before computing digests, 
so they do not become part of the canonical cell digests. The 
canonical cell digests will be the same regardless of whether 

55 CBLOCK records are present. 
The file-level digest is computed without expanding 

CBLOCK records. 
Names and other strings are recorded as if they were 

present with the record for which they are used, whether or 
60 not name tables are present in the file. The name and other 

string tables themselves are not added to any canonical cell 
digests. Properties associated with name records (e.g. 
CELLNAME) are added to the file header non-Layer Geom- 
etry digest. 

65 All geometric records are fully expanded before being sent 
to the digest engine; no implicit use of modal variables is 
made. This is useful for sorting as well as for matching with 
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GDSII files. For this reason, XYRELATIVE and XYABSO- 
LUTE records are not part of any canonical cell digest; they 
merely determine how XY coordinates are interpreted (rela- 
tive to the previous object or absolute coordinates). 

Properties are recorded with the object that immediately 
precedes them. If that object has a layer number, they are 
recorded on that layer number. Properties at the front of the 
file (and thus outside of any cell) are not sorted; they are 
recorded as they occur. 

Before being sent to the digest engine, PLACEMENT 
objects of type 17 (orthogonal rotations) are converted to 
PLACEMENT objects of type 18 (arbitrary rotations) to 
match the definition in GDSII. 

There is no industry standard for structure interfaces (e.g. 
bounding boxes, abutment boxes, and router pickup points), 
so nothing is recorded as cell header data. 

Example 6 (cont.) 

GDSII Layout Files 

GDSII files are structured binary files used for specifying 
layout. Depending on the tool used to write a GDSII file, the 
order in which data appears in a cell may change and some 
constructs (especially PATH) may be converted to a less- 
ambiguous representation (BOUNDARY). Internally, to 
ensure a consistent representation all geometric constructs 
are converted to BOUNDARY (polygon) records and array 
references (AREFs) are expanded into equivalent sequences 
of structure references (SREFs). 

Where appropriate, GDSII file data is sorted by default if 
sufficient memory or disk space is available. Data is grouped 
by layer and then by position, so that the same digests are 
generated no matter how the data was ordered originally 
within the cell. As long as the data is sorted and there are no 
GDSII NODE records or properties in a cell, the user's soft- 
ware should be able to match digests between GDSII cells and 
their equivalent OASIS® representation. 

To avoid floating point roundoff error, digests are com- 
puted based on the integer coordinates of layout data within 
the cell. Because the user's preferred design grid may change 
over time, canonical cell digests are computed based on a 
smaller grid that the user specifies using the -grid command- 
line option. The user should choose this grid carefully to 
ensure that all future design grids are an integral multiple of it. 
By default this grid is 1 nanometer (1.0e-9 meter); it may be 
best to set an even smaller value such as 0.5 nanometer or 0.25 
nanometer. If the grid is too small, however, the user may get 
integer arithmetic overflows on 32-bit machines. 

Because all AREFs (arrayed structure references) are 
expanded to ensure a consistent representation, runtime per- 
formance for canonical cell digest calculation may vary con- 
siderably even for files of the same size. 

Here is a portion of a digest report for a GDSII file: 

Cell "Structure 1" (sorted) 
a7100492 Cell with Comments 
3d4d7fbf Cell without Comments 
9a5d7b2d Cell Comments 
7b78aab4 Cell Body non-Layer 
15546763 Cell Body Layer 3 

fda35715 Cell Body Layer 42 
aec2e57d Cell Body non-Geometric Data Layer 3 

In this example, the cell was small enough to be sorted, and 
this is reported after the cell name. The cell modification and 

38 
access time are recorded as comments, there are some struc- 
ture references recorded as non-layer data and some geom- 
etry on layers 3 and 42. Finally, there is some non-geometric 
data (one or more NODE or TEXT records) on layer 3. 

5 GDSII Stream Files: Definitions 
GDSII is an early layout database format, originally speci- 

fied in the 1980s by Calma Corporation and now owned by 
Cadence. The prototype GDSII parser follows the specifica- 
tion described in the Cadence Virtuoso Design Data Transla- 

io tors Reference with Y2K additions. 
GDSII is a binary format, so for clarity this description uses 

the record names listed in the GDSII specification. 
Syntax Interpretation of GDSII Files 
Lacking an industry standard specification, tool vendors 

is have "extended" the GDSII format over the years. For 
example, the GDSII documentation notes that the maximum 
layer number for a node point, text point, or geometric object 
is 255, but some tools allow up to 32,767 layers (the maxi- 
mum possible signed 16-bit integer). Similarly, the GDSII 

20 documentation limits boundaries (polygons) and paths 
(wires) to 200 points, but some tools allow up to 4,094 points 
(the maximum number of points that can fit into a 65,535-byte 
record). To support these extensions while still providing 
some level of checking, the parser accepts a "variances" 

25 record that specifies limits for the following: 
structure name length (default 32, maximum 32,750) 
additional characters allowed in structure names (beyond 

"A-Za-z0-9_?$") 
maximum layer number, data type, or text type (default 64, 

30 maximum 32,767) 
maximum property attribute number (default 64, maxi- 

mum 32,767) 
maximum BOUNDARY or PATH point count (default 

200, maximum 4,094) 
35 maximum node point count (default 50, maximum 4,094) 

maximum property value length (default 128, maximum 
32,767) 

whether the lattice vectors in an AREF may be rotated or 
whether they are orthogonal and in the first quadrant 

40 whether a rotation in an AREF means that the lattice is 
rotated rigidly or that the instances are rotated in place 
within the lattice as it is specified 

Other than modifications to these aspects, if the GDSII file 
does not comply with the specification the parser will return 

45 an error. 
Design tools have considerable freedom to choose the 

GDSII elements used to represent the geometry of a layout 
cell. Although a layout editor will generally preserve the 
designer's choice of, for example, a PATH vs. a BOUND- 

so ARY, the final stream output might use an equivalent 
BOUNDARY instead, to reduce the ambiguity inherent in the 
definition of a PATH at a bend. Such a tool might also change 
the "winding direction" of a BOUNDARY from counter- 
clockwise to clockwise. To avoid these issues, all geometric 

55 elements are converted to a canonical representation for 
canonical cell digest calculation: 

PATH elements are converted to equivalent BOUNDARY 
records 

the last point in a BOUNDARY point list is removed if it 
60 coincides with the first point 

BOUNDARY point lists are reversed if the resulting poly- 
gon has a counterclockwise winding direction 

the first point in the list is chosen to be the lowest, leftmost 
point 

65 GDSII files also coexist with newer OASIS® format files. 
OASIS® uses a different method of describing repeated 
object references. For canonicity, AREF (arrayed structure 
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reference) objects are expanded to the equivalent sequence of 
individual SREF (structure reference) objects. The same 
thing is done in the OASIS® parser (repetitions are 
expanded), so that it is possible to compare digests for layout 
in GDSII files vs. OASIS® files. For this reason, runtime 
performance as a function of file size cannot be guaran- 
teed a small file with an AREF that expands to a billion 
SREFs will require a great deal of CPU time because SREFs 
are added to digests one at a time. 

The GDSII specification calls for AREF lattices to be 
orthogonal and in the first quadrant (i.e. the first lattice vector 
along the positive X axis and the second lattice vector along 
the positive Y axis), then mirrored or rotated rigidly if mir- 
roring or rotation, respectively, is specified. Few CAD tools 
actually use this definition; instead the lattice vectors are 
rotated and/or mirrored and the instances placed within the 
transformed lattice. By default the prototype GDSII parser 
uses this definition; there is an option in the API to use the 
original definition. 

Note that digests are computed based on the objects in the 
GDSII file, not the underlying geometry. No overlap removal 
is performed before computing digests. 

Coordinates in a GDSII file are specified using a grid, e.g. 
1 nanometer (1.0e-9 meter), at the front of the file. Within the 
cells, all coordinates are defined in terms of this grid so that 
they can be integral. The file grid can change, however, with- 
out affecting the final mask data. For example, imported 
design template blocks could be specified using a grid of 5 

nanometers even though the standard grid is 1 nanometer. The 
user's software would then convert all imported data to use 
the smaller grid, scaling the integer coordinates in the cells by 
a factor of 5. 

To ensure canonicity, all geometry in GDSII files is scaled 
to use an internal canonical cell digest grid. The user should 
choose this grid carefully so that the GDSII file grid used in all 
future designs will be compatible. For example, if the current 
design grid is 5 nanometers, it may be best to use a canonical 
cell digest grid of 1 nanometer or even 0.5 nanometer. 

The canonical cell digest grid value is passed to the GDSII 
parser and an error is returned if the GDSII file grid is not an 
integral multiple of the canonical cell digest grid value. 

Structures with SREF or AREF records are marked as 
hierarchical for digest reporting. 

Sorting of GDSII Files 
As mentioned, GDSII files use a different method to 

specify arrayed structure references than OASIS® files. 
OASIS® file writers have a great deal of freedom to cluster 
geometric objects or structure references through the use of 
repetitions. Different vendors might choose different repeti- 
tion optimization methods. Finally, the geometric objects 
within a cell can be reordered at any time without changing 
the meaning of the file. Effective comparison of GDSII lay- 
outs, or GDSII layouts vs. OASIS® layouts, thus requires 
sorting. For this reason, sorting of GDSII and OASIS® lay- 
outs is enabled by default. 

After a geometric object is converted to canonical form, it 
can be compared to another object for sorting purposes as 
follows: 

the layer name is the primary key; lower layer numbers are 
first 

the element type (using GDSII record types) is the second- 
ary key; lower element types come first 

the XY coordinates of the element, if any, are the tertiary 
key; coordinates are compared one by one and the ele- 
ment with the lowest, leftmost point for a given entry 
comes first 

40 
if a STRCLASS is present, the bit vector converted to an 

integer is compared and the "lowest" one comes first 
if an ELFLAGS is present, the bit vector converted to an 

integer is compared and the "lowest" one comes first 
5 if a PRESENTATION is present, the bit vector converted to 

an integer is compared and the "lowest" one comes first 
if an STRANS is present, the bit vector converted to an 

integer is compared and the "lowest" one comes first 
next, the PLEX values (default 0) are compared, and the 

10 lowest one comes first 
next, the DATATYPE values are compared, and the lowest 

one comes first 
next, the PATHTYPE values, if any, are compared and the 

lowest one comes first 
15 if the records have STRING values, those values are com- 

pared alphabetically and the lowest one comes first 
if the records are STRANS (structure transformation), the 

SNAME values are compared alphabetically and the 
lowest one comes first 

20 next, the MAG values, if any, are compared and the lowest 
one comes first 

next, the ANGLE values, if any, are compared and the 
lowest one comes first 

finally, the PROPATTR values are compared one by one 
25 It is expected that only the first three comparisons (layer 

name, element type, and XY location) will be used, so that the 
order of the other comparisons can be more or less arbitrary. 

Some of these sorting criteria are also used for OASIS® 
files. 

30 Use of fields that have no analog in OASIS® (e.g. PLEX) 
or are different in OASIS® (e.g. properties) will prevent 
matching of cells across formats. 

If sorting is requested, the records in cells (GDSII struc- 
ture) are collected until the end of the cell is reached or until 

35 so much cell data is stored in memory that the usage limit is 
exceeded. Should that occur, the stored cell records are sent to 
the digest module in their original order. The memory test is 
performed for the cells, so some cells may be sorted and some 
may be unsorted. Cells are marked as to whether they have 

40 been sorted; this information is available in digest reports and 
through the API. 

File header objects have a specified order, so they are not 
sorted. 

Limitations of the Prototype GDSII Parser 
45 The GDSII file is assumed to follow the Cadence specifi- 

cation for GDSII with the exception that some numeric limits 
may be relaxed, as described above. AREF lattices can also be 
specified in a rotated orientation. Other than these variances, 
no exceptions or errors are tolerated. Only one error is 

so reported; the parser does not attempt to continue past the first 
error. 

There is currently no way to change numeric limits and 
behavioral flags from the command line. The API has the 
ability to define variances for all of the items described above. 

55 PROPATTR records have a different structure in GDSII 
than PROPERTY records in OASIS®. Use of PROPATTR 
records will prevent matching of GDSII cells to OASIS® 
cells unless the OASIS® PROPERTY records use the 
S_GDS_PROPERTY format. 

60 Zero-area BOUNDARYs and BOXes are not reversed if 
their points are drawn in the "wrong" order. This can make it 
difficult to compare GDSII and OASIS® files containing 
zero-area polygons. 

BOX records are not converted to BOUNDARY records 
65 under the assumption that they are not equivalent; they are no 

more efficient than BOUNDARY records and so it is pre- 
sumed that they are intentionally drawn differently. 
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Annotated Sample GDSII File 
FIG. 12 is an annotated sample GDSII file. Because GDSII 

is a binary file format, GDSII record names are used and some 
portions of individual elements are abbreviated for simplicity. 
All of the fields within an element have the same recording 5 

type, so there is no loss of generality. 
The modification and access times of structures are 

recorded as cell comments. Structure class records are also 
recorded as cell comments. There is no industry standard for 
structure interfaces (e.g. bounding boxes, abutment boxes, 10 

and router pickup points), so nothing is recorded as cell 
header data. 

Layers in GDSII are numeric; no list of layer names is 
returned. 

PATH elements are converted to BOUNDARY elements 15 

using the path type and any BGNEXTN or ENDEXTN 
records before they are sent to digest generation. Path type 1 

(round ends) is converted to path type 2 (square ends half the 
width beyond the endpoints). 

If a PATH element has acute angles, the outer corners of 20 

any such bends are truncated at a distance equal to half the 
wire width away. The outside of the PATH is traced in a 
clockwise direction; the lowest, leftmost point is chosen as 
the first. The last point in the list is not coincident with the 
first; instead there is an implied edge. 25 

Negative PATH widths are silently converted to positive 
path widths, thereby removing their "absolute path width" 
property. This conversion is not recorded in the digests. 

The point lists of BOUNDARY elements are reversed if 
they have a counterclockwise wrap; afterwards the lowest, 30 

leftmost point is chosen as the first. The final point, which 
according to the GDSII specification overlaps the first, is 
removed so that there is an implied edge. 

The point lists of BOX elements are reversed if they have a 
counterclockwise wrap; afterwards the lowest, leftmost point 
is chosen as the first. The final point, which according to the 
GDSII specification overlaps the first, is removed so that there 
is an implied edge. BOX elements are not converted to 
BOUNDARY elements under the assumption that they are 
intended for different purposes. 40 

Array references (AREF elements) are expanded to 
equivalent lists of SREF elements before they are sent to 
digest generation. 

The attributes of an element are recorded as the same type 
(geometric data) as the element itself. It is also possible to 45 

record them as non-geometry data, as the definition of 
attributes in OASIS® differs significantly and it will other- 
wise be impossible to match cells that have elements with 
attributes in them. 

Bit arrays in GDSII records (e.g. STRANS) are converted 
to integers before being sent to digest calculation. 

42 
The command line options -mergewhite, -reportwhite, and 

-discardwhite control the reporting of file-level whitespace 
digests for text-based file formats. Whitespace includes 
spaces, tabs, and newlines. The -mergewhite option is the 
default; when it is active a single file-level digest is reported, 
including both whitespace and non-whitespace. When the 
-reportwhite option is active, digests for whitespace and non- 
whitespace are reported separately. When the -discardwhite 
option is active, whitespace is ignored and a single file-level 
digest excluding whitespace is reported. 

For example, if the sample file testfiles/verilog_test.v is 
treated as an unstructured text file, the following results will 
be obtained: 

otismartsig -txt -mergewhite testfiles/verilog test.v 
File "testfiles/verilog test.v": unstructured text 
format 

File CRC 5404c699 
otismartsig -txt -reportwhite testfiles/verilog test.v 
File "testfiles/verilog test.v": unstructured text 
format 

File CRC 5404c699 
File non-whitespace CRC 7c2a352d 
File whitespace CRC 219b1881 

otismartsig -txt -discardwhite testfiles/verilog_test.v 
File "testfiles/verilog test.v": unstructured text 
format 

File CRC 7c2a352d 

Note that the merged file digest in the first example 
matches the full-file digest in the second example, and that the 
non-whitespace digest in the second example matches the file 
digest in the third example. 

35 Whitespace and non-whitespace digests are not computed 
for individual cells in cell-based formats such as Liberty or 
Verilog; they are computed only at the file level. 

The three whitespace reporting options may be used for 
structured text file formats as well. For example: 

Example 7 

Unstructured Text File Type 

Unstructured text files are text files which do not have a 
specification known to the canonical cell digest tool. For 
example, log files or human-readable descriptions of design 
template blocks would be unstructured text files. Text files are 
line-oriented, however, so they can still be sorted. If sorting is 
requested, the file header data digest will change to reflect the 
sorting. Otherwise it will match the file digest. 

In this example, unstructured text files have content digests 
for the file Byte by Byte. A byte-by-byte digest is computed 
for unstructured text files. The digest is independent of new- 
line style. As an option, differences in whitespace are ignored. 

otismartsig -discardwhite -ver 
testfiles/verilog test2.v 
File "testfiles/verilog test2.v": Verilog format 

File CRC 07f87fb9 
File header CRC 6ef229e6 
File comment CRC 6ef229e6 

Cell "OAI21 Xl" 
Interface CRC dae46517 
Contents CRC c73aceaf 

50 Cell "0AI21 X2" 
Interface CRC 01391569 
Contents CRC c73aceaf 

55 
Syntax Interpretation 
File-level (all file data, non-whitespace data, and 

whitespace data) and file header digests are computed for 
unstructured text files. File header digests are computed for 
all of the data in the file, sorting lines alphabetically if 

60 
requested. If the file has DOS-style (CR-LF) line endings, 
they are converted to UNIX-style (LF only) line endings 
before any digests are computed. 

Sorting of Unstructured Text Files 

If sorting is requested and the memory usage limit is high 
65 enough, the lines of the file are sorted before computing the 

file header digests. All data is recorded as non-layer, non- 
comment file header data. 
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Limitations of the Prototype Unstructured Text File Parser 
Currently there is no option to convert whitespace to a 

canonical form (e.g. tabs to spaces or removing repeated 
spaces). 

Example 8 

Unstructured and Structured Binary Files 

The digest for an unstructured binary file (or a structured 
binary file without a parser) is simply the CRC of all of the 
bytes in sequence with no interpretation. A digest for the 
example GDSII file testfiles/sigtest.gds can be computed as 
follows: 

otismartsig -bin testfiles/sigtest.gds 
File testfiles/sigtest.gds: unstructured binary format 

File CRC d0b40760 

44 
SPICE Subcircuit Files 
Extracted layouts are generally written into subcircuits 

within SPICE input files, and these are recorded as cells by 
the canonical cell digest software. The text within a subcircuit 

5 is order-independent and can be sorted, but it might not be 
instantiated using order-independent argument specifica- 
tions, so digest matches found after sorting might not repre- 
sent true equivalence. Thus sorting of SPICE subcircuit files 
should be done with caution. By default SPICE subcircuit 

10 files are not sorted unless the user specifies the -sort flag. 
There are no layers in a SPICE subcircuit file, so all of the 

digests for a cell are reported as non-Layer data: 

15 

20 

This is the same digest as the file-level digest computed by 
the GDSII parser. 

Unstructured Binary Files 
Unstructured binary files are non-text files which do not 

have a specification known to the canonical cell digest tool. 
For example, object code or executable programs would be 
unstructured text files. Because these files have no known 
structure, canonical cell digests cannot be computed for them. 
Only a file digest is computed. There is no syntax interpreta- 
tion or sorting of unstructured binary files. 

Example 9 

SPICE Format Netlist File Type 

Transistor level designs are often analyzed using the Simu- 
lation Program with Integrated Circuit Emphasis (better 
known as SPICE), developed in the 1970s at the University of 
California Berkeley campus. SPICE and its derivatives are 
still the gold standard numerical solver for integrated circuits, 
though capacity and runtime issues limit its use to subcircuits 
(dozens to hundreds of transistors, plus associated parasitic 
circuit elements) instead of entire designs. SPICE input files 
are text and can be created by designers but are generally 
written by circuit extractors reading layout from GDSII or 
OASIS®. Typically, the SPICE simulations which read these 
files are then used to generate timing models for Liberty 
format files. 

In this example, SPICE format netlist files have content 
digests for the following file elements: 

File 
File Header 
Port Definitions for Subcircuits 
Body of the Subcircuit 
The file is scanned to find the subcircuit names inside. For 

subcircuits, separate digests are computed for the port defi- 
nitions and the body of the subcircuit. These are based on the 
individual SPICE netlist tokens excluding any whitespace or 
comments. 

Digests are computed and returned for the header of the file 
(information outside of any subcircuit definitions) and for the 
file as a whole. These include any whitespace and comments. 

Include file directives are not interpreted, since the include 
file reference at the time of digest calculation may be different 
than at simulation time (e.g. if the path name is relative). 

25 

File "testfiles/testl.spi": Spice format 
Arguments: -mem 64 -nosort 

e4c0e613 File 
7a041fe8 File non-Whitespace 
07415f83 File Whitespace 

File Header (not sorted) 
c8954a7d File Header with Comments 
fa8f8413 File Header without Comments 
321ace6e File Header Comments 
fa8f8413 File Header non-Layer 

Cell "nand2" (not sorted) 
59fa7fl0 Cell with Comments 
bdda89ec Cell without Comments 
e420f6fc Cell Comments 
5f4226ed Cell Interface non-Layer 
e298af01 Cell Body non-Layer 

Syntax Interpretation 
30 There is no standard SPICE format, as variants have their 

own directives (especially device model parameters), but all 
of the programs use the same line-oriented netlist structure in 
which subcircuits (cells) start with .subckt and end with .ends. 
The prototype canonical cell digest SPICE parser creates a 

35 cell for subcircuits and records all other text as part of the file 
header. 

Comments begin with `*' and continue to the end of the 
current line. The `*' may have whitespace in front of it; this is 
removed. Any whitespace after the `*' is recorded without 

40 further processing. Comment lines inside a subcircuit are 
added to the cell body digest. 

Any line may be continued to the next line if the next line 
begins with +' in the first column. The +' is removed before 
merging the lines together, so that the following two line 

45 sequences are equivalent: 

50 
and 

+a 
+b 
+c 

.subckt a b c 

.subckt 

55 
No spaces are added when continuation lines are merged, so 
the following two line sequences are equivalent: 

60 .subckt a b c 

and 
.sub 

+ckt a b c 

65 Sequences of multiple whitespace characters in non-com- 
ment lines are converted to single space characters before 
sending the lines to the digest engine. 
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Dot command names (e.g..subckt) are assumed to be case- 
insensitive. Cell names are converted to lower case before 
being recorded, but otherwise the text is recorded without 
case conversion. 

Nets specified on .global lines are recorded as pins in the 
cell interface. 

.options and .param lines are added to the body of the cells 
under the assumption that they will affect the cells. 

Lines after a .end statement are recorded as file header data 
without any interpretation. The .end command is regarded as 
optional; no error is printed if it is missing. 

Dot commands other than .global, .options, .param, .sub- 
ckt, .ends, and .end are recorded as file header data without 
interpretation. 

Any subcircuit with an 'X' (subcircuit instantiation) com- 
mand is marked as hierarchical. 

Sorting of SPICE Netlist Files 
Because SPICE subcircuit netlists specify only connectiv- 

ity, they can be in any order. If sorting is requested, the lines 
in the file header and in the subcircuit are sorted alphabeti- 
cally. Repeated spaces in lines are removed before sorting is 
performed. 

The pin names for the subcircuit are sorted as well even 
though connections are positional (order-dependent), so the 
results from sorting should be used with caution. 

Limitations of the Prototype SPICE Netlist Parser 
The parser assumes that no SPICE subcircuit will be so 

large that the memory usage limit will be exceeded. It also 
assumes sufficient room to store all lines outside of any sub- 
circuit so that they may be sorted and recorded at the end of 
the file. 

.include statements are not processed because the file 
search path is not known to the parser and might change over 
time anyway. 

Parameters from .param lines are not substituted. Thus the 
following two blocks of text are not equivalent: 

.param 1p=0.35 

mpullup zn i vdd vdd pmos w=10.01=lp 

and 

mpullup zn i vdd vdd pmos w=10.01=0.35 

.param and .options lines are recorded without further inter- 
pretation. Thus the following two sequences are not equiva- 
lent: 

.param 1p=0.35 ln=0.3 wp=0.7 wn=0.7 

and 
.param 1p=0.35 ln=0.3 
.param wp=0.7 wn=0.7 
Annotated Sample SPICE Netlist File 
FIG. 13 is an annotated version of a SPICE file that illus- 

trates the parsing rules above. 

Examples 10-11 

LEF/DEF File Types 

Library Exchange Format (LEF) files provide a way to 
describe routing layer design rules and physical layouts from 
GDSII or OASIS® files for use in Place and Route (P&R) 
tools. They provide router-oriented wire and via construction 
rules plus abstractions of the cells to be placed and routed. 
Coupled with Design Exchange Format (DEF) files, they 
provide the specification for placement and routing of com- 
plete integrated circuits. 

46 
In these examples, LEF/DEF files have content digests for 

the following file elements: 
File 
File Header 

5 Header Comment Text 
Cell Comment Text 
Layer-by-Layer Geometric Objects 
Layer-by-Layer Non-geometric Objects 
All Other Objects: Cell Size, Site Type etc. 

10 Boolean Flags Referring to Other Lower-level Cells 
The database is scanned to find the cell names inside. For 

cells present, layer-by-layer digests are returned for all: 
1. Geometric objects such as polygons, rectangles, etc.; 

and 
2. Non-geometric objects such as text points, etc. 
A digest is assigned for all other objects such as the cell 

size, site type, and symmetry information. Digests are com- 
puted and returned for the header of the file (information 

20 
before any cell definitions) and for the file as a whole. 

As an option, separate digests are computed for comment 
text in the header and inside the cells, and differences in 
whitespace (number of spaces, tabs vs. spaces, blank lines) 
are ignored. 

25 Library Exchange Format (LEF) Files 
LEF files are text-oriented but they are generally written by 

automated tools, not designers. Descriptions of the process- 
ing technology (i.e. design rules) are typically stored in one 
LEF file, while cell information is specified in macros stored 

30 within another file. The technology information is recorded as 
file header data, while macros are recorded as cells. Nearly all 
of the information in a macro specifies the interface of the 
macro to the place and route tools, so it is recorded as cell 
interface data. Only the properties of a macro, if any, are 

35 recorded as cell body data. 
Like GDSII and OASIS®, much of the data in a LEF file is 

order-independent, so it is sorted by default unless the user 
specifies the -nosort flag. Information in the file header is 
sorted where appropriate, as is the data within the macro. 

40 Note that LEF files specify layers by name, not by number 
like GDSII or OASIS® files: 

5 

45 
File "testfiles/parsetest.ler: LEF format 
Arguments: -mem 64 -sort 

c5eb5fff File 
1c18cc01 File non-Whitespace 
eb7f52d1 File Whitespace 

File Header (sorted) 
30dbab35 File Header with Comments 

50 25a292d4 File Header without Comments 
157939e1 File Header Comments 
b450539c File Header non-Layer 
316de219 File Header Layer Ml 
a8fd3343 File Header Layer V1 
ff7eda09 File Header Layer M2 

55 1b691e80 File Header Layer V2 
ec75d49b File Header Layer M3 

Cell "AND2 Xl" (sorted) 
1ed769e0 Cell with Comments 
1ed769e0 Cell without Comments 
(none) Cell Comments 

60 818dbac9 Cell Interface non-Layer 
cbeeal9a Cell Interface Layer M1 
54b472b3 Cell Body non-Layer 

Library Exchange Format Files: Definitions 
65 The prototype LEF parser uses the definition of the LEF 

data file format in the Cadence LEF/DEF Language Refer- 
ence Manual, version 5.6 (September 2004). This document 
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has some ambiguities and typographical errors; these were 
resolved in the same manner as the reference parser supplied 
with the manual. 

Syntax Interpretation 
Cell descriptions in LEF are called macros; all information 

within a macro such as blockage and pin information is 
recorded as part of the cell interface. Blockages are regions 
which the router avoids when routing over the cell. Pins mark 
the locations to which the router draws wires to connect to the 
cell. 

Design rule information in a technology LEF file is 
recorded as part of the file header. 

Layers in a LEF file are indexed by name, so the parser 
creates a string layer name table and assigns indexes within 
that table as layer numbers. The table is available via the API. 

Lines are truncated to 2,048 characters per the LEF speci- 
fication. 

SITE statements are recorded in the file header; they do not 
form cells per se. 

Everything in a MACRO block except for properties is 
recorded as cell interface text, since a LEF file is meant to 
specify the interfaces of cells to a place and route tool. 

LEF keywords are matched in a case-insensitive fashion. 
The LEF 5.6 specification is silent on this matter except for 
&ALIAS and &ENDALIAS, which are explicitly case-insen- 
sitive. Currently, the canonical cell digests are based on the 
original case of the keywords. This applies to layer, macro, 
and pin names even if NAMESCASESENSITIVE is set to 
OFF. However, this is readily changed. 

Sorting of LEF Files 
Generally, objects in a LEF file can appear in any order, 

with two exceptions: 
object references come after their definitions 
the width of a PATH is determined by the most recent 

WIDTH statement 
Within individual objects, some information is order-inde- 

pendent and some (e.g. PATH points or ITERATE values) is 
order-dependent. The parser segregates order-independent 
fields from order-dependent fields to ensure that sorted data is 
still valid. 

When file sorting is requested, statements in the file header 
and within the macro are ordered alphabetically based first on 
the statement name and second on the statement parameters. 
Order-independent fields within statements are also sorted. 
To ensure canonicity, the WIDTH that applies to a given 
PATH is added to that PATH record prior to sorting. 

Limitations of the Prototype LEF Parser 
Many of the limitations of the LEF parser arise from the 

fact that it is parsing a single file, while tools that use LEF files 
can load multiple LEF files in sequence. The values from an 
earlier LEF file can be used in a later LEF file. Lacking access 
to those other files, the LEF parser relies on values passed to 
it. 

NAMESCASESENSITIVE, BUSBITCHARS, and 
DIVIDERCHAR statements are not interpreted. The parser 
gets the divider character from the top-level driver (which 
does not yet have the capability of setting it from the com- 
mand line, so a default value is used). If the parser were to rely 
on the value that it retrieved from the current file, it could get 
different results than the place and route tools when multiple 
LEF files are loaded. 

The file is assumed to be syntactically correct even if ref- 
erences to ALIAS names are treated as identifiers. The 
ALIAS statements themselves could be in another file and 65 

could include arbitrary amounts of syntax, making a file 
impossible to parse independently. 
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48 
Sorting of LEF files is alphabetic, not numeric, so canoni- 

cal cell digests currently rely on the LEF generation software 
continuing to use the same number format as before. 

The parser does not check to ensure that the technology 
LEF file (containing design rules) is separate from the cell 
library LEF file (containing macro descriptions). 

SITE block references to previously defined SITE blocks 
are not checked to ensure they exist; the older SITE blocks 
might be in another file and only one file is parsed at a time. It 
is assumed that changes to SITE objects will not change the 
MACRO objects that reference them. 

It is assumed that the technology information and other file 
header data will not exceed the memory usage limits and that 
no single MACRO will exceed the memory usage limits. 

Annotated Sample LEF File 
FIG. 14 is an annotated sample LEF file that illustrates 

application of the parsing rules above. 

Example 11 (cont.) 

Design Exchange Format (DEF) Files 

Design Exchange Format (DEF) files provide a way to 
describe design floor plans and netlists for use in Place and 
Route (P&R) tools. Coupled with Library Exchange Format 
(LEF) files, they provide the specification for placement and 
routing of complete integrated circuits. 

DEF files are text-oriented and may be written by auto- 
mated tools or designers. High-level design information, such 
as the die area and region specifications, may be created by 
hand while detailed blockage information and pre-routed nets 
are generally written by software. Because the DEF file might 
not include placement regions and they do not correlate with 
design hierarchy, all data in a DEF file is recorded in the file 
header digests. 

Like GDSII and OASIS®, much of the data in a DEF file is 
order-independent, so it is sorted by default unless the user 
specifies the -nosort flag. 

Note that DEF files specify layers by name, not by number 
like GDSII or OASIS® files: 

File "testfiles/simple.def': DEF format 

45 Arguments: -mem 64 -sort 
a832fb91 File 
807bad9c File non-Whitespace 
280fe544 File Whitespace 

File Header (sorted) 

50 

55 

60 

b8d02902 
c6810a4d 
7e51234f 
6d026f6f 
1d4870e4 
74aecb 62 
feafad9c 
6a00eeb9 
eeb61028 

File Header with Comments 
File Header without Comments 
File Header Comments 
File Header non-Layer 
File Header Layer ml 
File Header Layer vl 
File Header Layer m2 
File Header Layer v2 
File Header Layer m3 

Design Exchange Format Files: Definitions 
The prototype DEF parser uses the definition of the DEF 

data file format in the Cadence LEF/DEF Language Refer- 
ence Manual, version 5.6 (September 2004). This document 
has some ambiguities and typographical errors; these were 
resolved in the same manner as the reference parser supplied 
with the manual. 

Syntax Interpretation 
A DEF file describes a design (or a block of a design) as a 

flat entity with no real hierarchy. Region grouping, even if 
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used, does not reflect the design hierarchy. As a result, all DEF 
data is recorded as part of the file header. 

Layers in a DEF file are indexed by name, so the parser 
creates a string layer name table and assigns indexes within 
that table as layer numbers. The table is available via the API. 

Lines are truncated to 2,048 characters per the DEF speci- 
fication. 

DEF keywords are matched in a case-insensitive fashion. 
The DEF 5.6 specification is silent on this matter except for 
&ALIAS and &ENDALIAS, which are explicitly case-insen- 
sitive. The canonical cell digests are based on the original 
case of the keywords. 

To reduce DEF file size, reused coefficients (e.g. in a 
POLYGON within a BLOCKAGE statement) may be repre- 
sented as an asterisk (`*'). The parser does not currently 
expand asterisks to the numbers they represent, because any 
such value could in theory be an &ALIAS replacement and 
thus would not be a numeric token anyway. 

Sorting of DEF Files 
Most objects in a DEF file can appear in any order, except 

that object references come after their definitions. Within 
individual objects, some information is order-independent 
and some (e.g. POLYGON points) is order-dependent. The 
parser segregates order-independent fields from order-depen- 
dent fields to ensure that sorted data is still valid. For example, 
in a BLOCKAGE statement, the blockages for a layer are kept 
together when sorting. The objects within a layer can be 
sorted, however. 

When file sorting is requested, statements in the file are 
ordered alphabetically based first on the statement name and 
second on the statement parameters. Order-independent 
fields within a statement are also sorted. 

Limitations of the Prototype DEF Parser 
Many of the limitations of the DEF parser arise from the 

fact that it is parsing a single file, while tools that use DEF 
files can load multiple DEF files in sequence. The values from 
an earlier DEF file can be used in a later DEF file. Lacking 
access to those other files, the DEF parser relies on values 
passed to it. 

The file is assumed to be syntactically correct even if ref- 
erences to &ALIAS names are treated as identifiers. The 
&ALIAS statements themselves could be in another file and 
could include arbitrary amounts of syntax, making a file 
impossible to parse independently. 

The counts in BLOCKAGES, COMPONENTS, FILLS, 
GROUPS, NETS, NONDEFAULTRULES, PINS, PIN- 
PROPERTIES, PROPERTYDEFINITIONS, REGIONS, 
SCANCHAINS, SLOTS, SPECIALNETS, STYLES, and 
VIAS sections are not verified against the actual number of 
items within these sections. 

NAMESCASESENSITIVE, BUSBITCHARS, and 
DIVIDERCHAR statements are not interpreted. The parser 
gets the divider character from the top-level driver (which 
does not yet have the capability of setting it from the com- 
mand line, so a default value is used). If the parser were to rely 
on the value that it retrieved from the current file, it could get 
different results than the place and route tools when multiple 
DEF files are loaded. 

It is assumed that the UNITS command is either not present 
or will always be the same; coefficients in the file are currently 
not scaled by the design unit value. 

Asterisks in data point coefficients are currently not 
expanded to numbers. 

The memory used by comments is not always counted 
when determining whether the memory usage limit has been 
exceeded. 

50 
Annotated Sample DEF File 
FIG. 15 is an annotated version of DEF file that illustrates 

application of these rules. 
Not all possible statements are shown since everything 

5 except comments is sent to the file header digests anyway. 
The following types of DEF object are sortable: 
objects within the PROPERTYDEFINITIONS section 
ROW definitions 
TRACKS definitions 

o VIAS definitions; RECT and POLYGON objects within 
layers of a via 

STYLES definitions (but not the polygon points within 
styles) 

objects within the NONDEFAULTRULES section (but not 
15 the parameters within rules) 

objects within the REGIONS section (but not the param- 
eters within regions) 

layers within BLOCKAGE definitions; RECT and POLY- 
GON objects within layers 

20 PLACEMENT objects within BLOCKAGE definitions; 
RECT and POLYGON objects within PLACEMENT 
objects 

layers within the SLOTS section; RECT and POLYGON 
objects within layers 

25 layers within the FILLS section; RECT and POLYGON 
objects within layers 

objects within the COMPONENTS section (but not the 
parameters within components) 

objects within the PINS section (but not the parameters 
30 within pins) 

nets in NETS or SPECIALNETS sections (but not the 
parameters or connections within a net) 

nets in the SCANCHAINS section (but not the parameters 
or connections within a net) 

35 objects within the GROUPS section 

Example 12 

Structured Text File Type 
40 

In this example, Structured Text files have content digests 
for the following file elements: 

File 
File Header 

45 Comment Text 
Non-comment Text 
A byte-by-byte digest is computed for script files and other 

structured text files. The digest is independent of newline 
style. As an option, differences in whitespace are ignored. An 

50 optional comment marker may be passed in; if it is present, 
separate digests are computed for comment and non-com- 
ment text. An optional line continuation character may be 
passed in; if it is present, lines ending with this character are 
merged before digest computation. 

55 Structured Text (Script) Files 
Structured text files are line-oriented human-readable files 

with identifiable comments and possibly a continuation char- 
acter which signifies that a succeeding line is logically part of 
the current line. Shell, Perl, and Python scripts are typical 

60 examples of structured text files. 
All data in a structured text file is recorded as file header 

data, either file header comments or file header non-layer 
data. Leading whitespace is removed and repeated 
whitespace characters are merged to a single space. Com- 

65 ments begin with a user-specified comment character 
sequence, e.g. `#', and continue to the end of the line. If a line 
ends with a user-specified continuation character, e.g. ' \', it is 
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merged with the next line; the continuation character and the 
end of the line character are removed. 

Structured text files may have string constants enclosed in 
single or double quotes. Within a string constant, the quote 
character may appear if it is escaped with 'V Whitespace 
within a quoted string is not merged. 

Syntax Interpretation 
All data in a structured text file is recorded as file header 

data, either file header comments or file header non-layer 
data. 

For canonicity, repeated whitespace characters in a line are 
merged into a single space character. By default, all leading 
whitespace (indentation) is removed from the lines. Because 
indentation is significant in some languages (e.g. Python); 
there is a flag to retain leading whitespace as is. Even if this 
flag is set, repeated whitespace characters elsewhere in the 
line are still merged into a single space character. 

Empty lines (only a line ending with no other characters) 
are recorded only in the file-level digests; they are not 
recorded in the file header digests. 

If the file has DOS-style (CR-LF) line endings, they are 
converted to UNIX-style (LF only) line endings before any 
digests are computed. 

String constants, whether surrounded by single quotes or 
double quotes, are treated as single words; they are recorded 
as is with no interpretation or white space merging. The 
backslash character (T) can be used to escape quotes inside 
string constants: 

"This is a string constant with \" an embedded quote in it" 
The backslash character and enclosing quotes are recorded 

as part of the string constant. 
Lines ending with a user-specified continuation character 

(e.g. 'V) are merged with the following line prior to any other 
line processing, including identification of string constants. 
The continuation character is the last character before the end 
of the line with no white space following. It and the line 
ending character are removed when the two lines are merged. 
Any number of lines in a row may be merged this way. 

Comments begin with a user-specified character sequence 
(e.g. "#" or "- -") and continue to the end of the line. The 
comment character may be anywhere within the line. Com- 
ment characters within string constants do not begin a com- 
ment. Continuation character processing is performed before 
comment processing, so if a continuation character appears at 
the end of a comment line the line afterward will also be 
recorded as part of the comment. Thus the following two 
blocks of text are equivalent and are recorded as a single 
comment line: 

# this is a multi -\ 

line comment 

and 

# this is a multi-line comment 
The continuation character cannot be quoted; if the last 

character in a line is a continuation character, the line is 
merged with the next line even if it is preceded with, for 
example, 'V or is inside a string constant. 

Sorting of Structured Text Files 
Structured text files are generally order-dependent, so they 

cannot be sorted. 
Limitations of the Prototype Structured Text File Parser 
Currently there is no way to block removal of leading white 

space using the command line interface. The API has this 
capability. 

52 
Currently there is no way of specifying the comment char- 

acter sequence using the command line interface. The API has 
this capability. 

Currently there is no way of specifying the continuation 
5 character using the command line interface. The API has this 

capability. 
There is no way to specify the quoting character within 

strings; it is fixed as `V. 

Annotated Sample Structured Text File 
0 FIG. 16 is an annotated version of a structured text file. 

In this example, leading white space is not retained. If 
leading white space were retained, then all of the spaces at the 
front of the fifth line would have been recorded as file header 
text. 

15 

Example 13 

File Types Parsed by Outside Tools 

20 For file types parsed by outside tools, content digests are 
provided for at least the following file elements: 

File 
File Header Text 
Cell Name 

25 Interface Object Name, Flag, etc. 
Comment Text 
Cell Body Text. 
Any outside parser tool can be used that is compatible with 

30 
the canonical digest generating process. In one embodiment, 
an outside file parser returns to the digest calculation code a 
file using line-oriented syntax as follows: 

35 

40 

HEADERTEXT <header text> 
CELL <cell name> 
INTERFACE <interface object name> <interface flag>... 
COMMENT <comment text> 
CELLTEXT <cell body text> 

There may be more than one HEADERTEXT record per 
file. There may be more than one CELL per file. There may be 
more than one INTERFACE record per cell. 

The text of the line is added to the appropriate file or cell 
45 digest. Comment lines after a CELL record are added to the 

digest for that cell. 
User-Parsed Text Files 
There may be proprietary data file formats for which the 

user wants to record canonical cell digests. If so, the user can 
so write parsers for these formats and translate the data inside 

into the User-Parsed Text File format shown below: 

55 
HEADERTEXT header text 
HEADERTEXT(layer) header text 
CELL cell name 
INTERFACE interface object name interface object text 
INTERFACE(layer) interface object name interface object text 
HIERCELL 
CELLTEXT cell body text 

60 CELLTEXT(layer) cell body text 
CELLNONGEOM cell body text 
CELLNONGEOM(layer) cell body text 
COMMENT comment text 

65 This is a simple line-oriented syntax that provides com- 
plete access to all canonical cell digest types. Generally, file 
header data is indicated by HEADERTEXT lines, the begin- 
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ring of a cell is indicated by a CELL line, cell interface 
records are indicated by INTERFACE lines, cell body records 
are indicated by CELLTEXT or CELLNONGEOM lines, and 
comments are indicated by COMMENT lines. A HIERCELL 
line indicates a hierarchical cell, i.e. one that contains refer- 
ences to other, lower-level cells. Data within a cell continues 
to the next CELL or HEADERTEXT line or the end of the file. 
All file header, cell interface, and cell body data may have 
layer names or numbers specified. The data may be sorted 
(grouped by layer, then alphabetically within the layer) if the 
-sort option is specified. The text for which digests are to be 
computed can have any format meaningful to the user. 

Because the syntax is text-oriented and line-oriented, it is 
not possible to compare digests of files with this format to 
digests from any other file format. Binary file digests are 
computed using the binary data, and the parsers which com- 
pute digests for text files separate the lines into tokens first. 

User-Parsed Text Files: Definitions 

This format is provided for parsing proprietary format files. 
The user would write parsers that read file formats and gen- 
erate files in this simple format, then pass the generated files 
to the canonical cell digest utility. It in turn would compute 
the full range of digests. 

The description of the user-parsed file format is imple- 
mented by an Applications Program Interface (API) to the 
low-level digest engine. The interpretation of all file formats 
can be described as a series of calls to this API, so understand- 
ing this format will help the reader understand how the other 
formats are interpreted. 

In a second embodiment, which is more sophisticated than 
the embodiment above, the user-parsed file format is again a 
line-oriented format. Records appear on a single line that 
begins with a keyword such as HEADERTEXT, COM- 
MENT, CELL, INTERFACE, HIERCELL, or CELLTEXT. 
The HEADERTEXT, INTERFACE, and CELLTEXT lines 
may optionally have a layer name, in parentheses immedi- 
ately following the keyword. The record on the remainder of 
the line is then recorded on that layer name. If no layer name 
is provided, a numeric layer number of -1 for non-layer data 
is used. 

It is expected that these files will be generated only by 
computer software, so a strict format can be used: 

all keywords in upper case 

the keyword on a line is not be preceded by any characters 
on the line 

if no layer name is specified, a single space follows the 
keyword, even if the text to be recorded is empty 

If a layer name is specified, it is enclosed in parentheses 
immediately following the keyword with no spaces in 
between. The text between the parentheses, including any 
white space, is stored as the layer name without interpreta- 
tion. As a result, the layer name may not include a closing 
parenthesis. There is a space character after the closing paren- 
thesis. 

Everything after the first space is recorded as text of the 
specified type without further interpretation. 

Newline sequences (CR-LF on Windows, LF on Unix/ 
Linux) are removed before recording any digests, to avoid 
system dependence in the generated digests. 

There is no limit on the length of any line. Lines begin with 
a keyword; blank lines are illegal. 

5 

54 
Syntax of User-Parsed Text Files 
The format of a line is as follows: 

HEADERTEXT header text 
HEADERTEXT(layer) header text 

A HEADERTEXT line specifies data outside of any cell. If 
a cell is open (see below), that cell is terminated and no further 

o cell text can be provided until a new cell is started. All header 
data is saved as a single block, whether it is at the start of the 
file, between cells, or after the last cell. If the header text is to 
be sorted, all of it is kept in memory until the end of the file 
(subject to the memory usage limit) and then sorted as a unit. 

15 A space character follows the HEADERTEXT keyword; 
everything after that space to the end of the line is recorded as 
file header text. No further white space removal is performed, 
and no further interpretation or upper case/lower case con- 
version is performed. 

CELL cell_name 
A CELL line specifies the beginning of a new cell. If a cell 

is already open, it is terminated and all digests are computed 
for it. A space character follows the CELL keyword; every- 

25 
thing after that space to the end of the line is used as the cell 
name, including any white space. No interpretation or upper 
case/lower case conversion is performed on the cell name. 
Duplicate cell names are not allowed; if there might be dupli- 
cate names in a proprietary format, they are disambiguated in 

30 the parser for that format. A fatal error will occur if a duplicate 
cell name is found. 

20 

INTERFACE interface object name interface object text 
35 INTERFACE(layer) interface object name interface object text 

40 

45 

50 

An INTERFACE line specifies an interface record for a 
cell. There is a separate name for interface records, but oth- 
erwise the data on the line is not interpreted. There may be 
multiple interface records using the same interface name The 
interface name (e.g. a pin name for a cell) is the first white 
space-delimited word after the INTERFACE keyword or 
layer name. Any white space after the interface name is then 
skipped, and whatever text remains (if any) on the line is 
recorded as the interface object text. No upper case/lower 
case conversion is performed on the interface name or inter- 
face object text, and no white space removal is performed on 
the interface object text. Both the interface name and the 
interface object text are recorded as cell interface data. 

A fatal error will occur if an INTERFACE line is found 
outside of a cell (before the first CELL statement or between 
a HEADERTEXT statement and the next CELL statement). 

HIERCELL 
55 A HIERCELL line marks the cell as being hierarchical, 

meaning that it contains references to other cells. This infor- 
mation is available for digest reporting. There are no param- 
eters on this line. 

60 

CELLTEXT cell body text 
CELLTEXT(layer) cell body text 

65 A CELLTEXT line specifies cell body text. Everything 
after the space which follows the CELLTEXT keyword or the 
closing parenthesis of the layer name is recorded as cell body 



US 7,685,545 B2 
55 

text without further interpretation or upper case/lower case 
conversion. No white space removal is performed either. 

A fatal error will occur if a CELLTEXT line is found 
outside of a cell (before the first CELL statement or between 
a HEADERTEXT statement and the next CELL statement). 

CELLNONGEOM cell body text 
CELLNONGEOM(layer) cell body text 

A CELLNONGEOM line specifies non-geometric cell 
body text. Everything after the space which follows the 
CELLNONGEOM keyword or the closing parenthesis of the 
layer name is recorded as cell non-geometry body text with- 
out further interpretation or upper case/lower case conver- 
sion. No white space removal is performed either. 

A fatal error will occur if a CELLNONGEOM line is found 
outside of a cell (before the first CELL statement or between 
a HEADERTEXT statement and the next CELL statement). 

COMMENT comment_text 
The COMMENT line specifies comment text. Everything 

after the space which follows the COMMENT keyword is 
recorded as cell or file header comment text (depending on the 
context) without further interpretation, white space removal, 
or upper case/lower case conversion. 

Sorting of User-Parsed Text Files 
If sorting is requested, the text for the header is collected 

until the end of the file is reached (even if there are cells in the 
file) or until so much header text is stored in memory that the 
usage limit is exceeded. If the usage limit is exceeded, the 
stored header text is sent to the digest module in its original 
order. Similarly, text for a cell is collected until the end of the 
cell is reached or until so much header and cell text is stored 
in memory that a usage limit is exceeded. This should happen 
infrequently, if ample memory is provided or provisions are 
made to buffer memory to disk. 

Header text is kept in memory in preference to cell text. The 
assumption is that if there are cells in the file, the cells are the 
most likely units to overflow the memory limit and so there is 
little benefit to releasing the header text. 

For header text, the primary sort key is the layer number: 
lower layer numbers (indexes within the layer name table) 
come first. Within a given layer, the lines are sorted in alpha- 
betic order using the text of the lines, excluding the keyword 
and layer name. 

Within a cell, the primary sort key is the line type: interface 
text comes before cell body text, and cell non-geometry body 
text comes last. The layer number is the secondary key: lower 
layer numbers come first. Within a given layer, the lines are 
sorted in alphabetic order using the text of the lines, excluding 
the keyword and layer name. 

Annotated Sample User-Parsed File 
FIGS. 17A-17B are annotated examples of user parsed 

files. The layer names in FIG. 17A are layl , lay2, lay3, and 
lay4. These will be recorded as layers 0 through 3 respectively 
and a mapping table will be made available. File header, cell 
interface, cell body, and cell non-geometry body lines with no 
layer are recorded on layer -1, for which no layer name will 
be defined. For this format, the definition of layer -1 is deter- 
mined by the user's application. 

Cell ce112 is hierarchical and has interface objects (e.g. 
pins) named h3, il, i2, and i3. Cell cell 1 has interface objects 
named jl and j2. 

If the file is not sorted, digests are recorded in the order of 
appearance as shown above. If the file is sorted, canonical cell 
digests will be recorded as shown in FIG. 17B. 

Note that the sorting of interface lines is based on the 
remainder of a line before it is split into the interface name and 
the interface text. Thus interface h3 of cell ce112 is recorded 

56 
before interface il , even though the interface text of it pre- 
cedes that of h3 alphabetically. Similarly, the first line of the 
header text will be recorded last because it has a layer index of 
0 while the other header lines have a layer index of -1. 

5 Also note that cell ce112 ends when cell celll begins and 
that cell cell 1 ends when the header text begins. 

The file-level digests will not change when sorting is 
enabled. HIERCELL records do not affect the sorting or the 
canonical cell digests of the cells that contain them; they 

10 
simply set a flag in the cell data structure. 

Limitations of the User-Parsed Text File Format 
The User-Parsed file format is ASCII, so it is not possible to 

write a User-Parsed file that will have the same digests as a file 
in the binary OASIS® and GDSII formats. There are also 
differences between the ways that tokens are processed in 
User-Parsed files versus tokens in other structured text file 
formats. To match digests from files using a proprietary, inter- 
nal data format to digests from another format, the user either 
translates the internal data format files to the supported for- 
mat first or writes a custom parser for the internal format. 

15 

20 

Working Examples of Comparing Canonical Digests 

Three modes of comparison are available using the proto- 
type command line tool. File comparison mode compares 

25 digest files for two different versions of a design file such as 
OASIS® or GDSII and reports meaningful differences. Ver- 
sion check mode compares digests for a design file against 
digests calculated for a set of library files and reports the most 
recent match, if any. Database check mode matches cells in a 

30 design file against libraries containing digests of new/un- 
tested cells, production cells, deprecated/obsolete cells, and 
known bad cells. 

File Comparison Mode 
In file comparison mode, digests for two design files are 

35 compared and any differences are reported. It notes any 
unmatched cells and prints a report for cells with different 
digests, along with the layers (when applicable) and cell 
structures (e.g. interfaces, when applicable) that differ. This 
mode is useful when one wants to ensure that only authorized 
changes have been made to a design already in production. 

40 
For example, a designer might have changed one layer in a 
single cell; any reports of additional changes would represent 
errors. 

The syntax for running a file comparison using the proto- 
type command line tool is: 

sigcompare -compare [-showall] filel filet 
The first parameter, -compare specifies file comparison 

mode. By default, only differing cells are reported; the 
optional -showall flag specifies that all cells are reported, 

so including identical cells. 
Cells are matched by name, with no attempt to find copies 

under different names 
File Comparison Example 
Consider the following pair of Library Exchange Format 

55 (LEF) digest files: 

45 

60 

File "lib 45nm vl 
Arguments: -mem 64 

c5eb5fff File 
1c18cc01 File 
eb7f52d1 File 

File Header (sorted) 
6f3a526d File 
7a436b8c File 

65 157939e1 File 
b450539c File 

0.1ef': LEF format 
-sort 

non-Whitespace 
Whitespace 

Header with Comments 
Header without Comments 
Header Comments 
Header non-Layer 
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-continued 

316de219 File Header Layer Ml 
ff7eda09 File Header Layer M2 

Cell "AND2 Xl" (sorted) 
9a4743f9 Cell with Comments 
9a4743f9 Cell without Comments 
(none) Cell Comments 
051d90d0 Cell Interface non-Layer 
cbeeal9a Cell Interface Layer M1 
54b472b3 Cell Body non-Layer 

Cell "AND2 X2" (sorted) 
6922ffe9 Cell with Comments 
6922ffe9 Cell without Comments 
(none) Cell Comments 
04592cfd Cell Interface non-Layer 
39cfala7 Cell Interface Layer Ml 
54b472b3 Cell Body non-Layer 

Cell "AND2 X4" (sorted) 
aa5c90cd Cell with Comments 
aa5c90cd Cell without Comments 
(none) Cell Comments 
d48106d4 Cell Interface non-Layer 
2a69e4aa Cell Interface Layer M1 
39cfala7 Cell Interface Layer M2 
54b472b3 Cell Body non-Layer 

Cell "ANDS Xl" (sorted) 
aeld08cc Cell with Comments 
aeld08cc 
(none) 
5b3057b1 
al992dce 

Cell without Comments 
Cell Comments 
Cell Interface non-Layer 
Cell Interface Layer Ml 

54b472b3 Cell Body non-Layer 
Cell "ANDS X2" (sorted) 

e9fc0084 Cell with Comments 
e9fc0084 Cell without Comments 
(none) Cell Comments 
6bca4478 Cell Interface non-Layer 
d682364f Cell Interface Layer M1 
54b472b3 Cell Body non-Layer 

Cell "ANDS X4" (sorted) 
6a5906e0 Cell with Comments 
6a5906e0 Cell without Comments 
(none) Cell Comments 
0a3e63ea Cell Interface non-Layer 
34d317b9 Cell Interface Layer Ml 
77375526 Cell Interface Layer M2 
54b472b3 Cell Body non-Layer 

and: 

File "lib 45nm v2 0.1ef': LEF format 
Arguments: -mem 64 -sort 

e03e9e03 File 
80a5de77 File non-Whitespace 
30dbab35 File Whitespace 

File Header (sorted) 
7c315cff File Header with Comments 
6948651e File Header without Comments 
157939e1 File Header Comments 
b450539c File Header non-Layer 
316de219 File Header Layer Ml 
ec75d49b File Header Layer M2 

Cell "AND2 Xl" (sorted) 
1ed769e0 Cell with Comments 
1ed769e0 Cell without Comments 
(none) Cell Comments 
818dbac9 Cell Interface non-Layer 
cbeeal9a Cell Interface Layer M1 
54b472b3 Cell Body non-Layer 

Cell "AND2 X2" (sorted) 
498852e8 Cell with Comments 
498852e8 Cell without Comments 
(none) Cell Comments 
04592cfd Cell Interface non-Layer 
19650ca6 Cell Interface Layer M1 
54b472b3 Cell Body non-Layer 

Cell "AND2 X4" (sorted) 
aa5c90cd Cell with Comments 

5 
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aa5c90cd Cell without Comments 
(none) Cell Comments 
d48106d4 Cell Interface non-Layer 
2a69e4aa Cell Interface Layer M1 
39cfala7 Cell Interface Layer M2 
54b472b3 Cell Body non-Layer 

Cell "AND3 Xl" (sorted) 
aeld08cc Cell with Comments 
aeld08cc Cell without Comments 

10 (none) Cell Comments 
5b3057b1 Cell Interface non-Layer 
al992dce Cell Interface Layer Ml 
54b472b3 Cell Body non-Layer 

Cell "AND3 X2" (sorted) 
e9fc0084 Cell with Comments 

15 e9fc0084 Cell without Comments 
(none) Cell Comments 
6bca4478 Cell Interface non-Layer 
d682364f Cell Interface Layer Ml 
54b472b3 Cell Body non-Layer 

Cell "AND3 X4" (sorted) 
6a5906e0 Cell with Comments 
6a5906e0 Cell without Comments 
(none) Cell Comments 
0a3e63ea Cell Interface non-Layer 
34d317b9 Cell Interface Layer Ml 
77375526 Cell Interface Layer M2 
54b472b3 Cell Body non-Layer 

20 

25 

These files were generated by reading two versions of a 
LEF file with geometry sorting enabled (recommended for 
OASIS®, GDSII, LEF, DEF, and Liberty format files) and 

30 32-bit digests. Because LEF files specify how a place and 
route tool should connect to standard cells, nearly everything 
in the cells is in the interface-changes are quite significant, 
because they mean that the new layout versions could not 
simply be dropped in to replace the older versions. 

35 Running this command: 

40 

sigcompare -compare 
sigcompare_file2.txt 

Produces the following report: 

sigcompare_file 1 .txt 

Summary of file-level comparisons: 
File "lib 45nm vl 0.1er File digest does not match 
File "lib 45nm v2 0.1ef' File digest. 

45 File "lib 45nm vl 0.1er non-Whitespace digest does not match 
File "lib 45nm v2 0.1ef' non-Whitespace digest. 
File "lib 45nm vl 0.1er Whitespace digest does not match 
File "lib 45nm v2 0.1ef' Whitespace digest. 
Summary of file header comparisons: 
File "lib 45nm vl 0.1er header is a partial match with 

50 File "lib 45nm v2 0.lef' header: 
non-Layer digests match 
File Header Layers matched: 

M1 
File Header Layers mismatched: 

M2 
comments match 

Summary of all cell comparisons: 
2 cells are partial matches 
4 cells are perfect matches 

File "lib 45nm vl 0.1er cell "AND2 X2" is a partial match 
with 
File "lib 45nm v2 0.1er cell "AND2 X2": 

Cell Interface matches partially: 
Cell Interface non-Layer digests match 
Cell Interface Layers mismatched: 

M1 
no Cell Body data is present 
no Cell Body non-Geometric Layer data is present 
no comments present 

File "lib 45nm vl 0.1er cell "AND2 Xl" is a partial match 

55 

60 

65 
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with 
File "lib 45nm v2 0.lef' cell "AND2 Xi": 

Cell Interface matches partially: 
Cell Interface non-Layer digests do not match 
Cell Interface Layers matched: 

M1 
no Cell Body data is present 
no Cell Body non-Geometric Layer data is present 
no comments present 

There are differences somewhere in the files, so the file 
digests of all bytes in the file differ. Some of the values are 
different as well, so the non-whitespace digests differ. 
Finally, the whitespace digests differ. The file digest compari- 
son is printed for all file types; the other two are printed only 
for text file types. 

The LEF file headers (which include design rules and para- 
sitic information for routing layers) differ on layer M2, and 
the cells AND2_X2 andAND2_X1 do not match completely. 20 

These comparisons do not show the exact nature of the dif- 
ferences between the headers and the cells; they simply tell 
the user where to look. 

Not all design file formats have relevant data in the file 
header. GDSII files have no meaningful data in the file header, 
and OASIS® file-level properties do not affect the geometric 
representation. As a result, a comparison between GDSII or 
OASIS® files will not include a report on matching of file 
header data. 

Version Reporting Mode 30 

One use of version reporting mode is to determine the 
source library for cells in a design file when the user has 
multiple versions of a library file. For cells in the design file, 
the program locates the most recent match from all of the 
library files, if any. 

The syntax for version reporting mode is: 

60 

-continued 

File Header (sorted) 

5 
(none) File Header with Comments 
(none) File Header without Comments 
(none) File Header Comments 

Cell "top" (sorted; hierarchical) 
4512f0e0 Cell with Comments 
4512f0e0 Cell without Comments 

10 (none) Cell Comments 
4512f0e0 Cell Body non-Layer 

Cell "AND2 Xl" (sorted) 
63710c55 Cell with Comments 

63710c55 Cell without Comments 

15 
(none) Cell Comments 

a57f61d1 Cell Body Layer 8 

d5557088 Cell Body Layer 10 

135b1d0c Cell Body Layer 12 

Cell "AND2 X2" (sorted) 

4245e32b Cell with Comments 
4245e32b Cell without Comments 

(none) Cell Comments 
33bfda26 Cell Body Layer 8 

47834653 Cell Body Layer 10 

36797f5e Cell Body Layer 12 

25 Cell "AND2 X4" (sorted) 

sigcompare -report [-showall] file -1 file . . . -2 file . . . 

[-3 file . . . ] . . . 

The design file is first; the remaining files are libraries. 
Library files are specified with their version number, with -1 
representing the most recent version, -2 representing the next 
most recent version, etc. There is no limit on the version 
numbers or the number of files per version number, except 
that the version numbers are sequential and there is at least 
one file per version number. 

The -report parameter specifies version reporting mode. By 
default, only unmatched cells (e.g. place and route cells), 
imperfect matches, or matches to out-of-date cells are 
reported; the optional -showall flag specifies that all cells are 
reported, including perfect matches to the most recent library 
version. 

If a file name starts with a "-" then its name is preceded with 
-file. 

Cells are matched by name, with no attempt to find copies 
under different names 

Version Reporting Example 
This example compares the digests from a small design 

OASIS® file against the GDSII libraries used to build it. The 
design digest file is named design_from_versions.txt: 

File "design from versions.oas": OASIS format 
Arguments: -grid le-9 -mem 64 -sort 

f3b2848e File 
(none) File non-Whitespace 
(none) File Whitespace 

7dbb4961 

7dbb4961 

(none) 

b431 c2dd 
addb2970 

6451 a2cc 

Cell with Comments 

Cell without Comments 
Cell Comments 

Cell Body Layer 8 

Cell Body Layer 10 

Cell Body Layer 12 

Digests from the most recent library are included in the file 
35 sigcompare_versionl 3. txt: note that the GDSII cells have 

comment digests while the OASIS cells above do not have 
any comments. 

40 

45 

File "lib vl 3.gds": GDS format 
Arguments: -grid le-9 -mem 64 -sort 

3b57a2c0 File 
(none) File non-Whitespace 
(none) File Whitespace 

File Header (sorted) 
9547893d File Header with Comments 
01f60a9d File Header without Comments 
94b183a0 File Header Comments 
01f60a9d File Header non-Layer 

Cell "AND2 Xl" (sorted) 
e60bb9da Cell with Comments 

50 7ff2lcaa Cell without Comments 
9919a570 Cell Comments 
b9fc712e Cell Body Layer 8 

d5557088 Cell Body Layer 10 
135b1d0c Cell Body Layer 12 

Cell "AND2 X2" (sorted) 
55 ff7d7b80 Cell with Comments 

6684def0 Cell without Comments 
9919a570 Cell Comments 
cdf468c5 Cell Body Layer 8 

9d09c96b Cell Body Layer 10 
36797f5e Cell Body Layer 12 

60 Cell "AND2 X4" (sorted) 
11174169 Cell with Comments 
88eee419 Cell without Comments 
9919a570 Cell Comments 
7715e8f3 Cell Body Layer 8 

8158c56e Cell Body Layer 10 
7ea3c984 Cell Body Layer 12 

65 
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Digests from the previous version are included in the file 
sigcompare_versionl 2.txt: 

File "lib vl 2.gds": GDS format 
Arguments: -grid le-9 -mem 64 -sort 

f7b57566 File 
(none) File non-Whitespace 
(none) File Whitespace 

File Header (sorted) 
e4590214 File Header with Comments 
d5839d36 File Header without Comments 
31da9f22 File Header Comments 
d5839d36 File Header non-Layer 

Cell "AND2 Xl" (sorted) 
6f006266 Cell with Comments 
26f9c716 
99f9a570 
b9fc712e 
26cf422a 

Cell without Comments 
Cell Comments 
Cell Body Layer 8 

Cell Body Layer 10 

b9caf4lf Cell Body Layer 12 

Cell "AND2 X2" (sorted) 
4b527d9d Cell with Comments 
4245e32b Cell without Comments 
09179eb6 Cell Comments 
33bfda26 Cell Body Layer 8 

47834653 Cell Body Layer 10 

36797f5e Cell Body Layer 12 

Cell "AND2 X4" (sorted) 
b35fe404 
92f41f5b 
2labfb5f 
418cffaf 
addb2970 
7ea3c984 

Cell with Comments 
Cell without Comments 
Cell Comments 
Cell Body Layer 8 

Cell Body Layer 10 

Cell Body Layer 12 

5 

10 

15 

20 

25 

30 

35 

Digests from the oldest active version of the library are 
stored in sigcompare_versionl 1.txt: 

File "lib vl 1.gds": GDS format 
Arguments: -grid le-9 -mem 64 -sort 

ae014c24 File 
(none) File non-Whitespace 
(none) File Whitespace 

File Header (sorted) 
82295a77 File Header with Comments 
86b9ff40 File Header without Comments 
0490a537 File Header Comments 
86b9ff40 File Header non-Layer 

Cell "AND2 Xl" (sorted) 
15918b78 Cell with Comments 
8c682e08 Cell without Comments 
99f9a570 Cell Comments 
b9fc712e Cell Body Layer 8 

26cf422a Cell Body Layer 10 
135b1d0c Cell Body Layer 12 

Cell "AND2 X2" (sorted) 
Sal e9163 Cell with Comments 
169108cf Cell without Comments 
4c8f99ac Cell Comments 
33bfda26 Cell Body Layer 8 

47834653 Cell Body Layer 10 
6fad94ba Cell Body Layer 12 

Cell "AND2 X4" (sorted) 
99bcef32 Cell with Comments 
b817146d Cell without Comments 
2labfb5f Cell Comments 
b431c2dd Cell Body Layer 8 

addb2970 Cell Body Layer 10 
alfdffc0 Cell Body Layer 12 

40 

45 

62 
If this command is run: 

sigcompare -report design from versions.txt \ 
-1 sigcompare versionl 3.txt \ 
-2 sigcompare versionl 2.txt \ 
-3 sigcompare versionl 1.txt 

Then the following report is generated: 

Summary of all comparisons: 

1 cells do not appear in any library 
1 of these cells are hierarchical 

2 cells match only partially with library cells 
2 cells match old library cells 

File "design from versions.oas" cell "top" does not match any 
library cell. 

cell is hierarchical. 
File "design from versions.oas" cell "AND2 X4" is a partial 
match with 
File "lib vl 1.gds" cell "AND2 X4": 

no Cell Interface data is present 
Cell Body data matches partially: 

Cell Body Layers matched: 
10 8 

Cell Body Layers mismatched: 
12 

no Cell Body non-Geometric Layer data is present 
there are 2 newer versions of this cell 

File "design from versions.oas" cell "AND2 Xl" is a partial 
match with 
File "lib vl 3.gds" cell "AND2 Xi": 

no Cell Interface data is present 
Cell Body data matches partially: 

Cell Body Layers matched: 
10 12 

Cell Body Layers mismatched: 
8 

no Cell Body non-Geometric Layer data is present 
File "design from versions.oas" cell "AND2 X2" is a perfect 
match with 
File "lib vl 2.gds" cell "AND2 X2": 

no Cell Interface data is present 
Cell Body data matches perfectly: 

Cell Body Layers matched: 
10 12 8 

no Cell Body non-Geometric Layer data is present 
there is 1 newer version of this cell 

The top-level design cell is not in any library, as expected. 
The other three cells in the design file have at least one 
reportable issue: 

AND2_X4 does not match any library cell perfectly; the 
50 closest match is a version from the oldest library 

AND2_X1 does not match any library cell perfectly; the 
closest match is a version from the newest library 

AND2_X2 is a perfect match to a cell in the second oldest 
library 

55 The list of matched and mismatched data types and layers 
is printed when a cell matches only in part. 

Database Checking Mode 
One use of database checking mode is to verify a candidate 

design file against a set of libraries tagged with maturity 
60 levels: new/unproven, production, deprecated/obsolete, or 

known bad. These represent the lifetime of a particular ver- 
sion of a cell. For example, if a design is in mass production, 
the user might not want to use an unproven version of a cell; 
the user might want to use only cells that have been marked 

65 production-worthy. Once a new version has been proven, 
however, older versions are phased out. Deprecated versions 
might be used only in designs already in mass production, not 
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in new designs. Finally, if a cell version is known to have 
functional or yield problems, it should not be used in any 
designs. 

Canonical cell digest matching allows the user to classify 
all of the cells in a candidate file, even if they have been copied 5 

under different names. In this way the user can detect all uses 
of a known bad cell or identify unauthorized cells in time to 
prevent release of a design to fabrication. 

Using a prototype command line processor, the syntax for 
database checking mode is: 

sigcompare -database [-showall] [-new . . . ] [-prod . . . ] 

[-depr . . . ] [-bad . . . ] -test . . . 

The -database parameter specifies database checking 
mode. By default, perfect matches to production cells are not 
reported. Use the optional -showall flag to report these cells as 
well. 

The remainder of the command line is the list of digest files 
with their types. They may be in any order except that there is 
at least one -test (candidate) file and at least one file of another 
type. 

The -new parameter is used to specify libraries containing 
cells that are new and have not yet been proven in production. 
All file names that follow, up to the next library type, are 
marked as new. 

The -prod parameter is used to specify libraries containing 
cells that have been proven in production. All file names that 
follow, up to the next library type, are marked as production. 

The -depr parameter is used to specify libraries containing 
cells that are deprecated or obsolete and should not be used in 
new designs. All file names that follow, up to the next library 
type, are marked as deprecated. 

The -bad parameter is used to specify libraries containing 
cells that are known to be bad and should be removed from all 
designs. All file names that follow, up to the next library type, 
are marked as known bad. 

The -test parameter is used to specify candidate design 
files. Generally the user will compare only one candidate file 
at a time. 

If a file name starts with a "-" then its name is preceded with 
-file. 

Database Checking Example 
This example compares the digests from a small design 

OASIS® file against the GDSII libraries used to build it. The 
design digest file is named design_from_database.txt: 

File "design from database.oas": OASIS format 
Arguments: -grid le-9 -mem 64 -sort 

14430d19 File 
(none) File non-Whitespace 
(none) File Whitespace 

File Header (sorted) 
(none) File Header with Comments 
(none) File Header without Comments 
(none) File Header Comments 

Cell "top" (sorted; hierarchical) 
fccf8240 Cell with Comments 
fccf8240 Cell without Comments 
(none) Cell Comments 
fccf8240 Cell Body non-Layer 

Cell "AND2 Xl" (sorted) 
7ff2lcaa Cell with Comments 
7ff2lcaa Cell without Comments 
(none) Cell Comments 
b9fc712e Cell Body Layer 8 

d5557088 Cell Body Layer 10 
135b1d0c Cell Body Layer 12 

Cell "AND2 X2" (sorted) 
aeece77d Cell with Comments 
aeece77d Cell without Comments 

10 

15 

64 

-continued 

(none) 
dfl6de70 
47834653 
36797f5e 

Cell Comments 
Cell Body Layer 8 

Cell Body Layer 10 

Cell Body Layer 12 

Cell "AND2 X4" (sorted) 
b817146d 
b817146d 
(none) 
b431 c2dd 
addb2970 
al fdffc0 

Cell with Comments 
Cell without Comments 
Cell Comments 
Cell Body Layer 8 

Cell Body Layer 10 

Cell Body Layer 12 

Cell "AND2 X4A" (sorted) 
b817146d Cell with Comments 
b817146d Cell without Comments 
(none) Cell Comments 
b431c2dd Cell Body Layer 8 

addb2970 Cell Body Layer 10 

al fdffc0 Cell Body Layer 12 

Cell "AND2 X3" (sorted) 
20 c6f8c857 Cell with Comments 

c6f8c857 Cell without Comments 
(none) Cell Comments 
b9fc712e Cell Body Layer 8 

075a8f95 Cell Body Layer 10 

25 785e36ec Cell Body Layer 12 

Cell "AND2 X5" (sorted) 

30 

e60bb9da 
7ff2lcaa 
991%570 
b9fc712e 
d5557088 
135b1d0c 

Cell with Comments 
Cell without Comments 
Cell Comments 
Cell Body Layer 8 

Cell Body Layer 10 

Cell Body Layer 12 

The files sigcompare_versionl 1 .txt, sigcompare ver- 
35 sionl 2. txt, and sigcompare_versionl 3. txt from the ver- 

sion reporting example are used again, along with a new file 
sigcompare_versionl 4. txt: 

40 

File "lib vl 4.gds": GDS format 
Arguments: -grid le-9 -mem 64 -sort 

c589fla1 File 
(none) File non-Whitespace 
(none) File Whitespace 

45 File Header (sorted) 
43922b24 File Header with Comments 
c52bd464 File Header without Comments 
86b9ff40 File Header Comments 
c52bd464 File Header non-Layer 

Cell "AND2 Xl" (sorted) 
50 512424b9 Cell with Comments 

4a03a6f8 Cell without Comments 
1b278241 Cell Comments 
b9fc712e Cell Body Layer 8 

8balel3a Cell Body Layer 10 
785e36ec Cell Body Layer 12 

55 Cell "AND2 X2" (sorted) 
a994ef98 Cell with Comments 
58eb1029 Cell without Comments 
fl7fffb1 Cell Comments 
cdf468c5 Cell Body Layer 8 

47a75210 Cell Body Layer 10 
d2b82afc Cell Body Layer 12 

Cell "AND2 X4" (sorted) 
9842af7a Cell with Comments 

60 

65 

5c09dc54 
c44b732e 
8d50e097 
affaf547 
7ea3 c984 

Cell without Comments 
Cell Comments 
Cell Body Layer 8 

Cell Body Layer 10 
Cell Body Layer 12 
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When this command is run: 

sigcompare -database -new sigcompare versionl 4.txt \ 
-prod sigcompare versionl 3.txt \ 
-depr sigcompare versionl 2.txt \ 
-bad sigcompare versionl 1.txt \ 
-test design from database.txt 

The following report is generated: 

Summary of all comparisons: 

1 cells have no good matches 
1 of these cells are hierarchical 

2 cells are perfect matches with known bad cells 
1 of these matches are under different names 

1 cells are partial matches with deprecated cells 
1 cells are partial matches with new cells 

1 of these matches are under different names 
2 cells are perfect matches with production cells 

1 of these matches are under different names 
File "design from database.oas", cell "top": no good matches. 

cell is hierarchical. 
File "design from database.oas" cell "AND2 X4A" is a perfect 
match with 
File "lib vl 1.gds" bad cell "AND2 X4": 

no Cell Interface data is present 
Cell Body data matches perfectly: 

Cell Body Layers matched: 
10 12 8 

no Cell Body non-Geometric Layer data is present 
File "design from database.oas" cell "AND2 X4" is a perfect 
match with 
File "lib vl 1.gds" bad cell "AND2 X4": 

no Cell Interface data is present 
Cell Body data matches perfectly: 

Cell Body Layers matched: 
10 12 8 

no Cell Body non-Geometric Layer data is present 
File "design from database.oas" cell "AND2 X2" is a partial 
match with 
File "lib vl 2.gds" deprecated cell "AND2 X2": 

no Cell Interface data is present 
Cell Body data matches partially: 

Cell Body Layers matched: 
10 12 

Cell Body Layers mismatched: 
8 

no Cell Body non-Geometric Layer data is present 
File "design from database.oas" cell "AND2 X3" is a partial 
match with 
File "lib vl 4.gds" new cell "AND2 Xi": 

no Cell Interface data is present 
Cell Body data matches partially: 

Cell Body Layers matched: 
12 8 

Cell Body Layers mismatched: 
10 

no Cell Body non-Geometric Layer data is present 
File "design from database.oas" cell "AND2 X5" is a perfect 
match with 
File "lib vl 3.gds" production cell "AND2 Xi": 

no Cell Interface data is present 
Cell Body data matches perfectly: 

Cell Body Layers matched: 
10 12 8 

no Cell Body non-Geometric Layer data is present 

As before, the top-level cell does not match any of the 
libraries. Any cell the designer creates as part of the physical 
design process, e.g. by place and route, will not be in a library. 
Usually these cells will not be leaf cells, so a report is printed 
for cells that are hierarchical, meaning they have references to 
other cells in them. 

66 
Matches to known bad cells are listed after unmatched 

cells. In this program mode, matches are found and reported 
even if the cell names differ. For example, cell AND2_X4A is 
a copy of the known bad cell AND2_X4 from the oldest 

5 library (version 1.1), suggesting that a designer renamed the 
cell in a design block rather than replace it with the up-to-date 
version. The known bad version of AND2_X4 also appears 
under its original name 

Matches to deprecated cells are listed next. Here the best 
10 match to the design cell AND2_X2 is from the deprecated 

library version 1.2. This suggests that a designer modified the 
cell locally starting with an out-of-date library. The layer 
similarities and differences are noted with the cell and file 
names 

15 Matches to new cells are listed after matches to deprecated 
cells. Cell AND2_X3 from the design is a perfect match to the 
new library cell AND2_X1, meaning that it was copied from 
the new library under a different name 

20 
Finally, matches to production cells under different names 

are listed. Here the design cell AND2_X5 is a copy of the 
production cell AND2_X1 from library version 1.3. This is 
not an immediate problem, but if version 1.3 of AND2_X1 is 
modified later, the copy will not be replaced with the 

25 
improved version. 

If the -showall option is selected, matches to production 
cells of the same name are listed after all other matches. In this 
tiny example only one additional cell report would be printed; 
normally thousands of matching cell reports would be 

30 printed. 

File "design from database.oas" cell "AND2 Xl" is a perfect 
match with 

35 File "lib vl 3.gds" production cell "AND2 Xi": 
no Cell Interface data is present 
Cell Body data matches perfectly: 

Cell Body Layers matched: 
10 12 8 

no Cell Body non-Geometric Layer data is present 

40 

Reports of Matching Liberty (.lib) Files 

The Liberty format file testfiles /tstlibpar2.lib contains tim- 
ing models for a few cells. The cell AND2_X2 has both cell 

45 and scaled_cell specifications. In one embodiment these are 
combined to generate the digest for the cell. The cells 
AND2_X 1 ,AND2_X l_copy, and AND2_X1_copy_b are 
identical; AND2_X1 _copy is an exact copy while some of the 
statements within AND2_X1_copy_b have been reordered. 

50 Without sorting, the digests differ: 

55 

60 

otismartsig -sort -1 b testfiles/tstl bpar2.1ib 

Cell "AND2 Xl" 
Interface CRC 0190af2f 
Contents CRC 6a059541 

Cell "AND2 X1 copy" 
Interface CRC 0190af2f 
Contents CRC 6a059541 

Cell "AND2 X1 copy b" 
Interface CRC lee6bb80 
Contents CRC e4fa24f0 

The pin group statements of the cells are considered part of 
65 the cell interface. Because two pin statements were 

exchanged in AND2_X1_copy_b, both the interface and the 
contents digests changed. 
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With sorting on, all of the digests match: 

otismartsig -sort -lib testfiles/tstlibpar2.lib 

Cell "AND2 XI" 
Interface CRC 0190af2f 
Contents CRC dc623050 

Cell "AND2 X1 copy" 
Interface CRC 0190af2f 
Contents CRC dc623050 

Cell "AND2 X1 copy b" 
Interface CRC 0190af2f 
Contents CRC dc623050 

Modifying the header of a Liberty format file (e.g. the 
units, operating conditions, or table indices) potentially 
impacts cells in the library, so by default the non-comment 
tokens of the header are added to the digest of cells in the 
library. Any change in the header will thus change cell 
digests. 

Reports of Matching Verilog Files 

The file testfiles/verilog_test.v contains several small mod- 
ules that describe the function of some transistor-level cells. 
Some of these modules are copies. For example, the module 
DFF_X2 is a direct copy of the module DFF_X 1 . Accord- 
ingly, the digests for the two modules are identical: 

otismartsig -ver testfiles/ve log_test.v 

Cell "DFF Xl" 
Interface CRC c102a525 
Contents CRC dbac5dc2 

Cell "DFF X2" 
Interface CRC c102a525 
Contents CRC dbac5dc2 

A blank line was removed from within the cell, but the 
language constructs are identical. There are no comments 
within either module, so no comment digests are reported. 

The file testfiles/verilog_test2.v contains the modules 
0A121_X1 and 0A121_X2. The latter is identical except that 
the port ordering has changed. Often Verilog modules are 
instantiated using positional parameters, so the connections 
to the modules would be different and the digests will also be 
different: 

otismartsig -ver testfiles/verilog_test2.v 
File "testfiles/verilog_test2.v": Verilog format 

File CRC 25de7835 
File header CRC 6ef229e6 
File comment CRC 6ef229e6 
File non-whitespace CRC 07f87fb9 
File whitespace CRC ac6fc0b2 

Cell "OAI21 Xl" 
Interface CRC dae46517 
Contents CRC c73aceaf 

Cell "OAI21 X2" 
Interface CRC 01391569 
Contents CRC c73aceaf 

If -sort is specified, however, the ports are put into alpha- 
betical order for the purpose of computing the digests and the 
cells will match: 
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otismartsig -sort -ver testfiles/verilog test2.v 
File CRC 25de7835 

5 File header CRC 6ef229e6 
File comment CRC 6ef229e6 
File non-whitespace CRC 07f87fb9 
File whitespace CRC ac6fc0b2 

Cell "OAI21 XI" 
Interface CRC cf2d7023 

10 Contents CRC c73aceaf 
Cell "OAI21 X2" 

Interface CRC cf2d7023 
Contents CRC c73aceaf 

is Reports of Matching GDSII Files 
The file testfiles/sigtest.gds is a synthetic GDSII format file 

constructed to show some of the features of GDSII canonical 
cell digest calculation. It contains four cells, Structure 1 

through Structure 4. Structure 2 is a leaf cell, referenced by 
20 the other three cells. Structure and array references do not 

have layer numbers, so their digests are stored on layer -1 as 
non-layer data: 

25 
otismartsig -gds testfiles/sigtest.gds 
File "testfiles/sigtest.gds": GDS format 

File CRC d0b40760 
Cell "Structure 1" 

Comment CRC b0f5064e 

30 Layer -1 CRC 485b93e7 
Layer 3 CRC 58ffb953 
Layer 42 CRC e6098359 
Cell CRC 4658afa3 

Cell "Structure 2" 
Comment CRC 6acc5ddd 
Layer 1 CRC 0e517512 
Layer 5 CRC 00065ea8 
Layer 19 CRC 931b9a0f 
Cell CRC f780ec68 

Cell "Structure 3" 
Comment CRC b0f5064e 
Layer -1 CRC 485b93e7 

40 Layer 3 CRC 58ffb953 
Layer 42 CRC e6098359 
Cell CRC 4658afa3 

Cell "Structure 4" 
Comment CRC 9d8b21ad 
Layer -1 CRC 485b93e7 

45 Layer 3 CRC 47a23fdd 
Layer 42 CRC e6098359 
Cell CRC 747bOece 

35 

Structure 3 is a direct copy of Structure 1, so all of its 
50 digests are identical to those of Structure 1. The polygons on 

layer 3 of Structure 4 are in a different order, so the digest for 
layer 3 differs from that of Structure 1 and Structure 3. 
Optionally, an otismartsig user may specify sorting of poly- 
gons and other steps to further reorganize the design data that 

55 is digested. 

Applying Canonical Digests to Solve IC Design Problems 
Calculating and comparing canonical digests can have 

many practical uses in the design of integrated circuits. Dif- 
60 ferent embodiments of the claimed technology address dif- 

ferent issues. Some of the use cases for this technology are 
listed above. FIG. 3 illustrates junctures in the design process 
at which the technology disclosed can usefully be applied. 
Most of the blocks in FIG. 3 match blocks in FIG. 1. Added to 

65 FIG. 3 is an audit 362, which indicates an independent review 
of production designs manufactured at the foundry to verify 
the presence of royalty bearing design templates in the pro- 
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duction designs. The block with dashed lines 301 is placed at 
junctures where calculating and comparing canonical digests 
may usefully be applied, without intending to be exhaustive. 
Before logic synthesis 123, the validity of libraries of cell 
designs being used for synthesis can be tested. As new data is 
received from the foundry 141 for incorporation in a library of 
cell designs number 131, the significance of changes can be 
reviewed and evaluated. Before and after floor planning 133, 
designs can be scrutinized for use of approved cells, renaming 
and modification of cells and to avoid use of bad cells. As part 
of an audit process 362, canonical digests of cells in produc- 
tion designs can be compared to digests of royalty bearing cell 
designs. Lists of and counts of cells in the production design 
can be generated for a royalty auditing purposes. These useful 
applications are further apparent in the sections that follow. 

Common Theme 
The useful applications described rely on a computer 

implemented method to evaluate similarities and/or differ- 
ences between design data for circuits residing in two or more 
files. A computer is used to identify cells or design units 
within the design data, as cells and design units are described 
above. Cells may be grouped in blocks, as explained. Some 
files may consist of a single header or cell. Within a cell, the 
syntax of the design data is parsed and normalized into 
canonical forms. The canonical forms reduce sensitivity of 
data analysis to non-functional variations in the design data. 
Digests are calculated and stored for at least part of the design 
data in the canonical forms. At least one digest is produced per 
cell or design unit, and typically more than one digest. Digests 
also may be produced for file headers which are not consid- 
ered part of any particular cell. Digests of cells in one file are 
compared to digests of cells in the other file. Depending on 
whether similarities or differences are more appropriate for 
any particular analysis, an appropriate summary is generated. 
The summary may be a report that is human readable or may 
be stored in a computer file for further processing by other 
programs. 

Understanding an Updated Cell Design Library 
One of the problems faced by designers is that new versions 

of design libraries can be received from foundries, library 
vendors or internal development groups without a satisfying 
description of changes from one version to the next. A con- 
ventional differencing tool could be used to compare new and 
old libraries. As described above, differencing tools are 
designed to flag changes, rather than evaluate the significance 
of changes. Calculating digests of old and new versions of the 
library can be used to identify changed cells. Partitioning of 
cells between functional and nonfunctional data and into 
layers can produce digests from which a library manager can 
estimate the significance of changes to a new version of the 
library and investigate in further detail. Changes in nonfunc- 
tional data, such as changes to comments that identify the 
library version or changes to IP tags that apply Soft IP Tag- 
ging, can be segregated from changes in functionally signifi- 
cant data. The segregation can be used to filter or color code 
summaries and help the library manager decide where to 
follow up. 

Whether to Adopt an Updated Cell Design Library During 
Development 

Integrated circuit design is an iterative process using tens 
of thousands of cells and tens or even hundreds of complex 
design templates. Logic design teams use logic synthesis to 
generate structural netlists, which are sent to the integration 
team for the place and route process. In the final stages of the 
design process, as top-level blocks are placed, routed and 
optimized, it is useful to ensure that the design uses the most 
recent versions of all library elements. 

70 
By the first round of place and route, however, so much has 

been invested in a design project that project managers will 
want to know what has changed in a library and why it has 
changed before they accept a new version of the library that 

5 requires rework of the design. If timing models have changed, 
for example, another round of in-place optimization may be 
required to match the new timing data. If cell footprints in the 
library exchange format (LEF) file are changed, a new place 
and route step may be required, which may result in large 

10 changes in timing and further iteration. Reworking either of 
these steps involves a risk that performance goals will not be 
met or deadlines will be missed. These risks are weighed 
against yield or functional problems that a new version of the 
library addresses. 

15 The technology disclosed can be used to focus analysis of 
an updated cell design library on cells that are actually used in 
a design that is under development. A three-way comparison 
of digests for the design under development, old library cells, 
and new library cells is useful for a project manager who 

20 needs to decide whether to adopt an updated cell library after 
substantial investment has been made. Multiple views of the 
design data in multiple design languages can be considered 
before the manager makes a decision. 

Finding Unapproved and/or Bad Cells in Design Data 
25 Cells have many potential sources, within a company and 

from vendors. It is useful to determine whether cells come 
from approved or unapproved sources. In addition, cells that 
initially are approved may turn out to be bad and be placed on 
a blacklist of sorts, a list of bad cells that should not be used 

30 in any designs. One useful application of canonical digests is 
to determine which cells in the design are not found in any 
approved cell library. Another useful application is to deter- 
mine whether any cells in the design have data that match a 
library of bad cells that should not be used in any design. 

35 These uses can, of course, be combined. 
Identifying Renamed Cells in Design Data 
During design, designers been known to rename cells in 

order to avoid a cell name collision because cell names are 
required in some tools to be unique. Ideally, a name collision 

40 would be taken as a reason to investigate whether both uses of 
the cell relied on the same cell version and to select between 
different versions. The pressures of an ongoing design project 
sometimes lead to less than ideal practices. And so, designers 
simply rename a cell that they are using and leave it at that. 

45 Canonical digests can be used to find the origin of a 
renamed cell. Comparing digests of renamed cells to cell 
libraries provides a more reliable indication of a cell origin 
than comments within the cell, especially when work group 
rules or expectations discourage renaming of cells. Compar- 

50 ing the digests can prove that a renamed cell matches an 
approved design, which gives a design manager or designer 
confidence in reverting the cell name to the name used in the 
approved design. Using names that match approved library 
elements is desirable when design tools use the cell names as 

55 references. 
Detecting Cell Modifications that Jeopardize Warranties 
A design team that starts with a template provided by a 

vendor may attempt to improve on the template. For instance, 
a compiled random access memory might be changed to 

60 better suit the perceived needs of a current design. However, 
the designer may not fully understand the consequences of 
the change. For example, a change to speed up a memory at 
nominal process conditions may in fact slow down the 
memory under other process conditions. In the semiconduc- 

65 for industry, this is known as what happens in other process 
corners. Changes in design also might hurt the yield of a 
circuit by causing bridging faults or open contacts. These 
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changes may void an explicit or implied warranty of design 
templates received from vendors. 

A cell that has multiple digests can be analyzed to deter- 
mine whether it is a modified version of another cell. In some 
instances, multiple library cells will match across some lay- 
ers. For instance, the metal layout within a class of cells that 
all have the same function may match. When a match across 
some, but not all layers is detected, further analysis can be 
performed to determine whether an unauthorized modifica- 
tion has taken place. Optionally, the analysis can be weighted 
to emphasize layer changes that imply modification other 
than the normal changes between members of a common 
class of cells. 

Royalty Audits 
Tape out data is typically available to foundries as part of 

the manufacturing process. This tape out data may be 
expressed in OASIS®, GDSII or another language. It 
includes polygons that define masks that are used as manu- 
facturing tools or that are used for direct writing during manu- 
facturing. 

Digested cells from tape out data can be compared to 
digested cells from royalty bearing libraries, based on poly- 
gons in the cells. These polygons may be normalized by 
sorting. They optionally may be further normalized by merg- 
ing polygons in a cell and re-fracturing them applying a 
consistent fracturing algorithm. 

Using cell digests to audit designs used at foundries and 
calculate royalties owed has the advantage that digests can be 
analyzed by auditors without direct access to the digested 
design data. If the foundry runs the digesting tool, the auditors 
need only look at the resulting digests. Close questions can be 
resolved by having the auditors look further at the design data, 
instead of being limited to the digests. 

Royalty audits also could be conducted against symbolic, 
text-based design data, instead of polygon data. 

Immediate Response to Failure Analysis 
On occasion, failure analysis will establish that a design 

template is bad and should not be used in any production. This 
poses a significant problem for design managers, due to 
renaming and modification of design templates. Canonical 
digests provide a way to quickly scan existing production 
designs and designs in progress. Digests of one or more 
variations on a design template that is proven to be bad can be 
compared to a library of digests for existing products and to 
project files for designs that are in progress. Designs that have 
digests which match or partially match the digests of the bad 
design templates can be flagged for further investigation. This 
gives design managers a way to find more than just the cells 
that remained linked to the original design libraries. It allows 
them to find renamed cells and modified cells that may share 
the layers which cause failure of the bad design templates. 

Run Time Options of the Command Line Processor 
The prototype canonical cell digest command-line utility's 

name is "otismartsig"; it is a 32- or 64-bit Linux executable 
that will run on 2.4.x and later kernels (e.g. Red Hat Enter- 
prise Linux 4.x and later). If it is run without arguments, it 
prints help text similar to the following: 

Oasis Tooling Smart Digest utility 1.0 alpha (r867) 
Copyright (c) 2007-2008 by Oasis Tooling Inc. All Rights 

Reserved. 

Usage: otismartsig [flags] -type file... [-type file...] 
Available flags: 
-file: treat the next argument as a file name, even if it 
begins with `-' 

5 
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-continued 

Oasis Tooling Smart Digest utility 1.0 alpha (r867) 
Copyright (c) 2007-2008 by Oasis Tooling Inc. All Rights 

Reserved. 

-mem number: maximum memory usage in megabytes (default 64) 
-64: compute 64-bit digests 
-sort: sort records before computing digests 
-nosort: do not sort records before computing digests 

10 -noheader: omit Liberty file header from cell digests 
-verbose: print errors as they are found (useful in debugging) 
-grid number: record layout file digests using the specified 

grid (default 1.0e-9 meter) 
Available file types: 
-oas: OASIS geometry database (default: -sort) 

15 -gds: GDS geometry database (default: -sort) 
-lib: Liberty library format (default: -sort) 
-ver: Verilog RTL and netlist format (default: -nosort) 
-vhd: VHDL RTL and netlist format (default: -nosort) 
-spi: SPICE subcircuit netlist format (default: -nosort) 
-lef: Library Exchange Format (default: -sort) 
-def: Design Exchange Format (default: -sort) 
-txt: unstructured text files (default: -nosort) 
-stxt: structured (e.g. script) text files (default: -nosort) 
-user: user-parsed files (default: -nosort) 
-bin: unstructured binary files (default: -nosort) 

20 

25 

30 

File Types 
Files should have a file type specified. Although it would be 

possible to analyze a file's header to guess its format, the cost 
of an error would be high a cell-based text file might be 
misunderstood as an unstructured file, for example. 

Files of more than one type may be analyzed in a single run 
if desired. If a new file type argument is specified, files after 
that argument use that format. In the following example, the 
first two files are interpreted as unstructured text files, while 

35 
the last file is interpreted as a Verilog file: 

otismartsig -txt filel.txt file2.txt -ver file3.txt 
If a file name begins with -', it should be preceded with 

-file. One -file argument can be used for each file. 

Option: -sort 
Most file formats provide the option of sorting the data. For 

several formats, it is the default, because digests generated 
using sorted data will generate more useful matches than 
digests using unsorted data. The default behaviors are speci- 

45 fied in the help text at the end of the brief description of file 
formats. They are: 

OASIS ®: sort by default because OASIS® writers are 
quite likely to reorder data, especially when writing 
repetitions 

so GDSII: sort by default because GDSII writers may reorder 
data and because GDSII cell data may need to be 
matched against OASIS® data 

Liberty: sort by default because the data is order-indepen- 
dent 

55 Verilog: do not sort by default because only cell interface 
records are sorted 

VHDL: do not sort by default because only cell interface 
records are sorted 

SPICE: do not sort by default because the sort routine also 
sorts cell interface records 

LEF: sort by default because much of the data is order- 
independent 

DEF: sort by default because much of the data is order- 
65 independent 

Unstructured text: do not sort by default because the file's 
purpose is not known 

4 0 

60 
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Structured text: sorting is not even allowed because script 
files are order-dependent 

User-parsed files: do not sort by default because the pur- 
pose of the file is not known to the software 

Unstructured binary: sorting is not even allowed because 
there is no record structure 

For Verilog, VHDL, and SPICE files, sorting of the inter- 
face records (ports) may modify the meaning of the cell if 
some instantiations use positional port referencing (connec- 
tion based on the order of the parameters) rather than asso- 
ciation-based port referencing (connection based on the 
names of the parameters). Thus sorting for these formats 
should be done with caution. 

If the user wants to sort a file of a given format for which the 
default is not to sort, the -sort option should be specified. If the 
user wants to prevent sorting of a file, the -nosort option 
should be specified. These options are "sticky," meaning that 
they affect all files listed afterward on the command line. 

Option: -mem 
The -mem option specifies the maximum amount of 

memory allowed for sorting, in megabytes. In the present 
implementation sorting is performed exclusively in memory, 
so if the estimated memory usage for a cell or file header 
exceeds this limit, the affected data is sent to digest compu- 
tation in its original order and sorting is disabled for that cell 
or file header. The cells are tested for sortability, so that all 
small design template blocks can be sorted even is minimal 
memory is available, to increase matching and decrease false 
detection of differences. Generally speaking, only large 
placed and routed blocks will exceed the memory usage lim- 
its. 

The default memory usage limit is 64 megabytes; on 32-bit 
Linux platforms the maximum memory usage limit is 3500 
megabytes. If the value supplied with -mem is less than 16 it 
is silently increased to 16; if the value is more than 3500, it is 
silently reduced to 3500. 

Because of uncertainties in memory allocation methods, 
the tool's memory usage estimates are not precise. It is best 
not to use a memory limit close to the amount of physical 
memory on the machine which is computing the canonical 
cell digests. Memory estimation for some file formats can be 
optimistic. 

Some cells in a file may be sorted while others in the same 
file are too large to sort, so the canonical cell digest tool 
reports whether a cell was sorted because -sort was set (or was 
the default), not sorted because -nosort was specified (or was 
the default), or too large to sort even though -sort was set: 

Cell "Structure 1" (sorted) 
Cell "Structure 1" (not sorted) 
Cell "Structure 1" (tillable to sort) 

The software tracks and stores with the digests an indica- 
tion, such as a flag, of whether the digests for a given cell 
represent sorted data or not. If the memory usage limit is 
increased or the user begins using a new, more-efficient ver- 
sion of the canonical cell digest software, some cells previ- 
ously not sortable may now be sorted (or vice versa, if the user 
decreases the limit). Unless the stores the indication of 
whether the digests were calculated from sorted data, the user 
will not be able to determine whether a change in digests 
represents a real change in the data or is simply because one 
set of digests is for sorted data while the other set is for 
unsorted data. 

74 
Option: -64 
By default, 32-bit digests are generated; if the -64 option is 

specified, 64-bit digests are generated. 
Generation of 64-bit digests requires somewhat more run 

5 time than generation of 32-bit digests. Sixty-four bit digests 
are available in the 32-bit executable as well as the 64-bit 
executables. 

Option: -verbose 
By default, the program works silently, generating only a 

10 digest report or a generic error message. The parsers are 
optimized for automated digest generation, not for human 
use. If a file fails to parse and it is useful to see the actual error, 
use of the -verbose flag will cause the error to be printed. 
Many of the parsers quit after the first error is found, so the 

15 error report will not be particularly long. No digests will be 
generated if any errors are found. 

Option: -grid 
Geometry in OASIS® and GDSII and files is drawn on a 

grid, meaning that all coordinates in the file are scaled by 
20 some number to determine the absolute size of the geometry 

in microns or nanometers. The grid is stored in the file so that 
the meaning is unambiguous, but if for some reason the grid 
value changes, all of the coordinates in the cells will change 
even though the geometry has not changed. Scaling all of the 

25 coordinates by the grid is not an effective solution because the 
grid is a floating point number, typically a power of 10. 
Digests for floating point numbers could be machine-depen- 
dent or vulnerable to roundoff error. 

Thus there is a -grid option for OASIS® and GDSII files. 
30 All coordinates are scaled to be multiples of this grid, e.g. one 

nanometer (1.0e-9 meters, the default). For example, if the 
file grid is 10 nanometers and the canonical cell digest grid is 
one nanometer, all coordinates from the file are multiplied by 
10 before being sent to digest computation. If the OASIS® or 

35 GDSII file grid is not an integral multiple of the -grid value, an 
error is printed. 

Option: -noheader 
Liberty format files have numerous definitions and unit 

definitions in the file header. If any of these file header values 
40 change, all of the values (e.g. delays) in all of the cells may 

change as well. For example, if the time_unit or voltage_unit 
values in the file header change, all of the timing delay values 
in the cells will change as well, even if the text in the cells has 
not changed. Liberty files are often built by a script that 

45 concatenates a fixed file header with the data for the indi- 
vidual cells, and it is easy to use the wrong header. Thus by 
default all of the file header values (except for non-functional 
values such as the date) are added to the digests for cells in the 
Liberty file. If the user is confident that this error will not 

so happen, header value merging can be disabled using the -no- 
header option. 

Some Particular Embodiments 

55 The technology disclosed may usefully be applied in a 
variety of methods and devices. The technology also may be 
embodied in articles of manufacture such as computer read- 
able storage media storing a computer program that carries 
out the methods or that can be combined with hardware to 

60 produce the devices described. 
Methods are described in the first group of embodiments. 

These are computer implemented methods of evaluating 
similarities and/or differences between design data residing 
in at least two files stored in computer memory. FIGS. 6 and 

65 7 provide a high-level flowchart of some aspects of these 
methods. In the design data environment, data may be sym- 
bolic or binary. By symbolic, we mean text that is intended to 
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be human readable. For instance, numbers and letters. A 
symbolic file also may contain codes that contribute to read- 
ability of text or help with internal file management. For 
instance tab characters, font attributes and bookmarks. A 
design file may be expressed in any of the design languages or 
formats described above. It may include polygons, which 
may be defined by vertices or half planes. It may be hierar- 
chical, including references to other design data, either 
expanded or in hierarchical format. A wide range of design 
data is contemplated. As mentioned above, reference to two 
files is generic. The two files may be parts of the same data- 
base. More than two files may be involved. 

The method operates on data residing in first and second 
files 411. In this description, we will refer to the method as 
operating on cells within a design and generating canonical 
cell digests. By canonical, we mean in a standardized format. 
Some design data files are normalized or transformed into a 
canonical format by passing them through a parser and apply- 
ing parsing rules. Other files may require semantic analysis of 
a syntax tree generated by the parsing or other manipulations 
to normalize the file. Depending on the parsing rules, normal- 
izing may eliminate whitespace, segregate comments from 
program code, sort tokens or the branches of the syntax tree, 
classify tokens or branches of the syntax tree as a functional 
or nonfunctional design data, divide data between header and 
cell data or divide data within a cell between cells header and 
cell body data, reordering corner points of a polygon, or apply 
any of the other parsing and normalization strategies 
described above. One should understand, more generally, that 
the method applies to design units of data and the words 
"design units" could be substituted for "cells" in the descrip- 
tion that follows and in the originally filed claims. In this 
disclosure, we illustrate how design data in files can be par- 
titioned into header data and cell data. By partition or parti- 
tioned, we mean physically or logically divided into groups. 
As explained below, parsing rules that produce a syntax tree 
may naturally produce a physical partitioning of data. Once 
the syntax tree has been produced, tags or flags may be 
applied to nodes or branches of the syntax tree. A tag typically 
is a code that has a particular meaning. A flag also may be a 
code, but it may be simpler than a tag, as a Boolean value in 
a field that has a specific meaning. The method description 
that follows applies equally to design units and cells. The 
method includes identifying cells within the design data 
residing in the files 611. It proceeds with parsing syntax of 
612 and normalizing 613 the design data within the cells into 
canonical forms. Parsing syntax can be applied to either sym- 
bolic or binary files. Parsing a symbolic file includes identi- 
fying tokens and recognizing their role in the file from a series 
of parsing rules that describe a language. Parsing a binary 
design data file includes identifying elements and groups of 
binary data and recognizing their role in the design data from 
parsing rules that describe the binary format of the design file. 
Parsing sometimes involves building a syntax tree. Alterna- 
tively, parsing can generate a stream of events. Normalizing is 
described above. The canonical forms may be maintained in 
one or more syntax trees 532. The canonical forms reduce 
sensitivity of data analysis to nonfunctional variations in the 
design data within a particular cell. Nonfunctional changes in 
design data are changes to design data that do not change a 
physical circuit that is produced using the design data. For 
instance, comments typically are nonfunctional design data; 
whitespace is usually nonfunctional in a symbolic file; in an 
ordered list of polygon corner coordinates, the selection of the 
starting coordinate and whether the corners are listed in a 
clockwise or counterclockwise direction are typically non- 
functional. At a higher level, fracturing a complex polygon 

76 
into trapezoids or triangles, for instance, should not function- 
ally change the physical circuit produced, although a particu- 
lar fracturing algorithm may be necessary to the operation of 
a particular tool that is used in the production process. The 

5 method further includes calculating 614 and storing digests 
415 of at least selected design data in the canonical forms, 
producing at least one digest per cell. 

The method compares 615 the digests of canonical forms 
and summarizes 616 at least some results of comparing the 

10 digests. It may produce a summary 473 in memory, such as a 
table of data available to another program, or a report 475 that 
is viewable by a user. 

There are multiple ways in which this comparison can be 
performed. One or more sets of digests are stored in a search- 

15 able data structure. A convenient searchable data structure is 
a hash table indexed by a modulus of the digests. Another 
hashing function could be used. The size of a hash table is 
selected based on the storage required and the desired fre- 
quency of collisions between hashes into the table. In case of 

20 collisions, lists are created linked to the hash table. Alterna- 
tively, an inverted index of digests could be created, at the cost 
of sorting digests. In many embodiments, there will be a 
plurality of digests per cell. One approach to comparing and 
scoring multiple digests is to create a list of all cells that have 

25 digests which match any digest for a cell of interest. In some 
embodiments, this list may be ordered, for instance with cells 
from a most recent library preceding cells from older librar- 
ies. Using the list of candidate cells, comparisons are made 
between all of the digests for the cell of interest and the 

30 digests for the candidate cells. Particularly for an ordered list, 
comparisons may be terminated when a match is found 
between all of the digests for the cell of interest and one of the 
candidate cells. When there is no complete match between the 
cell of interest and any of the candidate cells, a threshold or 

35 ratio may be applied for a number of digest matches that 
causes a pair of cells to be considered similar. Alternatively, 
where there is no complete match, the partial matches may be 
rank ordered and one or more partial matches summarized or 
reported. 

40 One aspect of the method further includes partitioning 
functionally significant design data 722 from non-significant 
data within the canonical forms before calculating and storing 
the digests. Design data is functionally significant when a 
change in the design data would result in a change in a circuit 

45 generated from the design data. Then, the selected design data 
in the canonical forms used to calculate the digests includes at 
least the functionally significant design data. 

Additional granularity in the digest comparisons can be 
supported by partitioning design data within cells by cell 

so header, interface, and/or body 721, by layers 723, and by 
sortable/order dependent data 724. Partitioning strategies 
may produce either a physical or logical partitioning of data. 
Physical partitioning of data includes separating the data into 
physically separate groups, such as first and second lists. 

55 Logically partitioning data may involve tagging or flagging 
the data so that the computer recognizes items of data as 
belonging to particular groups. These partitioning strategies 
may be applied individually or in any combination. Parsing 
712 creates one or more syntax trees 532 that can partition the 

60 design data as desired. For some partitioning strategies, this 
involves defining how nodes and branches in the syntax trees 
are organized. For other partitioning strategies, this may 
involve setting flags for nodes or branches in the syntax trees. 
Flags are described above. The calculating and storing digests 

65 further includes producing at least one digest per partition. 
The summarizing distinguishes among the digests produce 
from different partition types. 
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The methods above may be applied to comparing files 
encoded using differing design languages. The two languages 
that this disclosure describes how to render comparable are 
the OASIS® design language and the GDSII design lan- 
guage. The first and second files referred to above are 
OASIS® and GDSII files, when those two languages are 
being compared. They may be two other languages when 
equivalences are developed for other pairs. When comparing 
files that are in different design languages, the canonical 
forms for the design languages render comparable at least the 
design data in bodies of cells. Alternatively, for design lan- 
guages in which the functional differences among cells are 
expressed in cell headers and not in the bodies of the cells 
themselves, the canonical forms may render comparable at 
least the design data in the cell headers. 

The methods above can be applied to evaluating a new 
library of cell designs against an old library of cell designs. 
Then, the first file is a new library of cell designs and the 
second file is an old library. The summarizing further includes 
reporting at least functionally significant changes in the new 
library that are detected by comparing the digests of the two 
libraries. 

The methods above further could be applied to evaluating 
the impact of adopting a new library. This application of the 
methods also applies to determining whether cells in a design 
file belong to an out-of-date library. This application further 
includes a third file to which the identifying, parsing and 
calculating actions are applied. In this variation, the first file is 
a design file, the second file is at least one current library of 
cell designs and the third file is at least one out-of-date library 
of cell designs. The summarizing includes reporting cells in 
the design file that have digests that do not match digests of 
cell designs in the current library, but do match digests of cell 
designs in the out-of-date library. Optionally, cell designs 
which do not appear in either the current or out-of-date library 
can also be reported. This reporting criteria naturally elimi- 
nates from reporting cell designs that are the same in both the 
current and out-of-date library. While we have described the 
present method as comparing the current and out-of-date 
library, these words are used to refer to two generations of the 
library and could just as easily be applied to a candidate 
version (the so-called "current version"), not yet adopted, and 
a production version (the so-called "out-of-date version"). 

Another application of the methods above is identifying 
bad or unapproved cells. Detection of bad or unapproved cells 
can proceed separately or in combination. The methods above 
can be applied to evaluating a design file to determine whether 
cells in the design file belong to a collection of known bad 
cells. In this application, the first file is a design file, which is 
compared to a file that contains known bad cells. The sum- 
marizing further includes reporting cells in the design file that 
have digests that match digests of cells in the file of known 
bad cells. Similarly, the methods above can be applied to 
evaluating a design file to determine whether cells in the 
design file belong to at least one approved library. Again, the 
first file is the design file, which is compared to at least one 
approved library. The reporting typically will report on an 
exception basis the cells in the design file that have digests 
that do not match digests in cells in the approved library. 
Optionally, partial matches may be reported when there is no 
perfect match between a cell in the design file and any of the 
cells in the approved library. 

A further use of the methods above is to detect functionally 
identical cells with different cell names. The first file is a 
design file and the second file is at least one approved library. 
The calculating and storing of digests is applied to at least 
functionally significant data in multiple layers of the design 
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file and the approved library. The summarizing further 
includes reporting as renamed the cells in the design file that 
have digests of functionally significant data in the multiple 
layers that do match digests in the approved library (called 

5 "the functionally matching cells"), but which renamed cells 
have cell names that do not match cell names of the function- 
ally matching cells. Optionally, the method may be extended 
to reverting the cells in the design file reported as "renamed" 
to have cell names that match and link to the functionally 

10 matching cells in the approved library. 
An interesting use of the methods above is to evaluate a 

design file to determine whether warranted or other cells in 
the design file have been modified from their warranted 
design template. The first file is a design file and the second 

15 file is at least one approved library. The calculating and stor- 
ing digests is applied to at least functionally significant data in 
multiple layers of the cells in the design file and the approved 
library. The summarizing further includes reporting as poten- 
tially modified cells in the design file that have digests of 

20 functionally significant data in some but not all of the multiple 
layers that match digests of cells in the approved library. 

A further application of the methods above is to scan pro- 
duction designs to find royalty bearing cell designs used in the 
production designs. In this application, the first file includes 

25 one or more royalty bearing libraries of royalty bearing cell 
designs and the second file includes one or more production 
designs that include cell designs. The summarizing further 
includes reporting as potentially royalty bearing certain cells 
in the production designs that have digests which match 

30 digests of cells in the royalty bearing libraries. Optionally, 
near matches also can be reported. Near matches is a term that 
applies to cells or design units that have multiple digests, such 
as digests for multiple layers of a cell. Two cells may be near 
matches if most of the layers in the cell have matching digests. 

35 The second group of embodiments are devices. These are 
computer devices that evaluate similarities and/or differences 
between design data residing in at least two files stored in 
computer memory. FIG. 5, previously described, provides a 
high level block diagram of some aspects of these devices. As 

40 with the method embodiments, the design data processed by 
the devices may be symbolic or binary. It may be expressed in 
any of the design languages or formats described above. It 
may include polygons. It may be hierarchical, including ref- 
erences to other design data, either expanded or in its hierar- 

45 chical format. A wide range of design data is contemplated. 
As mentioned above, reference to two files is generic. The two 
files may be parts of the same database. More than two files 
may be involved. 

The device includes at least one processor and memory 
50 530, 535. A parser 531 runs on the processor and parses files 

411 containing design data representing aspects of a design 
for a physical circuit and creates one or more syntax trees 532 
in the memory. In this description, we will refer to the device 
as operating on cells within a design and generating canonical 

55 cell digests. One should understand, more generally, that the 
device can operation on design units of data and that the 
words "design units" could be substituted for "cells" in the 
description that follows and in the originally filed claims. 

Normalizer logic 533 runs on the processor and cooperates 
60 with the parser 432 that organizes the syntax trees 532 to 

produce canonical forms. In the phrase "normalizer logic," 
logic means instructions to control the operation of computer 
components. Running on a processor, logic typically would 
be object code compiled from program instructions. Within a 

65 processor, logic may be micro-instructions. In a program- 
mable logic component, such as a field programmable gate 
array (FPGA), the logic may be represented by gates and 
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connections among gates. In this application, logic is what 
tells computer components how to execute a task. The nor- 
malizer logic includes a partitioning module that partitions 
the file into at least one header and, depending on rules of a 
design language used to encode the file, into multiple cells of 
design data. The partitioning module organizes the syntax 
trees to represent the header and cell partitions. As explained 
above, in various design languages, a file may contain header 
data, cell data or both. To be clear, the device applies to files 
that contain only one of header and cell data. 

The normalizer logic further includes a canonical forming 
module that interprets the syntax trees to produce canonical 
forms of the design data, wherein the canonical forms reduce 
sensitivity of data analysis to non-functional variations in the 
design data. 

The device further includes a digester 534 running on the 
processor that calculates and stores digests in memory 415, 
producing at least one digest per partition. 

A comparer module 536 runs on a processor 535 and com- 
pares the digests of canonical forms. A module is a segment of 
logic that carries out a particular task. For instance, normal- 
izer logic includes a plurality of modules. A reporter 537, also 
running on the processor 535, summarizes at least some 
results of comparing the digests. The reporter may produce a 
summary 473 in memory, such as a table of data available to 
another program, or a report 475 that is viewable by a user. 

There are multiple ways in which the comparer can be 
structured. One or more sets of digests are stored in a search- 
able data structure. The structure of the comparer depends on 
the searchable data structure. One convenient data structure is 
a hash table indexed by a modulus of the digests. Another 
hashing function could be used. The size of a hash table is 
selected based on the storage required and the desired fre- 
quency of collisions between hashes into the table. In case of 
collisions, lists are created linked to the hash table. Alterna- 
tively, an inverted index of digests could be created, at the cost 
of sorting digests. In many embodiments, there will be a 
plurality of digests per cell. One approach to comparing and 
scoring multiple digests is to create a list of all cells that have 
digests which match any digest for a cell of interest. In some 
embodiments, this list may be ordered, for instance with cells 
from a most recent library preceding cells from older librar- 
ies. Using the list of candidate cells, comparisons are made 
between all of the digests for the cell of interest and the 
digests for the candidate cells. Particularly for an ordered list, 
comparisons may be terminated when a match is found 
between all of the digests for the cell of interest and one of the 
candidate cells. When there is no complete match between the 
cell of interest and any of the candidate cells, a threshold or 
ratio may be applied for a number of digest matches that 
causes a pair of cells to be considered similar. Alternatively, 
where there is no complete match, the partial matches may be 
rank ordered and one or more partial matches summarized or 
reported. 

The partition module may further partition functionally 
significant design data from non-significant data within the 
canonical forms before the digester calculates and stores the 
digests. Design data is functionally significant when a change 
in the design data would result in a change in a circuit gener- 
ated from the design data. Then, the selected design data in 
the canonical forms processed by the digester 534 to calculate 
the digests includes at least the functionally significant design 
data. 

Additional granularity in the digest comparisons can be 
supported by the partitioning module distinguishing design 
data within cells by cell header, interface, and/or body, by 
layers, and by sortable/order dependent data. These partition- 
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ing strategies may be applied individually or in any combi- 
nation. For partitioning options, the parser 531 creates one or 
more syntax trees 532 that partition the design data as desired. 
For some partitioning strategies, this involves how nodes and 

5 branches in the syntax trees are organized. For other parti- 
tioning strategies, this may involve setting flags for nodes or 
branches in the syntax trees. The digester that calculates and 
stores digests produces at least one digest per partition. The 
reporter 537 distinguishes among the digests produced from 

10 different partition types. 
The device may compare files encoded using differing 

design languages. The two languages that this disclosure 
describes how to render comparable are the OASIS® design 
language and the GDSII design language. The first and sec- 

15 and files referred to above are OASIS® and GDSII files, when 
those two languages are being compared. They may be two 
other languages when equivalences are developed for other 
pairs. When comparing files that are in different design lan- 
guages, the canonical forming module produces canonical 

20 forms for the design languages that render comparable at least 
the design data in bodies of cells. Alternatively, for design 
languages in which the functional differences among cells are 
expressed in cell headers and not in the bodies of the cells 
themselves, the canonical forms may render comparable at 

25 least the design data in the cell headers. 
The device above can be applied to evaluating a new library 

of cell designs against an old library of cell designs. Then, the 
first file is a new library of cell designs and the second file is 
an old library. The reporter further reports at least function- 

30 ally significant changes in the new library that are detected by 
comparing the digests of the two libraries. 

The device above further could be applied to evaluating the 
impact of adopting a new library. This use of the device also 
applies to determining whether cells in a design file belong to 

35 an out-of-date library. Three files are involved. The first file is 
a design file, the second file is at least one current library of 
cell designs and the third file is at least one out-of-date library 
of cell designs. The reporter module uses results from the 
comparer and reports cells in the design file that have digests 

40 that do not match digests of cell designs in the current library, 
but do match digests of cell designs in the out-of-date library. 
Optionally, cell designs which do not appear in either the 
current or out-of-date library can also be reported. This 
reporting criteria naturally eliminates from reporting cell 

45 designs that are the same in both the current and out-of-date 
library. While we have described the present method as com- 
paring the current and out-of-date library, these words are 
used to refer to two generations of the library and congested 
as equally be applied to a candidate version (the so-called 

50 "current version"), not yet adopted, and a production version 
(the so-called "out-of-date version"). 

Another application of the device above is identifying bad 
or unapproved cells. Detection of bad or unapproved cells can 
proceed separately or in combination. The device can be 

55 applied to evaluating a design file to determine whether cells 
in the design file belong to a collection of known bad cells. In 
this application, the first file is a design file, which is com- 
pared to a file that contains known bad cells. The reporter 
module summarizes cells in the design file that have digests 

60 that match digests of cells in the file of known bad cells. 
Similarly, the device above can be applied to evaluating a 
design file to determine whether cells in the design file belong 
to at least one approved library. Again, the first file is the 
design file, which is compared to at least one approved 

65 library. The reporter module typically will report on an excep- 
tion basis the cells in the design file that have digests that do 
not match digests in cells in the approved library. Optionally, 
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partial matches may be reported when there is no perfect 
match between a cell in the design file and any of the cells in 
the approved library. 

A further use of the device above is to detect functionally 
identical cells with different cell names. The partitioning 
module for this use further partitions the file by layers within 
cells and organizes the syntax trees to reflect the layers. The 
first file is a design file and the second file is at least one 
approved library. The digester calculates and stores digests 
that reflect at least functionally significant data in multiple 
layers of the design file and the approved library. The reporter 
module further summarizes as "renamed" those cells in the 
design file that have digests of functionally significant data in 
the multiple layers that do match digests in the approved 
library (called "the functionally matching cells"), but which 
renamed cells have cell names that do not match cell names of 
the functionally matching cells. Optionally, the method may 
be extended to reverting the cells in the design file reported as 
"renamed" to have cell names that match and link to the 
functionally matching cells in the approved library. 

An interesting use of the device above is to evaluate a 
design file to determine whether warranted or other cells in 
the design file have been modified from their warranted 
design template. The first file is a design file and the second 
file is at least one approved library. The digester calculates 
and stores digests of at least the functionally significant data 
in multiple layers of the cells in the design file and the 
approved library. The reporter further summarizes as poten- 
tially modified cells in the design file that have digests of 
functionally significant data in some but not all of the multiple 
layers that match digests of cells in the approved library. 

A further application of the device above is to scan produc- 
tion designs to find royalty bearing cell designs used in the 
production designs. In this application, the first file includes 
one or more royalty bearing libraries of royalty bearing cell 
designs and the second file includes one or more production 
designs that include cell designs. The reporter further sum- 
marizes as potentially royalty bearing those cells in the pro- 
duction designs that have digests which match digests of cells 
in the royalty bearing libraries. Optionally, near matches also 
can be reported. 

A third group of embodiments are articles of manufacture, 
consistent with but not limited by the case In re Beauregard. 
In one embodiment, these articles of manufacture include a 
computer readable storage medium that stores program code 
for carrying out any of the method embodiments described 
above. The program code, when running on a processor, 
enables the processor to carry out the actions described 
above. In a second embodiment, these articles of manufacture 
include a computer readable storage medium that stores pro- 
gram code that, when combined with a processor and 
memory, creates any of the devices described above. The 
program code, when combined with the processor and 
memory, includes the modules set forth above. 

We claim as follows: 
1. A computer-implemented method of evaluating similari- 

ties and/or differences between design data for circuits, the 
design data residing in at least two files stored in computer 
memory, the method including: 

using a computer, identifying cells within design data 
residing in first and second files, wherein the cells cor- 
respond to portions of design for a physical circuit; 

parsing syntax of and normalizing the design data within 
the cells into canonical forms, wherein the canonical 
forms reduce sensitivity of data analysis to non-func- 
tional variations in the design data within a particular 
cell; 

82 
partitioning functionally significant design data from non- 

significant data within the canonical forms, wherein the 
design data is functionally significant when a change in 
the design data would result in a change in a circuit 

5 generated from the design data; 
calculating and storing digests of at least selected design 

data in the canonical forms, producing at least one digest 
per cell; 

wherein the selected design data in the canonical forms 
10 used to calculate the digests includes at least the func- 

tionally significant design data; 
comparing the digests of the cells in the first file to the 

digests of the cells in the second file; and 
summarizing at least some results of the comparing of the 

15 digests. 
2. The method of claim 1, applied to evaluating a new 

library of cell designs against an old library of cell designs, 
wherein: 

the first file is a new library of cell designs and the second 
20 file is an old library of cell designs; and 

the summarizing further includes reporting at least the 
functionally significant changes in the new library that 
are detected by comparing the digests. 

3. The method of claim 1, applied to detecting functionally 
25 identical cells with different cell names, wherein: 

the first file is a design file and the second file is at least one 
approved library; 

the calculating and storing digests is applied to at least 
functionally significant data in multiple layers of the 
cells in design file and the approved library; and 

the summarizing further includes reporting as renamed the 
cells in the design file that have digests of functionally 
significant data in the multiple layers that do match 
digests of cells in the approved library (called "the func- 
tionally matching cells"), but which renamed cells have 
cell names that do not match cell names of the function- 
ally matching cells. 

4. A computer-implemented method of evaluating similari- 

40 
ties and/or differences between design data for circuits, the 
design data residing in at least two files stored in computer 
memory, the method including: 

using a computer, identifying cells within design data 
residing in first and second files, wherein the cells cor- 

45 
respond to portions of design for a physical circuit; 

parsing syntax of and normalizing the design data within 
the cells into canonical forms, wherein the canonical 
forms reduce sensitivity of data analysis to non-func- 
tional variations in the design data within a particular 

50 
cell; 

wherein 
the first file contains design data expressed in an 

OASIS ® design language and the second file contains 
design data expressed in a GDSII design language; 

55 and 
the canonical forms for the OASIS® and the GDSII 

design languages render comparable design data in 
bodies of the cells; 

calculating and storing digests of at least selected design 
60 data in the canonical forms, producing at least one digest 

per cell; 
comparing the digests of the cells in the first file to the 

digests of the cells in the second file; 
summarizing at least some results of the comparing of the 

65 digests. 
5. A computer-implemented method of evaluating similari- 

ties and/or differences between design data for circuits, the 

3 
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design data residing in at least three files stored in computer 
memory, the method including: 

using a computer, identifying cells within design data 
residing in first, second and third files, wherein the cells 
correspond to portions of design for a physical circuit; 

wherein the first file is a design file, the second file is at least 
one current library of cell designs, and the third file is at 
least one out of date library of cell designs; and 

parsing syntax of and normalizing the design data within 
the cells into canonical forms, wherein the canonical 
forms reduce sensitivity of data analysis to non-func- 
tional variations in the design data within a particular 
cell; 

calculating and storing digests of at least selected design 
data in the canonical forms, producing at least one digest 
per cell; 

comparing the digests of the cells in the first file to the 
digests of the cells in the second file; 

reporting at least cells in the design file that have digests 
that do not match digests of cell designs in the current 
library and that do match digests of cell designs in the 
out of date library. 

6. A computer-implemented method of evaluating similari- 
ties and/or differences between design data for circuits, the 
design data residing in at least two files stored in computer 
memory, the method including: 

using a computer, identifying cells within design data 
residing in first and second files, wherein the cells cor- 
respond to portions of design for a physical circuit, the 
first file is a design file and the second file contains 
known bad cell designs; 

parsing syntax of and normalizing the design data within 
the cells into canonical forms, wherein the canonical 
forms reduce sensitivity of data analysis to non-func- 
tional variations in the design data within a particular 
cell; 

calculating and storing digests of at least selected design 
data in the canonical forms, producing at least one digest 
per cell; 

comparing the digests of the cells in the first file to the 
digests of the cells in the second file; and 

summarizing at least some results of the comparing of the 
digests; and 

cells in the design file that have digests that match digests 
of cells in the file of known bad cell designs. 

7. The method of claim 6, further applied to evaluating 
whether the cells in the design file belong to at least one 
approved library, including: 

a third file to which the identifying, parsing and calculating 
steps are applied; 

wherein the third file is at least one approved library of 
cells; and 

wherein the summarizing further includes reporting cells 
in the design file that have digests that do not match 
digests of cells in the approved library of cells. 

8. A computer-implemented method of evaluating similari- 
ties and/or differences between design data for circuits, the 
design data residing in at least two files stored in computer 
memory, the method including: 

using a computer, identifying cells within design data 
residing in first and second files, wherein the cells cor- 
respond to portions of design for a physical circuit, the 
first file is a design file and the second file is at least one 
approved library; 

parsing syntax of and normalizing the design data within 
the cells into canonical forms, wherein the canonical 

84 
forms reduce sensitivity of data analysis to non-func- 
tional variations in the design data within a particular 
cell; 

calculating and storing digests of at least selected design 
5 data in the canonical forms, producing at least one digest 

per cell; 
comparing the digests of the cells in the first file to the 

digests of the cells in the second file; and 
reporting cells in the design file that have digests that do not 

10 match digests of cells in the approved library. 
9. A computer-implemented method of evaluating similari- 

ties and/or differences between design data for circuits, the 
design data residing in at least two files stored in computer 
memory, the method including: 

using a computer, identifying cells within design data 
residing in first and second files, wherein the cells cor- 
respond to portions of design for a physical circuit, the 
first file is a design file and the second file is at least one 
approved library; 

parsing syntax of and normalizing the design data within 
the cells into canonical forms, wherein the canonical 
forms reduce sensitivity of data analysis to non-func- 
tional variations in the design data within a particular 
cell; 

calculating and storing digests of at least functionally sig- 
nificant data in multiple layers of the canonical forms of 
the cells in the design file and the approved library, 
producing at least one digest per cell; and 

30 comparing the digests of the cells in the first file to the 
digests of the cells in the second file; 

reporting as potentially modified cells in the design file that 
have digests of functionally significant data in some but 
not all of the multiple layers that match digests of cells in 

35 the approved library. 
10. A computer-implemented method of evaluating simi- 

larities and/or differences between design data for circuits, 
the design data residing in at least two files stored in computer 
memory, the method including: 

40 using a computer, identifying cells within design data 
residing in first and second files, wherein the cells cor- 
respond to portions of design for a physical circuit, the 
first file includes one or more royalty-bearing libraries of 
royalty-bearing cell designs and the second file includes 

45 one or more production designs that include cell 
designs; 

parsing syntax of and normalizing the design data within 
the cells into canonical forms, wherein the canonical 
forms reduce sensitivity of data analysis to non-func- 

50 tional variations in the design data within a particular 
cell; 

calculating and storing digests of at least selected design 
data in the canonical forms, producing at least one digest 
per cell; 

comparing the digests of the cells in the first file to the 
digests of the cells in the second file; and 

summarizing at least some results of the comparing of the 
digests; 

60 the summarizing further includes reporting as potentially 
royalty-bearing cells in the production designs that have 
digests which match digests of cells in the royalty-bear- 
ing libraries. 

11. A computer-implemented method of evaluating simi- 
65 larities and/or differences between design data for circuits, 

the design data residing in at least two files stored in computer 
memory, the method including: 
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using a computer, identifying cells within design data 
residing in first and second files, wherein the cells cor- 
respond to portions of design for a physical circuit; 

parsing syntax of and normalizing the design data within 
the cells into canonical forms, wherein the canonical 
forms reduce sensitivity of data analysis to non-func- 
tional variations in the design data within a particular 
cell; 

creating one or more syntax trees that partition the design 
data within a cell at least: 
between header and body data, according to a format in 

which the design data is cast; and 
between functionally significant and non-significant 

data, wherein parts of the design data are functionally 
significant when a change in the design data would 
result in a change in a circuit generated from the 
design data; and 

calculating and storing digests of at least selected design 
data in the canonical forms producing at least one digest 
per partition per cell; and 

comparing the digests of the cells in the first file to the 
digests of the cells in the second file; 

summarizing at least some results of the comparing of the 
digests; and distinguishing among the digests produced 
from different partition types. 

12. The method of claim 11, wherein the syntax trees 
further partition the design data within a cell into design 
layers. 

13. The method of claim 11, further including: 
recognizing branches of the syntax trees that include nodes 

which represent design data that is order independent, 
wherein order independent means that the nodes can be 
processed in varying orders without changing a circuit 
generated from the design data represented by the nodes; 
and 

sorting nodes in the identified branches; 
wherein the calculating and storing digests are applied to 

the sorted nodes. 
14. A device that evaluates similarities and/or differences 

between design data for circuits, the design data residing in at 
least two files stored in computer memory, the device includ- 
ing: 

at least one processor and memory; 
a parser running on the processor, that parses a file con- 

taining design data representing aspects of a design for a 
physical circuit and creates one or more syntax trees in 
the memory; 

normalizer logic running on the processor and cooperating 
with the parser that organizes the syntax trees to produce 
canonical forms, wherein the normalizer logic includes: 
a partitioning module that partitions the file into at least 

one header and, depending on rules of a design lan- 
guage used to encode the file, into multiple cells of 
design data and organizes the syntax trees to represent 
the header and cell partitions; and 

a canonical forming module that interprets the syntax 
trees to produce canonical forms of the design data, 

86 
wherein the canonical forms reduce sensitivity of data 
analysis to non-functional variations in the design 
data; 

a digester module running on the processor that receives 
5 the canonical forms for at least selected partitions and 

calculates and stores in the memory at least one digest 
per selected partition; 

a comparer module running on the processor that receives 
and compares the digests of at least a first file and a 

10 second file, which contain design data; and 
a reporter module running on the processor and coupled to 

the digester that summarizes at least some of the 
matches and/or differences detected by the comparisons 
of digests. 

15 15. The device of claim 14, wherein the canonical forming 
module interprets the sortability of branches of the syntax 
trees and organizes the syntax trees to reflect sortability. 

16. The device of claim 14, wherein the partitioning mod- 
ule further partitions the file by layers within cells and orga- 

2o nizes the syntax trees to reflect the layers. 
17. The device of claim 14, wherein the partitioning mod- 

ule further partitions the file between design data that is 
functionally significant and design data that is not significant, 
wherein the design data is functionally significant when a 

25 change in the design data would result in a change in a circuit 
generated from the design data; and the partitioning module 
organizes the syntax trees to reflect functional significance. 

18. The device of claim 17, adapted to evaluating a new 
library of cell designs against an old library of cell designs, 

30 wherein: 
the first file is a new library of cell designs and the second 

file is an old library of cell designs; and 
the reporter module summarizes the functionally signifi- 

cant changes in the new library that are detected by 
35 comparing the digests. 

19. The device of claim 14, wherein: 
the first file includes one or more royalty-bearing libraries 

of royalty-bearing cell designs and the second file 
includes one or more production designs that include 

40 cell designs; and 
the reporter module further reports as potentially royalty- 

bearing cells in the production designs that have digests 
which match digests of cells in the royalty-bearing 
libraries. 

45 20. The device of claim 14, wherein: 
the first file is a design file and the second file is at least one 

approved library; 
the calculating and storing digests is applied to at least 

functionally significant data in multiple layers of the 
50 cells in design file and the approved library; and 

the reporter module further reports as renamed the cells in 
the design file that have at least some digests of func- 
tionally significant data in the multiple layers that do 
match digests of cells in the approved library (called "the 

55 functionally matching cells"), but which renamed cells 
have cell names that do not match cell names of the 
functionally matching cells. 
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